58 Gauge Pressure, Absolute Pressure, Measurement
If you limp into a gas station with a nearly flat tire, you will notice the tire gauge on the airline reads nearly zero when you begin to fill it. In fact, if there were a gaping hole in your tire, the gauge would read zero, even though atmospheric pressure exists in the tire. Why does the gauge read zero? There is no mystery here. Tire gauges are simply designed to read zero at atmospheric pressure and positive when pressure is greater than atmospheric.
Similarly, atmospheric pressure adds to blood pressure in every part of the circulatory system. (As noted in Pascal’s Principle, the total pressure in a fluid is the sum of the pressures from different sources—here, the heart and the atmosphere.) But atmospheric pressure has no net effect on blood flow since it adds to the pressure coming out of the heart and going back into it, too. What is important is how much greater blood pressure is than atmospheric pressure. Blood pressure measurements, like tire pressures, are thus made relative to atmospheric pressure.
In brief, it is very common for pressure gauges to ignore atmospheric pressure—that is, to read zero at atmospheric pressure. We therefore define gauge pressure to be the pressure relative to atmospheric pressure. Gauge pressure is positive for pressures above atmospheric pressure, and negative for pressures below it.
GAUGE PRESSURE
Gauge pressure is the pressure relative to atmospheric pressure. Gauge pressure is positive for pressures above atmospheric pressure, and negative for pressures below it.
In fact, atmospheric pressure does add to the pressure in any fluid not enclosed in a rigid container. This happens because of Pascal’s principle. The total pressure, or absolute pressure, is thus the sum of gauge pressure and atmospheric pressure: Pabs = Pg + P atm where Pabs is absolute pressure, Pg is gauge pressure, and 𝑃atm is atmospheric pressure. For example, if your tire gauge reads 34 psi (pounds per square inch), then the absolute pressure is 34 psi plus 14.7 psi (𝑃atm in psi), or 48.7 psi (equivalent to 336 kPa).
ABSOLUTE PRESSURE
Absolute pressure is the sum of gauge pressure and atmospheric pressure.
For reasons we will explore later, in most cases the absolute pressure in fluids cannot be negative. Fluids push rather than pull, so the smallest absolute pressure is zero. (A negative absolute pressure is a pull.) Thus the smallest possible gauge pressure is 𝑃g =− 𝑃atm (this makes 𝑃abs zero). There is no theoretical limit to how large a gauge pressure can be.
There are a host of devices for measuring pressure, ranging from tire gauges to blood pressure cuffs. Pascal’s principle is of major importance in these devices. The undiminished transmission of pressure through a fluid allows precise remote sensing of pressures. Remote sensing is often more convenient than putting a measuring device into a system, such as a person’s artery.
Figure 11.14 shows one of the many types of mechanical pressure gauges in use today. In all mechanical pressure gauges, pressure results in a force that is converted (or transduced) into some type of readout.
Let us examine how a manometer is used to measure pressure. Suppose one side of the U-tube is connected to some source of pressure 𝑃abs such as the toy balloon in Figure 11.15(b) or the vacuum-packed peanut jar shown in Figure 11.15(c). Pressure is transmitted undiminished to the manometer, and the fluid levels are no longer equal. In Figure 11.15(b), 𝑃abs is greater than atmospheric pressure, whereas in Figure 11.15(c), 𝑃abs is less than atmospheric pressure. In both cases, 𝑃abs differs from atmospheric pressure by an amount ℎ𝜌𝑔 where 𝜌 is the density of the fluid in the manometer. In Figure 11.15(b), 𝑃abs
s
can support a column of fluid of height ℎ , and so it must exert a pressure ℎ𝜌𝑔 greater than atmospheric pressure (the gauge pressure 𝑃g is positive). In Figure 11.15(c), atmospheric pressure can support a column of fluid of height ℎ , and so 𝑃abs is less than atmospheric pressure by an amount ℎ𝜌𝑔 (the gauge pressure 𝑃g is negative). A manometer with one side open to the atmosphere is an ideal device for measuring gauge pressures. The gauge pressure is 𝑃g=ℎ𝜌𝑔 and is found by measuring ℎ.
Systolic pressure is the maximum blood pressure.
DIASTOLIC PRESSURE
Diastolic pressure is the minimum blood pressure.
Example Calculating Height of IV Bag: Blood Pressure and Intravenous Infusions
Intravenous infusions are usually made with the help of the gravitational force. Assuming that the density of the fluid being administered is 1.00 g/ml, at what height should the IV bag be placed above the entry point so that the fluid just enters the vein if the blood pressure in the vein is 18 mm Hg above atmospheric pressure? Assume that the IV bag is collapsible.
Strategy for (a)
For the fluid to just enter the vein, its pressure at entry must exceed the blood pressure in the vein (18 mm Hg above atmospheric pressure). We therefore need to find the height of fluid that corresponds to this gauge pressure.
Solution
We first need to convert the pressure into SI units. Since 1.0 mm Hg=133 Pa
𝑃 = 18 mm Hg × 133 Pa / 1.0 mm Hg = 2400 Pa.
Rearrangint Pg = h ρ g for ℎ gives ℎ = 𝑃 / g𝜌 Substituting known values into this equation gives ℎ = 2400 N/m2 / (1.0×103 kg/m3) (9.80m/s2) = 0.24 m.
Discussion
The IV bag must be placed at 0.24 m above the entry point into the arm for the fluid to just enter the arm. Generally, IV bags are placed higher than this. You may have noticed that the bags used for blood collection are placed below the donor to allow blood to flow easily from the arm to the bag, which is the opposite direction of flow than required in the example presented here.
A barometer is a device that measures atmospheric pressure. A mercury barometer is shown in Figure 11.17. This device measures atmospheric pressure, rather than gauge pressure, because there is a nearly pure vacuum above the mercury in the tube. The height of the mercury is such that ℎ𝜌𝑔=𝑃atm When atmospheric pressure varies, the mercury rises or falls, giving important clues to weather forecasters. The barometer can also be used as an altimeter, since average atmospheric pressure varies with altitude. Mercury barometers and manometers are so common that units of mm Hg are often quoted for atmospheric pressure and blood pressures. Table 11.2 gives conversion factors for some of the more commonly used units of pressure.
Conversion to N/m2 (Pa) | Conversion from atm |
---|---|
1.0 atm = 1.013×105 N/m2
|
1.0 atm=1.013×105 N/m2
|
1.0dyne/cm2 = 0.10 N/m2
|
1.0 atm =1 .013×106 dyne/cm2
|
1.0kg/cm2 = 9.8 × 104 N/m2
|
1.0 atm = 1.013 kg/cm2
|
1.0lb/in.2 = 6.90×103 N/m2
|
1.0 atm = 14.7 lb/in.2
|
1.0 mm Hg = 133N/m2
|
1.0 atm =7 60 mm Hg
|
1.0 cm Hg = 1.33 × 103 N/m2
|
1.0 atm = 76.0 cm Hg
|
1.0 cm water = 98.1 N/m2
|
1.0 atm=1.03×103 cm water
|
1.0 bar = 1.000×105 N/m2
|
1.0 atm = 1.013 bar
|
1.0 millibar = 1.000×102 N/m2 |
1.0 atm = 1013 millibar
|
Conceptual questions
25. Explain why the fluid reaches equal levels on either side of a manometer if both sides are open to the atmosphere, even if the tubes are of different diameters.
Problems
32. Pressure cookers have been around for more than 300 years, although their use has strongly declined in recent years (early models had a nasty habit of exploding). How much force must the latches holding the lid onto a pressure cooker be able to withstand if the circular lid is 25.0 cm
sin diameter and the gauge pressure inside is 300 atm? Neglect the weight of the lid.