Confidence Intervals
Confidence Intervals when is σ Unknown
Learning Objectives
In this section, we will do the following calculations to estimate the true mean when the population standard deviation (σ) is unknown:
- Understand when z-scores and when t-scores are used
- Understand the meaning of t-scores
- Examine several Excel calls to calculate t-scores and the margin of error
- Introduce the confidence intervals formula
When the population standard deviation (σ) is unknown, we need to use a t-score instead of a z-score. In this case, the confidence interval formulas become:
- where
Calculating T-scores
When the population standard deviation is unknown, we must use a t-score instead of a z-score (that we used previously). We will explore what t-scores and what a t-distribution is in the next section also. For now, we will examine the 3 possible ways of calculating a t-score or the margin of error related to the t-score in Excel:
There are two new expressions to understand in above formulas (apart from t):
When we use Excel’s T.INV.2T() function, we input the area outside of the confidence interval. This area is also called α (alpha). See figure 49.1 below to better understand this area.

We can see from the above graph that α (alpha) makes up the area in the upper and lower tails (split between the two tails). It can be calculated using:
We can solve for
Finally, remember that
When we use Excel’s T.INV() Function, we input the area to the left of a

We can see from the above graph that we can solve for the negative (−) or positive
When we use Excel’s CONFIDENCE.T() function, we input the area outside of the confidence interval (α). This function returns the Margin of Error (E):

Excel’s CONFIDENCE.T() function is the quickest way to calculate the margin of error (there is no need to calculate the
We can easily calculate the lower and upper limits once the margin of error is known: