"

Appendices

Appendix E: Mathematical Formulas

Appendix E: Mathematical Formulas

Quadratic formula

If ax2+bx+c=0, then x=−b±b2−4ac2a

Triangle of base b and height h Area =12bh
Circle of radius r Circumference =2πr Area =πr2
Sphere of radius r Surface area =4πr2 Volume =43πr3
Cylinder of radius r and height h Area of curved surface =2πrh Volume =πr2h
TableE1 Geometry

Trigonometry

Trigonometric Identities

  1. sinθ=1/cscθ
  2. cosθ=1/secθ
  3. tanθ=1/cotθ
  4. sin(900−θ)=cosθ
  5. cos(900−θ)=sinθ
  6. tan(900−θ)=cotθ
  7. sin2θ+cos2θ=1
  8. sec2θ−tan2θ=1
  9. tanθ=sinθ/cosθ
  10. sin(α±β)=sinαcosβ±cosαsinβ
  11. cos(α±β)=cosαcosβ∓sinαsinβ
  12. tan(α±β)=tanα±tanβ1∓tanαtanβ
  13. sin2θ=2sinθcosθ
  14. cos2θ=cos2θ−sin2θ=2cos2θ−1=1−2sin2θ
  15. sinα+sinβ=2sin12(α+β)cos12(α−β)
  16. cosα+cosβ=2cos12(α+β)cos12(α−β)

Triangles

  1. Law of sines: asinα=bsinβ=csinγ
  2. Law of cosines: c2=a2+b2−2abcosγ
    Figure shows a triangle with three dissimilar sides labeled a, b and c. All three angles of the triangle are acute angles. The angle between b and c is alpha, the angle between a and c is beta and the angle between a and b is gamma.
  3. Pythagorean theorem: a2+b2=c2
    Figure shows a right triangle. Its three sides are labeled a, b and c with c being the hypotenuse. The angle between a and c is labeled theta.

Series expansions

  1. Binomial theorem: (a+b)n=an+nan−1b+n(n−1)an−2b22!+n(n−1)(n−2)an−3b33!+···
  2. (1±x)n=1±nx1!+n(n−1)x22!±···(x2<1)
  3. (1±x)−n=1∓nx1!+n(n+1)x22!∓···(x2<1)
  4. sinx=x−x33!+x55!−···
  5. cosx=1−x22!+x44!−···
  6. tanx=x+x33+2×515+···
  7. ex=1+x+x22!+···
  8. ln(1+x)=x−12×2+13×3−···(|x|<1)

Derivatives

  1. ddx[af(x)]=addxf(x)
  2. ddx[f(x)+g(x)]=ddxf(x)+ddxg(x)
  3. ddx[f(x)g(x)]=f(x)ddxg(x)+g(x)ddxf(x)
  4. ddxf(u)=[dduf(u)]dudx
  5. ddxxm=mxm−1
  6. ddxsinx=cosx
  7. ddxcosx=−sinx
  8. ddxtanx=sec2x
  9. ddxcotx=−csc2x
  10. ddxsecx=tanxsecx
  11. ddxcscx=−cotxcscx
  12. ddxex=ex
  13. ddxlnx=1x
  14. ddxsin−1x=11−x2
  15. ddxcos−1x=−11−x2
  16. ddxtan−1x=−11+x2

Integrals

  1. ∫af(x)dx=a∫f(x)dx
  2. ∫[f(x)+g(x)]dx=∫f(x)dx+∫g(x)dx
  3. ∫xmdx=xm+1m+1(m≠−1)=lnx(m=−1)
  4. ∫sinxdx=−cosx
  5. ∫cosxdx=sinx
  6. ∫tanxdx=ln|secx|
  7. ∫sin2axdx=x2−sin2ax4a
  8. ∫cos2axdx=x2+sin2ax4a
  9. ∫sinaxcosaxdx=−cos2ax4a
  10. ∫eaxdx=1aeax
  11. ∫xeaxdx=eaxa2(ax−1)
  12. ∫lnaxdx=xlnax−x
  13. ∫dxa2+x2=1atan−1xa
  14. ∫dxa2−x2=12aln|x+ax−a|
  15. ∫dxa2+x2=sinh−1xa
  16. ∫dxa2−x2=sin−1xa
  17. ∫a2+x2dx=x2a2+x2+a22sinh−1xa
  18. ∫a2−x2dx=x2a2−x2+a22sin−1xa

 

Download for free at http://cnx.org/contents/af275420-6050-4707-995c-57b9cc13c358@11.1

License

BCIT Phys8400: Modern Physics Copyright © by OpenStax CNX. All Rights Reserved.

Share This Book