Chapter 17 Analyzing Starlight

17.5 Collaborative Activities, Questions and Exercises

Collaborative Group Activities

  1. The Voyagers in Astronomy feature on Annie Cannon: Classifier of the Stars discusses some of the difficulties women who wanted to do astronomy faced in the first half of the twentieth century. What does your group think about the situation for women today? Do men and women have an equal chance to become scientists? Discuss with your group whether, in your experience, boys and girls were equally encouraged to do science and math where you went to school.
  2. In the section on magnitudes in The Brightness of Stars, we discussed how this old system of classifying how bright different stars appear to the eye first developed. Your authors complained about the fact that this old system still has to be taught to every generation of new students. Can your group think of any other traditional systems of doing things in science and measurement where tradition rules even though common sense says a better system could certainly be found. Explain. (Hint: Try Daylight Savings Time, or metric versus English units.)
  3. Suppose you could observe a star that has only one spectral line. Could you tell what element that spectral line comes from? Make a list of reasons with your group about why you answered yes or no.
  4. A wealthy alumnus of your college decides to give ?50 million to the astronomy department to build a world-class observatory for learning more about the characteristics of stars. Have your group discuss what kind of equipment they would put in the observatory. Where should this observatory be located? Justify your answers. (You may want to refer back to the Astronomical Instruments chapter and to revisit this question as you learn more about the stars and equipment for observing them in future chapters.)
  5. For some astronomers, introducing a new spectral type for the stars (like the types L, T, and Y discussed in the text) is similar to introducing a new area code for telephone calls. No one likes to disrupt the old system, but sometimes it is simply necessary. Have your group make a list of steps an astronomer would have to go through to persuade colleagues that a new spectral class is needed.

Review Questions

1: What two factors determine how bright a star appears to be in the sky?

2: Explain why colour is a measure of a star’s temperature.

3: What is the main reason that the spectra of all stars are not identical? Explain.

4: What elements are stars mostly made of? How do we know this?

5: What did Annie Cannon contribute to the understanding of stellar spectra?

6: Name five characteristics of a star that can be determined by measuring its spectrum. Explain how you would use a spectrum to determine these characteristics.

7: How do objects of spectral types L, T, and Y differ from those of the other spectral types?

8: Do stars that look brighter in the sky have larger or smaller magnitudes than fainter stars?

9: The star Antares has an apparent magnitude of 1.0, whereas the star Procyon has an apparent magnitude of 0.4. Which star appears brighter in the sky?

10: Based on their colours, which of the following stars is hottest? Which is coolest? Archenar (blue), Betelgeuse (red), Capella (yellow).

11: Order the seven basic spectral types from hottest to coldest.

12: What is the defining difference between a brown dwarf and a true star?

Thought Questions

13: If the star Sirius emits 23 times more energy than the Sun, why does the Sun appear brighter in the sky?

14: How would two stars of equal luminosity—one blue and the other red—appear in an image taken through a filter that passes mainly blue light? How would their appearance change in an image taken through a filter that transmits mainly red light?

15: [link] lists the temperature ranges that correspond to the different spectral types. What part of the star do these temperatures refer to? Why?

16: Suppose you are given the task of measuring the colours of the brightest stars, listed in Appendix J, through three filters: the first transmits blue light, the second transmits yellow light, and the third transmits red light. If you observe the star Vega, it will appear equally bright through each of the three filters. Which stars will appear brighter through the blue filter than through the red filter? Which stars will appear brighter through the red filter? Which star is likely to have colours most nearly like those of Vega?

17: Star X has lines of ionized helium in its spectrum, and star Y has bands of titanium oxide. Which is hotter? Why? The spectrum of star Z shows lines of ionized helium and also molecular bands of titanium oxide. What is strange about this spectrum? Can you suggest an explanation?

18: The spectrum of the Sun has hundreds of strong lines of nonionized iron but only a few, very weak lines of helium. A star of spectral type B has very strong lines of helium but very weak iron lines. Do these differences mean that the Sun contains more iron and less helium than the B star? Explain.

19: What are the approximate spectral classes of stars with the following characteristics?

  1. Balmer lines of hydrogen are very strong; some lines of ionized metals are present.
  2. The strongest lines are those of ionized helium.
  3. Lines of ionized calcium are the strongest in the spectrum; hydrogen lines show only moderate strength; lines of neutral and metals are present.
  4. The strongest lines are those of neutral metals and bands of titanium oxide.

20: Look at the chemical elements in Appendix K. Can you identify any relationship between the abundance of an element and its atomic weight? Are there any obvious exceptions to this relationship?

21: Appendix I lists some of the nearest stars. Are most of these stars hotter or cooler than the Sun? Do any of them emit more energy than the Sun? If so, which ones?

22: Appendix J lists the stars that appear brightest in our sky. Are most of these hotter or cooler than the Sun? Can you suggest a reason for the difference between this answer and the answer to the previous question? (Hint: Look at the luminosities.) Is there any tendency for a correlation between temperature and luminosity? Are there exceptions to the correlation?

23: What star appears the brightest in the sky (other than the Sun)? The second brightest? What colour is Betelgeuse? Use Appendix J to find the answers.

24: Suppose hominids one million years ago had left behind maps of the night sky. Would these maps represent accurately the sky that we see today? Why or why not?

25: Why can only a lower limit to the rate of stellar rotation be determined from line broadening rather than the actual rotation rate? (Refer to [link].)

26: Why do you think astronomers have suggested three different spectral types (L, T, and Y) for the brown dwarfs instead of M? Why was one not enough?

27: Sam, a college student, just bought a new car. Sam’s friend Adam, a graduate student in astronomy, asks Sam for a ride. In the car, Adam remarks that the colours on the temperature control are wrong. Why did he say that?

Image of a typical temperature control in an automobile. The circular dial is labeled “TEMP”. At top are two curved arrows, blue pointing to the left for cooling, and red pointing to right for heating. At bottom is an icon for the heated seats.

License

Icon for the Creative Commons Attribution 4.0 International License

Douglas College Astronomy 1105 (Winter 2018) Copyright © 2017 by OpenStax is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.