Resources

Useful Websites

  • Machine Learning / Statistics Dictionary: https://ubc-mds.github.io/resources_pages/terminology/

R resources

  • Data Wrangling with R: https://stat545.com/

Python resources

  • Sklearn documentation: https://scikit-learn.org/stable/index.html
  • Pandas cheatsheet: https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf

Books

  • Chatterjee and Hadi.  “Regression Analysis by Example, 5th Edition”. Wiley, 2012.
  • Jaggia, Kelly, Lertwachara and Chen.  “Business Analytics: Communicating with Numbers”.  McGrawHill, 2021
  • James, Witten, Hastie, Tibshirani, “Introduction to Statistical Learning, with Applications in R”, Springer 2021: 2nd Edition Online available: https://www.statlearning.com/
  • Hair, Black, Babin, Anderson and Tatham.  “Multivariate Data Analysis, 6th Edition”.  Pearson, 2006.
  • Strang, Gilbert.  “Linear Algebra”, Cambridge University Press.
  • Goldfarb, Avi et al “Prediction Machines”

 

 

License

Icon for the Creative Commons Attribution-NonCommercial 4.0 International License

Business Analytics Copyright © by Amy Goldlist is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted.

Share This Book