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Nomenclature  
Symbols Description  

          A,B,C 
A 1)steady-state 

availability 
2)Location parameter 
of Weibull distribution  A� Intrinsic  Availability  

a.r.t actual repair time 

B 1)a parameter of some  
distributions (Weibull , 
GEV, 
GPD) 2) Bartlet's test 
statistic  C 1)A parameter of some  
distributions (Weibull , 
GEV, 
GPD) 

CDF Cumulative 
distribution 
 function 

F 
Fx CDF of random 

variable X 
FY CDF of random 

variable Y f��� pdf of system's lifetime f� pdf of random variable 
X 

F  

CDF of strength 

( )Sf s
 

pdf of stress(load) 

( )F s  

CDF of strength 

( )f    

pdf of strength F�(�) pdf of sample min. F� ∗ F� convolution of  FX,FY 

, ,mnF
 

critical value of F  
distribution for n &m  
degrees of freedom at 
given sig. lev. α 

 

, 2 2 ,2 22 12
r rF  

 critical value of F  
distribution for

2 1
2 2 & 2 2r r   

deg. of f. at lev. α/2 
 

H,L,N,O ℎ(�) Instantaneous failure rate 
function  

  L  Lower Specification Level 

Nomenclature  
   

n 1)sample size 2)the number 
of components in a series or 
parallel configuration  �� Average safety factor �� Number of components in 
ith subsystem  �� Initial size of the sample ��(t) The number of survivor 
components (or the number 
still working adequately)at 
time   t OR Operational   readiness 

P,Q 
p Failure probability of a 

device 

pdf Probability density function 

P
s 

The probability that a 
switch operates well 

P
a
 The probability of 

accepting a lot by a 
sampling plan 

( )iP t  The probability that the 
system is in state i at time t �� Fraction defective in a 
population  

Q Failure (unreliability) 
probability of a device ��  Failure probability of ith 
component 

R �∗(�) The optimum reliability of 
the system at time t  �� The required reliability of 
the system ��∗ The reliability allocated to 
ith unit �� The given reliability for ith 
unit 

n

R (t)
sy s  The reliability of n-

component system(a active) 

2

standby
R  The reliability of 2-

component system 
( 1 active 1 standby) 

2

active
R  The reliability of 2-

component system( both 
active) Rs(t) The reliability function of 
the switch Rsys(t) System reliability function 
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Nomenclature  ��(�) The reliability function of 
ith unit  

 
          S,T 
S Stress, Load 

Smax Maximum of stress(load), 
 upper extreme value of S 

Smean Average stress value 

Smin Minimum of stress(load),  
lower extreme value of S 

t*  
Duration of  experiment 

T Total operating time of all 
 items under the lifetest  

U,V,W,X 
U  The upper specification 

level  of  a dimention of a 
product (� − �)���� The difference of  U al L   
in a part  (� − �)��� The difference of  U al L  in 
 the assembled  unit V� Coefficient of variation of 
 safety factor(SF) �� In AGREE Method: 
The importance factor  
of the ith subsystem �(�) The minimum of   a sample �(�) The ith value of an ordered  
sample �� The ith value of a sample; 
 The occurrence time of the 
ith Failure; the ith failure 
time of the device 

( )
1 1

:
r r

i i
i i

Note X X
 

 
 α, β, … 

  The probability of Type I 
error 

  
The probability of Type II 
error 

δ� The strength of the ith link 
(component) 

Nomenclature  �� The failure rate of  
component  a �� The failure rate of  
component  b  �� 
In  load sharing:the failure 
rate  for the component  
under half load  �� 
In load sharing:The failure 
rate  for the component  
under full load  �� The failure rate of  the 
switch �� 
The failure rate of  the  
standby  component 
while in standby mode   

  The mean of a population ��  
Average load ��  
Average stength � The standard devaition of 
apopulation 
 �� Standard devation of load 
sistribution �� standard devation of 
strength distribution  δ��� lower bound of strength 
 

partσ   
the standard devaition of a 
measurement in a part 
 

sum  the standard devaition of a 
measurement  
  in the assembly 
 �� 
the CDF of  standard  
normal distribution 
 �� 
moment gegerating 
function 
of  randdom varaible X 

2
,n   The critival value of chi-

squared distribution wth 
degre. free=n   and sig . 
level = α  
 

 �or � composition  operator  
acting over  a function   
(in  UGF Technique) 

           End of  Eexample 

        
     

End   of   theorem  ;  End of  
proof 
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1.1 Introduction  

In general, the reason one is concerned with the reliability of 

components of electrical and mechanical systems is to ensure 

that the systems will be reasonably  free from failure(Grant 

&Leavenworth, 1988 page 606).  Failure of products  could 

incur a great loss or  lead to personal injury, or severe physical 

or environmental damage and even lead  to death, This proves 

the importance of product reliability in various fields including 

air-space. According to Bazovsky(2004) "reliability  has added a 

new dimension to quality control work without subtracting 

anything from traditional quality control work and methods." 

1 
Introduction  and Basic  Concepts 

Aims of the chapter 

     This chapter is concerned with definitions and basic concepts 
needed in a reliability course such as MTTF,MTTR, reliability 
function, hazard function and their estimation. Bathtub curve, 
cumulative distribution function of extreme values of samples 
are also discussed and a goodness of test for exponential 
distribution is explained.       
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Here the quality characteristic is life.  Gathering of lifetime data 

is often expensive and  its statistical analysis is an important 

topic in reliability engineering.  It is reminded that  control 

charts such as �� chart and p-chart could be constructed using 

lifetime data but these charts, despite their effectiveness, do not 

answer such questions as what percent of the products live more 

than 1000 hours  with 90% of probability.  Before defining the 

term reliability let us define the term failure. 

1-2 Failure 

American National Standard defines failure as "The 

termination of the ability of  any item  to perform its required 

function (IIE Terminology page 8-9). 

1-3 Reliability 

  In general reliability is the ability of a device, a system or a 

unit to perform a function or  some required functions without 

any failure under some conditions for a stated amount of 

operation.  The amount of operation could be expressed in time, 

kilometers, working cycles, number of times it operates�. 

When defining this characteristic by such terms as "assessed  

reliability" and "predicted reliability" the following is useful    
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IIE terminology defines this term as " the probability that an 

item will perform a required function  under stated conditions 

for a stated period of time" (IIE Terminology page 8-22).   

The reliability is sometimes expressed as a success ratio. 

The objectives of  Reliability Engineering  

The Reliability Engineer must1 

 Apply engineering knowledge and techniques to reduce 

the occurrence of failures 

 Determine the cause of each failure and make necessary 

adjustments to correct the issue or completely address 

the root cause 

 Identify different ways to address failures should the root 

cause prove uncorrectable 

 Do reliability estimations for new designs and 

continually analyze reliability data 

Moreover reliability engineers check new installations to 

ensure they adhere to functional specifications. They guide users 

to ensure the reliability and maintainability of equipment, 

processes, utilities, facilities, controls, and safety/security 
                                                           

1 From (https://www.techslang.com/definition/what-is-reliability-engineering/) 
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systems. That includes helping them come up with asset 

maintenance and risk management plans. 

Reliability engineers develop solutions to repetitive failures 

and all other problems that adversely affect the users� 

operations. They work with production teams to analyze assets� 

performance. 

Overall, reliability engineering can minimize failures, 

enhance effectiveness, reduce repair times, streamline 

maintenance processes, and offer protection against injuries and 

death.( End of quotation from https://www.techslang.com/definition/what-is-reliability-engineering/) 

Also reliability engineers must  

 Be able to enhance and optimize  systems' reliability  

Reliability Importance: The Reasons 

Some of the reasons why product reliability is important are: 

-Greater safety for industries such a space industry 

-Greater product reliability causes more reputation 

-Customers' request and consent 

-Although greater reliability  incur a higher cost, but the 

overall cost including that of maintenance and repair is less. 
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It is worth mentioning that reliability theory has application 

to many fields including air-space industry, home appliances, 

transportation, buildings, and electronic industry.  

1-3-1 abbreviations 

TTF Time To Failure, 

TTR Time To Repair, repair time 

TBF time between 2 successive failures( for repairable devices) 

MTTF Mean Time to failure 

MTTR Mean Time to Repair 

MTBM Mean time between maintenance, The average length 

of time between one maintenance action and another 

for a component 

MTFF Mean time to first failure 

MTBF Mean time between failures( for repairable devices) 

Note that TBF is equal to the sum of TTR and TTF (Fig.1.1). 

TBF=TTR+TTF                 (1-1-1) 

 

Fig. 1.1 Graphical representation of  Eq. 1.1. 
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Taking the average of  both sides of Eq. 1-1-1 yields: 

MTBF=MTTR+MTTF                 (1-1-2) 

If the probability distribution function or the cumulative distribution 

function of the time between failures is not known, mean time 

between failures(MTBF)could be estimated from (Tersine, 1985, 

p202): 

N

WT
BFTM �                        (1-2) 

Where N is the number of failures during the time WT. 

Mean time to failure (MTTF) and mean time to repair(MTTR) 

could be estimated in a similar manner. 

In the continuation of this section, some terms used for  

measuring reliability  such as reliability function, mean life time, 

hazard function or failure rate function are described. It is worth 

remembering that since we accept that in a population of a 

product, the products fail in different times, even if they work 

under the same conditions, it is concluded that the failure 

phenomena has to be treated statistically. That is why the 

definition of  reliability basics concepts is based on Profanity 

theory. 
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1-4 System reliability function: R(t) 

Reliability function for devices with continuous lifetime 

distribution is defined as: 

R(t) = Pr(X > �) = Pr(X ≥ t) = ∫ f(x)dx− 1 − F(x)∞�    (1-3) 

where 

 �(�) is the probability density function(pdf) of time to failure 

(X=TTF), 

�(�) is the cumulative distribution function of  lifetime(X), 

Reliability function for devices with discrete lifetime 

distribution is defined as: 

      (1-4-1) �(�) = ��(� > �)  , k  =  1, 2, . . .. 
      (1-4-2) �(�) = ∑ ��(�)∞����� , 

Where  ��(�) is the failure probability at time j. 

For example if the failure probability at any time is p and the 

distribution is geometric, then the reliability of time j is: �(�) = (1 − �)��� ,    k  =  1, 2, . . ..           (1-5) 

If  k is largish and p is small, then: 
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1-5 Calculation of average lifetime  

If  the lifetime is a continuous random number with 

probability density function f(x) of cumulative distribution F(x), 

its average is calculated from: 

�(�) = ∫ ��(�)∞�∞ ��.                                    (1-7)  

It is proved that for a continuous distribution: 

�(�) = ∫ [1 − ��(�)]∞� �� − ∫ ��(�)����∞   (1-8) 

And since lifetime(X) does not accept negative values, then 

lifetime average could be calculated from: 

�(�) = ∫ [1 − ��(�)]∞� ��                       (1-9) 

or from : 

�(�) = ∫ �(�)���� .                           (1-10) 

It worth noting that 2 systems with equal lifetime average 

might have different reliability. 
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Example 1-1 

If  X with normal distribution �~�(� = ����, �) and Y 

with exponential distribution �~��� �� = �� = ������ 

represent the lifetimes of 2 products,  find the average lifetime 

and the reliability of each product for a mission time equal to � =  ����. 
Solution 

X is normally distributed; then 

E(X) = μ = MTBF , R(t =  MTBF) = Pr(X > μ) = �� 
Y is exponentially distributed, then: 

�(�) = � = ����,    �(����) = ���� ≅ 0.37  

Example 1-2 

The life time of a critical component is exponentially 

distributed with parameter λ.  If the component fails or if its 

lifetime reaches T it is replace with a ne one.  How much time 

on the average is needed to  replace the component? 
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Solution 

Let 

 X=the life time of the component and 

 Y= the replacement time. 

Y = Min(X, T) ⟹ E(Y) = E[Min(X, T)] 
Min (X,T)+Max(X,T)=X+T⟹ 

E[Min (X,T)] =E(X+T)-E[ Max(X,T)] 

E(X + T) = E(X) + T 

E{Max(X, T)} = E(Max(X, T)|X > �)Pr(X > �)+ E(Max(X, T)|X ≤ T)Pr(X ≤ T) 
,E(Max(Xا  T)|X > �) = E(X|X > �) , 

X is exponentially distributed and therefore is memoryless; then: 

E(X|X > �) = T + �
λ
  and E(Max(X, T)|X ≤ T) = E(T) = T. 

then 

E{Max(X, T)}=( T+ �
λ
) × e�λ� + T�1 − e�λ�� = T + �

λ
e�λ� 
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E(Y) = E{Min(X, T)} = E(X + T) − E[ Max(X, T)] = �
λ

+ T− (T + �
λ
e�λ�) ⇒  E(Y) = �

λ
(1 − e�λ�)  

1-6 Failure rate  

The probability of failure of a system in a given interval [��, ��] 
is(K&L page 12):  

 )Pr( 21 tXt  ��(��) − ��(��) =  �(��) − �(��). 
conditioning on the event the item is working at time t� ��(�� ≤ � ≤ ��|� > ��)=��(��)���(��)�(��) = �(��)��(��)�(��)  

If this conditional probability is averaged over  [��, ��] an 
average rate of failure is obtained from the following (Ravindran, 
2016 p17-12) 

��(�� < � < ��|� > ��)�� − �� =  �(��) − �(��)�(��)�� − �� = �(��) − �(��)(�� − ��)�(��) 
This is called the failure rate during interval [��, ��] (K&L p12).  

1-6-1 Instantaneous rate function (hazard function)  
for  continuous life time distributions  

In the above expression, let [��, ��] = [� , � + ∆�] then the 

average rate of failure would be  �(�) − �(� + ∆�)∆� × �(�) . 
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When t  approaches zero( 0t  ) in the above fraction, a 

function called instantaneous rate function or hazard function is 

obtained: 

ℎ(�) = lim∆�→� �(�)��(��∆�)(∆�)×�(�) = ��(�) �− ��(�)�� � = �(�)�(�),  (1-11) 

  Then for devices with continuous lifetime having pdf   f(t) and 

reliability(survivor) function R(t), the hazard function is defined 

as  the ratio of the probability density function to the survivor 

function. 

ℎ(�) = �(�)�(�) = ��′(�)�(�) .                             (1-12) 

 The ratio is a function of  t.  In practice,  t could be time, 

number of cycles or revolutions ,km, events,�. 

     h(t) represents the conditional probability density  that an item of 

age t will fail(Ross, 1985 page 194).  However, we can see from the 

definition the hazard function is the �chance� of failure (though 

it is a normalized probability, not a probability) at time t, given 

that the individual has survived until time (https://web.stat.tamu.edu/~ 

suhasini/teaching613/chapter6.pdf). 
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It is worth mentioning that it is probable as much as  ℎ(�) × �� 
that  a component with lifetime  t  will fail during the small 

interval dt, since 

 

The importance of  the hazard function is that it indicates the 

change  in the failure rate over the life  of a population of 

devices. For example, two designs may provide the same 

reliability at a specific time; however the failure rates up to this 

point in time can differ(K&L page12)., 

The hazard function  of a device is not necessarily the same 

in different lifetime intervals. 

1-6-2Necessary condition for being a hazard function 

All  hazard functions must satisfy two conditions(Ravindran, 

2016 page17-12). They cannot be negative  

ℎ(�) ≥ 0    ��� ���  � ≥ 0                                (1-13-1) 

and it could be proved that if  a function h(t) is a hazard 

function then: 

∫ ℎ(�)���� = ∞.                                    (1-13-2) 
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1-6-3 Hazard  function and reliability function for 

discrete life time distributions 

If a product life time(X) has a discrete distribution and P�(k) 
is the probability that the product fails at time k, according to  

Eqs. 1-4 the reliability would be: 

R(k) = Pr(X≥k) = ∑ Pr(X  =  j)∞���  =∑ P�(j)∞��� ,   

   The function  h(k) given below, is known as the rate 

function of  "item with discrete lifetime distribution"(Xie et al,2002): 

h(k)  =  Pr(X  =  k | K  ≥  k)  =  Pr(X  =  k)/ Pr(X  ≥  k) ⟹ 

h(k) = P�(k)∑ P�(k)∞��� = P�(k)R(k) .     (14− 1)            
   For example if the lifetime of an item has a Poisson 

distribution with parameter λ, then: 

h(k)=
��(�)�(�) = ��(�)∑ ��(�)���� = ���!∑ ���!∞��� . 

in MATLAB:          h(k)=
��������(�,   �����)����������(���,   �����). 
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1-6-4 Calculation of �(�), �(�), �(�), �(�) given any of 

them   

If any of the four functions ℎ(�), �(�), �(�), �(�) are 

known, the other three are uniquely obtainable from it as 

described below(Grosh,1989 page16): 

h(t) is known: 

t t

0 0

f(t) R'(t) R'(x)
h(t)= dt=-h(t)dt dx=- h(x)dx

R(t) R(t) R(x)
   

 

Assuming R(0) = 1, integrating yields  ,then 

�(�) = ��∫ �(�)����                    (1-14-1) �(�) =   ℎ(�)�(�)                    (1-14-2) 

       �(�) = 1 −  �(�)                    (1-14-3) 

f(t) is known: 

 

    (1-15-1)                      (1-15-2)                  (1-15-3) 
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F(t) is known: 

�(�) = ��� �(�)         �(�) = 1 − �(�)           ℎ(�) = �(�)�(�)  
   (1-16-1)                         (1-16-2)               (1-16-3) 

R(t) known 

 
-R'(t)

h(t)=
R(t)

        �(�) =   ℎ(�)�(�)            �(�) = 1 − �(�) 
  (1-17-1)                    (1-17-2)                          (1-17-3) 

1-7  The pdf of a part of  a distribution 

    If ( )f x , the probability density function of  a random 

variable is known, the density function of  part (a  b) of the 

random variable  is: 

1
( ) ( )

( )
a b b

a

f x f x
f x dx


 


                       (1-18) 
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1-8 Some continuous distributions used in  
      reliability theory1 

      Below some useful probability distributions related to 

lifetime and reliability subject are reminded.  

1-8-1   Exponential distribution 

      Exponential distribution is a distribution whose density function is  

 �(�) = �� ��   � �,   � ≥ 0, � > 0  ��  = ���  ��    � > 0    (1-19-1) 

The reliability function related to this distribution is as follows: 

�(�) = ��(� > �) = ∫ �� ������∞� = ����     � ≥ 0  (1-19-2) 

The hazard function is : 

( ) 1
( )

( )

f t
h t

R t



               (1-19-3) 

     It is clear that the rate function of an exponential distribution 

is constant and independent of time. Conversely if  we know  the 

                                                           

1 some softwares such as ARENA could determine the best distributions that 
fit  a data set(e.g in  ARENA tools-input analyzer- new-file data file- use 
existing- fit all) 
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failure rate of a random variable is time independent (constant), 

it s exponentially distributed. 

It is worth mentioning that 

-A gamma distribution with parameters (� = 1, β) is an 

exponential distribution 

-A Weibull distribution with parameters (� = 0, �, � = 1) is an 

exponential distribution 

-The minimum of n independent exponential distributions 

with parameters ��, … , ��  follows an exponential 

distribution with parameters  ∑��.  
-According to Eq.1-18, the density function of  a section of 

an exponential  random variable say section (0  D) is: 

  
�����������                  0 < � < �  .  

1-8-2   Normal(Gaussian) distribution 

  The  pdf of a normal distribution which is sometimes called 

Gaussian distribution is 

 2

21 2( ) ,
2

x

f x e x





 




            (1-20-1) 

The rate function is: 

 
2 1

2

1
( ) exp 1

22
Z

t t
h t

 

  

     
       

    

 (1-20-2) 
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where 

 Z  is the cumulative distribution function(CDF) of standard normal. 

 

 

 

 

  Fig. 1.1 shows the rate function of 2 normal distributions. 

   It is worth mentioning that  normal distribution has the 

additive property  i.e.  if  n independent normal distributions  

N(��,��),�, N(��,��)  are added to give another random 

variable Y,  Y also follows a normal distribution, 

Example 1.3 

   Suppose the time to failure  of a device is normally distributed 

with mean of 20000 cycles and standard deviation of 2000 

cycles.  Find the value of reliability(survivor) function and 

hazard function at 19000 cycles. 

Solution  Using Table D at the end of the book 

R(19000) = Pr(� > 19000) = Pr �Z > 19000 − 200002000 � = 

Pr(Z>0.5)=1-Pr(Z<-0.5)=0.69146=69.15%                     

  � = 2   �= 0.3
� = 1  �= 0.2

t=TTF 

ℎ(�
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 
2

2

t-20000

2(2000 )
-1

f(t)= e f(19000)=0.000176
2000 2π

  

f(19000) 0.000176
h(19000)= = =0.000245 failures/cycle

R(19000) 0.69146
 

i.e. 245  failures per 1 million cycles.  

1-8-3   Truncated normal distribution(μ,σ;0,∞) 

If  we truncate the values of  a normal distribution from 

below zero, the density function of the remaining values within 

the interval  [0; ∞] would be derived from Eq. 1-18 as follows:  

f(t) = ��σ√�π e������μσ �� , t ≥ 0 , σ > 0  . < μ < ∞  (1-21-1) 

where  

� = � 1� √2� ��������� ��∞

� �� = �� �� > −�� � = 1 − Φ�(−�� ) 

Note that  

-The probabilities of this distribution is not calculated in the 

same manner which is done in classical normal distributions. 

- The mean and variance of this distribution does not equal 

2and   .  The mean is  
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 

2
1 μ

-
2 σE X

a
e



 
 
               (1-21-2)  

 This truncated distribution has an increasing rate function. 

Figure 1-2 shows the  function for typical one plotted with the 

following  MATLAB commands: 

mu=3;sigma=0.1;t=0:.01:10;f=(normpdf(t,mu,sigma))/(normcdf(mu/si

gma))./(1-normcdf(t,mu,sigma));plot(t,f); 

 

      Fig. 1-2  Instantaneous rate function of a truncated  
                     with � = 3  ���  � = 0.1     � ≥ 0 

1-8-4   Log- normal distribution(μ,σ) 

The probability density function of a log-normal distribution is: 

�(�) = ���√�� ��  ����� ���� ��    � ≥ 0 ,   � > 0    − ∞ < � < ∞     (1-22-1) 

The mean, variance and median of the distribution is as follows: �(�) = ������                                     (1-22-2) 
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Figure 1.3 shows the pdf of 2 sample lognormal 
distribution
 

Fig. 1.3 The pdf of 2 lognormal distribution

1-8-4-1   Calculation of  the parameters(

                 distribution

Given E(
lognormal random variable,  the parameters  of the distribution 

is calculated from:

1-8-4-2   The relationship between lognormal (

(μ,σ) distributions

                                                                                Reliabilty Engineering             ���(�) = ������������ − 1�      (1-22-3)
         median=�                                            (1-22-4)

Figure 1.3 shows the pdf of 2 sample lognormal 
distributions. 

Fig. 1.3 The pdf of 2 lognormal distribution 
 
 

1   Calculation of  the parameters(μ,σ) of  lognormal 

distribution from the mean and variance (T) and  Var(T) as the mean and variance of a 

lognormal random variable,  the parameters  of the distribution 

is calculated from: 

  �� = ln ����(�)��(�) + 1�,                         (1-22

�   = ln�(�) − ���      .                      (1-22

2   The relationship between lognormal (μ,σ) and normal 

) distributions 

Reliabilty Engineering              

3) 
4) 

 

 

as the mean and variance of a 

lognormal random variable,  the parameters  of the distribution 

22-5) 

22-6) 

) and normal 
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  If T  is distributed log-normally :T~lognormal(μ, σ), then 

X=ln(T)is a normal random variable: lnT~N(μ, σ).  
  If X  is distributed normally :X~N(μ, σ), then T=e� is a 

lognormal random variable: e�~logN(μ, σ). 
Fig.  1-4 compares  the 2 distributions: 

 
Fig 1.4  Normal and lognormal distributions 

To calculate the probabilities in this distribution proceed as 

follows: 

( ) Pr( )

ln ln ln
Pr(ln ln ) Pr( ) Pr( )

TF t T t

T t t
T t Z

  

  

  

  
    

 

Then       
ln

( ) ( )T Z

t
F t







                                (1-22-7) 

where �� is the CDF of standard normal. 

The reliability function or survivor function is given by : 
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The command lognormalcdf from Table H at the end of the 

book might be used to calculate ��(�)  and R(T): ��(�) = lognormalcdf(�, μ,�) �(�) = 1 − lognormalcdf(�,μ,�)  
 

The instantaneous failure  rate function is: 

(1-22-9) 

 
2

2

ln
exp

2

ln
1

1
( )

2 Z

t

t
h t

t








 

 
 
 
 

  
    

  




 

In MATLAB, h(t) could be calculated by dividing commands 

lognormalpdf  to 1-lognormalcdf :e.g.: 

y=(lognpdf(x,1,2.5))./(1-logncdf(x,1,2.5));plot(x,y) 
Fig 1-5 shows the rate functions for 4 lognormal distributions. 

This distribution seems to have little  except its mathematical 

tactability  to recommend itself as a failure distribution ; it does 

seem to give good fit to repair time distributions(Barlow and 

Proschan,1995 page17).   
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Fig 1-5 The hazard function for some lognormal  variable with   μ = 1 

(the horizontal axis  is the time and the vertical is the failure function) 

Example 1-4 

  If  time to failure of a device is lognormally distributed with (� = 5, � = 1).  Find the values of the reliability and hazard 

functions for t-150 units of time. 

Solution 

�(150) = �� �� > �� ������ � = 0.496  

��(�) = ���√�� ����������� ��
,      ��(� = 150) ≅ 0.0027 
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ℎ(150) = �(���)�(���) = �/�����.��� = 0.0053������� 1 ���� ����� = 53 failures 10000����� �� ����� .        

1-8-5   Uniform distribution 

   If the  probability density function of a random variable is as 

follows: 

��(�) = � ����       � ≤ � ≤ �0            �. � �                       (1-23-1) 

The variable is said to be uniformly distributed over  [�  �]. 
For example the density function of the uniform distribution in 

the interval ( 00  ) is: 
0

0

1
0

( )

0

t
f t

other





 

 



 

In this distribution: 

                ��(�) = ������                                         (1-23-2)  

�(�) = ������                                                (1-23-3) 

ℎ(�) = �(�)�(�) = ����              � ≤ � ≤ �        (1-23-4) 
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Figures  1-6 and 1-7 shows the  density function )x (f  and the 

hazard function ℎ(�). 

 

Fig 1.7 The hazard function of 

a uniform distribution 

Fig 1.7 The density function of 

a uniform distribution 

1-8-6   Weibull  distribution 

   If the  probability density function of a random variable is as 

follows: 

 
1

C
C t A

BC t A
f t e t A

B B

  
 
 

 
  

 
                  (1-24-1) 

This continuous distribution is called Weibull   after  Swedish 

mathematician and engineer  Waloddi  Weibull. 

The CDF, the reliability (survivor) function, the rate function 

are: 

�(�) = 1 − ������� ��                           (1-24-2) 
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�(�) = ������� ��                                 (1-24-3) ℎ(�) = �(�)�(�) = 1C
C t A

B B


 

 
 

                 (1-24-4) 

and the mean, variance and median are: 

(1-24-5) 
1

( ) (1 )E T A B
C

     

(1-24-6) 
2 22 1

Var(T) B Γ(1+ )-B Γ(1+ )
C C

 
  

 
 

(1-24-7) 
1

Cmedian (ln 2)A B   

A is called the location parameter, B is the scale parameter and 

C is the shape parameter. 

An interpretation  of  location parameter in reliability theory : 

A minimum life time of A is guaranteed.  

Figure 1-8 shows some  Weibull  distribution  pdf 's. 

In weibull distribution: 

-If A=0 , the distribution is called 2-paramter distribution.  

-If A=0   C=1 , the distribution is exponential  distribution 

whose hazard function is constant. 
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-If A=0, C=2  the distribution is called Rayleigh  distribution 

whose hazard function is linear.  This distribution is frequently  

used as the statistical distribution of  sea wave height and to 

model the behavior of  some communication channels. 

 

Fig. 1-8  Plot of the Weibull distribution  for scale parameter B=1 and 

five  values of  shape parameter  (extracted from Grant&Leavenworth ,1988 

page605) 

Given a random  sample ��… . , ��, the following relations 

could be used to estimate the parameters B and C of a Weibull 

distribution with A=0.  These relations are related to maximum 

likelihood estimation(MLE) method in statistics theory.  

� = �∑ ���� �� �������∑��� − ∑ ��������� ���       (1-23-8) 

� = �∑���� ���                                         (1-23-9) 
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- In a exceptional case where the shape parameter  of Weibul 

(A,B,C) is C=3.44, the distribution could be approximated with 

a normal distribution with parameters (Carter,1986 as  refrenced 

by O'Connor, 2003page122 ) � = � + �Γ(1 + ��) ≅ A + 0.9B ,    � = ��Γ(1 + Γ(��)) ≅ 0.3� 

        

Example 1-5  
Write a MALAB code  to estimate the parameters  B and C 

of a Weibull distribution  from which the following random 

sample is at hand: 

X=[113.0634   49.5432   53.4872   93.7147   74.0594  

114.3216   97.1033   61.5069   74.7216   52.8807]; 

Furthermore estimate the parameters with wblfit MATLAB 

command. 

Solution 
%Sample X=[X(1)......X(n)] 
    X=[113.0634   49.5432   53.4872   93.7147   74.0594  

114.3216   97.1033   61.5069   74.7216   52.8807]; 
for C=.01:0.001:40 
for I=1:length(X) 

LNX(I)=log(X(I));  
XIC(I)=X(I)^C;XICLNX(I)=XIC(I)*LNX(I); 

end 
A= C-(sum(XICLNX)/sum(XIC)-sum(LNX)/length(X))^(-1); 
if  ( abs(A)<= 0.001 ) C1=C; disp(sprintf('C=  %6.4f    ',  C1))  

   end 
end 
 B=(sum(X.^C1)/(length(X)))^(1/C1); 
disp(sprintf('B=  %6.4f    ',  B)) 
with  MATLAB command wblfit: 
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>>wblfit(X) 
ans =     87.1543    3.7149  

1-8-7   GEV  distribution 

   Fisher and Tippet  presented three statistical distributions 

  ���, ���, 1���,  or ���, ���, 2���.  Jerkinson (1955) showed 

that these 3 are special cases of one distribution which was 

called later generalized extreme value (GEV) distribution.  The 

characteristics of this distribution as well as Weibull distribution 

and general Pareto distribution are given in Table F at the end of 

the book. 

1-8-8 Gamma distribution  

  The gamma distribution is another continuous distribution used 

in reliability work to fit failure data.  It is sufficiently flexible. A 

random variable X which follows a Gamma distribution  has 2 

positive parameter:  0 0    with the following pdf: 

   
1 0

0 0

xx e x
f x

x

 




 

 

 




              (1-24-1)

 

Furthermore: 

                                                           

1 Extreme Value  
2 Fisher-Tippet I or Gumbel distribution 
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(1-24-2) ( )E X



  

(1-24-3) 
2

( )V ar X



  

(1-24-4) ( ) ( )M GF t
t

 





 

� is called shape parameter and  �  is the scale parameter. 

The failure rate function of the gamma distribution does not 
exist in a simple closed form. Figure 1.9  shows the function.  

For α > 1 it is increasing , for α = 1 it is constant and for 

α < 1it is decreasing 

 

Fig 1-9 The hazard function of  gamma distribution 

1-8-8-1  Erlang distribution  

If � is some positive  integer n, the distribution is called Erlang 
and in the pdf we could replace Γ(n) with Γ(n) = (n− 1)!. 
If α = 1   the distribution is exponential;  
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If α = 2   `the distribution is Rayleigh. 

An  application of  Erlang distribution is to calculate  the 
probabilities related to the nth   occurrence in a Poisson process. 

In Erlang  distribution with parameters n and � the kth moment 
about the origin is: 

����� = Γ(� + �)��Γ(�)             � + � > 0 (1-25) 

Figure 1-10 shows three functions  related to 7 different 
distributions.   
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Fig. 1-10  pdf, h(t),R(t) of some distributions 

Reliabilty Engineering              
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1-9 Bathtub curve hazard function 

The hazard function varies with time. A well-known pattern 

is called bathtub curve whose ideal form is shown in Fig.1-11-1.  

 

Fig 1-11-1 Ideal Bathtub curve 

It comprises of three parts: 1)Infancy(early-life period ), 

2)useful life, 3)aging.  The first part represents the failure rate of 

early life period which is decreasing. The second part has a 

constant rate of failure, The last part is the wear-out period and 

has an increasing failure rate.    

A distribution which could be used for each of the 3 parts of 

Fig.1-11-1 is Weibull distribution with different shape 

parameter C as described below: 

1

1 2

2

0<C <1 : 0< t < t

C=1 : t < t <t

C>1 : tt







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Figures 1-11-

curve which happen in practice,   

Fig 1-11-2    Some variations of bathtub cu

  Fig 1-11-3 A variation of bathtub curve for some mechanical devices

                                                                                Reliabilty Engineering             

-1  to 1-11-5  show  some other variations of bathtub 

curve which happen in practice,    

2    Some variations of bathtub curve(Kuo&Zuo,2003)

3 A variation of bathtub curve for some mechanical devices

(Ireson,1995 page18-2) 

Reliabilty Engineering              

er variations of bathtub 

 
ve(Kuo&Zuo,2003) 

 

3 A variation of bathtub curve for some mechanical devices 
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Fig  1-11

Figure  1-11-5 shows different forms of bathtub failure curve due to 

different levels of stress on some mechanical devices.

Fig1-11-

(Ireson,199

Introduction  and Basic  Concepts                                                 

 

11-4 Another variation of Bathtub failure rate function

(Nahmias, 2004, Fig.12-4) 

5 shows different forms of bathtub failure curve due to 

different levels of stress on some mechanical devices. 

 

-5 Effects of stress levels on mechanical failure rates

n,1995 Fig18-1, Stamatis,2010 Fig. 6-3 page163 )
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Bathtub failure rate function 

5 shows different forms of bathtub failure curve due to 

 

5 Effects of stress levels on mechanical failure rates 

3 page163 ) 
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1-9-1 Some forms of hazard functions 

For each part of   the bath tub curve  different hazard function 

is appropriate. So next  some kinds of failure rate function are 

considered(K&L page 28) . 

a-   Constant hazard( failure rate) function 

If the failure rate function  is ℎ(�) = �  i.e. is constant  and 

does not  depend   on  time ,according to the relationship 

between the hazard function and the density function  of  

lifetime(TTF); 

�(�) = ℎ(�)��∫ �(�)���� = ���∫ ����� = �����      � > 0  

�(�) = �(�)ℎ(�) = ������ = ���� 
  Therefore   if the hazard function is constant , the lifetime  is 

exponentially distributed.  

 The concept of  being constant  is illustrated in the histogram 

and  table of  Example  1-11. 

b-  Linear  hazard function  

    If the failure rate function  is ℎ(�) = � + �� , � ≥ 0 which 

represent  a line, then  

�(�) = ��∫ �(�)���� = ���������                      (1-26)                          
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For the case � = 0 و   � > 0  , the hazard function is linearly 

increasing: ℎ(�) = ��         � ≥ 0,  The density function is  

�(�) = ℎ(�)��∫ �(�)���� ⟹ 

�(�) = ����∫ ������ = ��������        � ≥ 0         (1-27-1)  

Which corresponds   a Rayleigh distribution or  a Weibull distribution 

with  parameters A=0, B=��� , C=2 whose reliability function is                                     �(�) = ������                          (1-27-2) 
For the case that the filature rate of a device is like a bathtub except  
the first and last part are linear, the hazard function is as follows(K&L 
page 29): 

ℎ(�) = ⎩⎨
⎧ �� − ��� + �          � > 0,          0 < � < �����              � > 0,          ����  < � <   ��                �(� − ��) + �     � > 0,                        � > �� �     (1-28) 

This hazrd function linearly decreases to � at time 
����, remains 

costant until time ��, and then linearly increases. 

c- Power  function Model 

The hazard function might be of the following power 
function:  h(t) = Ct���B� = CB � tB���� 

Then the density function and the reliability functions would be  
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f(t) = h(t)e�∫ �(�)���� = CB � tB���� e�� ����       C,B > 0 R(t) = e�� ���� 
Which corresponds to a 2-parameter Weibull distribution 

 

d- Hazard function of form �(�) = � + ���  

If the failure rate function  is  of the form  h(t) = λ+ Ct�  
where  C , k are constants then: 

�(�) = ��∫ �(�)���� = �������������  

e- Hazard function of  form  �(�) = ����  
If the failure rate function  is ℎ(�) = γe�� where λ, γ are 

constants , the function increase or decreases sharply and  

(K&L page 30): 

�(�) = �����������������                    (1-29-1) 

The distribution is a kind of GEV distribution with the 

reliability function: 

�(�) = �������������                       (1-29-2) 
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1-10 Some discrete distributions 

Below some  discrete distributions are  reminded. 

1-10-1 Geometric distribution 

    Consider running an experiment(trial) which  has two outcomes 

(failure or success).  Let p = the probability of  success in each trial. 

Now notice the two distributions described below:  

a) Geometric distribution for failures 

We perform the above experiment until a success occurs. Let 

X = the number of failures before the first success, 

then the probability function of  random variable  X is given by: 

 P�(x) = p(1 − p)�.  0 < � <1,x = 0,1,2…  (1 − 30 − 1)    
The following figure shows the function for  � = ���. 
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Fig. 1.12  The probability function of  a Geometric distribution (p=0.1) 

The CDF, the mean and the variance are: 

F�(x) = 1 − p(1 − p)���      (1-30-2) 

   
1-p 1-p

E(X)= 1-30-3 Var(X)= 1-30-4
2p p  

In this distribution the hazard function is constant: h(x) = p                           (1 − 30− 5) 
b)Geometric distribution for success  

If We perform the above experiment until the first success 

occurs and  define a random variable  

X = the number of trials until the first success, and 
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then the probability function of  random variable  X is given by: 

P�(x) = p(1 − p)���.  0 < � <1,   x = 1,2…             1-31-1  

and  

   2

1 1-p
E(X)= 1-31-2 Var(X)= 1-31-3

p p
 

Geometric distribution is the only discrete distribution which is 

memory-less.    

1-10-2 Binomial  distribution 

    If the probability function of a random variable x with 

binomial distribution which has 2 parameters  positive integer n, 

0<p<1  is as follows: 

��(�) = ������(1 − �)���,             � = 0,1, …   (1-32-1) 

As proved in Example 1-6 the mean of binomial distribution is 

        E(X)=np.                                        (1-32-2) 

The variance is  

Var(X)=np(1-p).                               (1-32-3) 

Example 1-6 

Find the mean of a binomial distribution . 
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Solution 

E(X)=∑ � ������(1 − �)�������  

Since the value of the first term( i.e. for x=0) is zero and 

1

1

k k
i k

i i

   
   

   

then 

 

For The binomial distribution with parameters ~�(�, �)          :  �(�) = �� .    
End of  Example  

1-10-2 Poisson  distribution 

    The Poisson distribution gives  the probability of a given 

number of events happening in a specified time period.  

If we let X = the number of events in a unit time, then the 

probability function is given by: 

��(�) = ��������!            � > 0       � = 0,1,2,…    (1-33-1) 

     

 

1

0 1 1

1
1

1

1

1 1
( ) 1 1 1

1 1

1
1 ( ) 1

( ) ( ) ( 1 )

n n x n
n x n x n xx x x

x x x

n
n yy

y o

n
n i n i n

i

n n n
E X x p p n p p np p p

x x x

n
x y E X np p p

y

n
a b a b E X np p p np

i


  

  


 



 



      
          

      

 
     

 

 
       

 

  




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and 

Var(X)=E(X)=�                        (1-33-2) 

Therefore it could be concluded that if  the mean and variance of 

a random variable are not equal, its distribution is not Poisson.  

Now  let X = the number of events in a time interval and   

 λ = the average  number of events occurring  in a unit time 

interval then  the  probability function is given by: 

   ��(�) = (��)��������!     � = 0,1,2, …            (1-33-3)   
and 

             Var(X)=E(X)=��                     (1-33-4) 

    In fact t could be expressed in  other units (length unit , space 

unit�)  as well as time unit (Ireson et al, 1996). 

Example 1-7 (Ireson et al, 1996page 11-26). 

   The failure of an electricity transfer line has roughly a 

Poission distribution  with annual mean of 0.0256 failure per 

1000 feet(nearly 26 failures per one million feet).  Find the 

probability that no failures occurs along 515.8 feet of the line. 

Solution 

=0.0256  
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Let X= the number failures occurring  along t feet. 

  For t=515.8 feet, the desired probability is 

-6
0 -0.0256×515.8(0.0256×515.8) e

Pr(X=0)= =1.8×10
0!

 

The following g table shows the probability function, the  CDF, 
the hazard function  of some discrete  probability distributions.  

( )h x ��(� ≤ �) ��(� = �) Distribution 

x

n x
 1x

n


 

1

n
 

Discrete uniform x ∈ {0, 1 , … , n} 
������(� − �)���∑ ������(� − �)�������  � ������(� − �)����

���  ������(1 − p)��� Binomial 

� ∈ {�,� , … ,�} 
1

0
!(1 )

!

x

kx

k
x

k







 

 

1 !

kx

k

e
k

 




  
!

x e

x

 
 

Poisson x ∈ {0, 1 , … } 
p  � − (� − �)��� �(� − �)� Geometric x ∈ {0, 1 , … } 

� ��� � �� −��− � �∑ ��� � �� −��− � ����(�,�)���  � ��� � �� −��− � �����
�

���  
���� �� − �� − � �����  

Hyper-geometric 

 max 0, m+ n -N

 x     

 min n, m  
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1-11  On accelerated life testing (ALT), parametric 

and non-parametric reliability analysis  

In reliability theory, to speed out obtaining life data for a kind 

of device, system or component there are some tests called 

accelerated life testing and to estimate the values  related to 

reliability of   a device, system or component there are 2 

methods:  parametric and nonparametric. These concepts are 

briefly  described below. 

1-11-1 Accelerated life testing(ALT) 

To perform reliability analysis for a device ,system or a 

component the analyst needs   life data.  In conventional life 

testing, to  obtain life data  some devices are set on a  test under 

normal condition until they fail.  Obtaining life data in this way 

is very time consuming and sometimes impossible. Accelerated 

life testing (ALT) is the process of testing a product by 

subjecting it to conditions (stress, strain, temperatures, voltage, 

vibration rate, pressure etc.) in excess of its normal service. The 

life test data is extrapolated to obtain the estimates of normal 

time to failure. ALT produces the required data in a short 

amount of time.  Tobias & Trindad(2019) and Cabarbaye(2019) 

are 2 references among many others which deal with ALT. 
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1-11-2 Parametric reliability analysis 

In parametric models of reliability analysis, a statistical 

distribution such as exponential, Weibull, lognormal and normal   

is  used  to fit the life data or failure rate to estimate the values 

such as reliability, failure rate of  components. 

1-11-3 Non-parametric reliability analysis  

Nonparametric analysis allows the analyst to characterize life 

data without assuming an underlying distribution.  There are 

some methods in this kind of analysis including  Kaplan�Meier 

method, simple actuarial method and standard actuarial method. 

Below nonparametric estimation of functions �(�),�(�),�(�), �(�) from grouped observations  and from ordered sample 

is described. 

1-11-3-1  Non-parametric Estimation of �(�), �(�), �(�), �(�)from 

Grouped Observations  

Below it is described how the functions ℎ(�), �(�), �(�),�(�) for a product could be estimated from a frequency 

distribution table of  grouped lifetimes  or from a random 

sample of lifetime 

  .  
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1-11-3-2 Non-parametric Estimation of �(�),�(�),�(�), �(�)from frequency table 

Suppose the following  frequency distribution table has been 

prepared from a random sample of size N�  put on test for the 

lifetime of  an item : 

sum ( )n na b  
.. 

( )i ia b  
.

... 
( )a b2 2  ( )a b1 1  interval 

�o  �� 
.. 

�� .

.. 
�� �� Frequ. 

and let 

N�       The size of the initial sample put on lifetime test at t=0  

��(t)   The number of survivor components (or the number still 

working adequately)at time t  

Given the above frequency table, the four functions could be 

estimated as follows: 

The  reliability function estimate 

The reliability function at t = b�  is estimated as: 

( )�( )
0

i
i

N b
R b

N
                           (1-34)   
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The  hazard function estimate 

     The hazard function related to ith interval i.e. i ia b  could be  

estimated as follows(K&L page 13  Grosh ,1989 page 3): ℎ�(�) = ( )iN a � ( )iN b

( ) ( )i i iN a b a 
= ������ ��  ����� ������ ������  ( )it   

( ) ( )i iN a t 
 (1-35-1)                          

If during ( )i i it b a   one item fails then  

ℎ�(�) = �
( ) ( )i iN a t 

                                      (1-35-2) 

The  density function estimate 

The density function for �� < � < �� is estimated as follows: 

f�(t) = ��� ia �����
ib �

0N × ( )b a
i i


=
number of  items failed during ( )it

(������ ������ ����)×  ( )it            (1-36)      

The  cumulative distribution function(CDF) estimate 

The CDF at t = b�  is estimated from: ���(��) = 1 − ��(��) = ( )iN b

N


0
1                                 (1-37) 

Example  1-8 

46 components were placed on a life test.  The system is 

observed every 20000 hours  and number survivors are written 

down (see the following frequency distribution table).  Estimate ℎ(�), �(�), �(�), �(�). 
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Time intervals(hr) failures in interval 
Cum. 
frequ. 

( )N t =the number of 

components working at 
Time t  

0-20000 19 19 27 

20000+-40000 11 30 16 
40000+-60000 7 37 9 
60000+-80000 5 42 4 
80000+-190000 4 46 0 
>100000 0 46 0 

Sum �0 = 46  

Solution 

The above relationships were used to estimate ℎ(�), �(�),  �(�), �(�).  The results are shown in the following table: 

To see how the estimates were calculated, Sample calculations  

are shown below: 

i ia
 ( )a ti i

b
i
 



 

N(a )i
 

N(b )i
 

��(��)= N(b )iN�
��(b�) 

��(�) 
10�� multiply  
by: 

ℎ�(�) 

10�� 

multiply  
by: 

i ia t b   

  1 0 20000 46 27 0.587 0.413 0.207 0.207 

2 20000 40000 27 16 0.348 0.652 0.120 0.204 

3 40000 60000 16 9 0.196 0.804 0.076 0.219 

4 60000 80000 9 4 0.087 0.913 0.055 0.278 

5 80000 100000 4 0 0.0 1.000 0.044 0.500 
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�� � 1b � =  �(�1)
0N
→  ��(20000) = ��(20000)

0N
= 46 − 1946 = 2746 = 0.587 

ℎ�(�) = ( )iN a − ( )iN b

( )iN a � i ib a � → 

� ( )h t = 46 − 27(46)(20000) = 0.207 × 10��        0 20000t   

��(�) = �� � ia �−�� �
ib �

0N × ( )b a
i i


 →                
20000<t 40000      ��(�) = �����(��)(�����)  = 0.12 × 10��          

Example  1-9  

10 components were placed on life test.  If one failure has 

occurred in each of the time intervals given in the following 

table estimate and plot  the density function, the reliability 

function and hazard function for the time intervals. (Grosh.,1989 

Example 1.1  ) 

Solution 

    Note that for all intervals �� = 1. Therefore according to Eqs. 

1-34 through 1-37: 
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��(�) =
0N × ( )

The following table and figures shows the results of the 

calculations based on these equations.

 

�  

�� 
1 0 5
2 5+ 10
3 10+ 17.5
4 17.5+ 30
5 30+ 40
6 40+ 55
7 55+ 67.5
8 67.5+ 82.5
9 82.5+ 100
10 100+ 117.5

The following figures shows the functions of Example 1

Introduction  and Basic  Concepts                                                 

�
( )b a

i i


 ,�� � 1b � =  ( )iN b

0N
, ℎ�(�) = �

( )iN a ( )

The following table and figures shows the results of the 

calculations based on these equations. 

  ( )
�  

    

i iN b a

 

0
1

i

f t =  
a t bi(× 0.01) ( )

� ( )

N bi
N

R bi



0  

 �
N(a )h t =

for  i ia t b(× 0.b� 
5 1/(10*5)= 2 910 1/(10*5)= 2

10 1/(10*5)=2 810 1/(9*5)= 2.22

17.5 1/(10*7.5)= 1.33 710 1/(8*7.5)= 1.67

30 1/(10*12.5)=0. 610 1/(7*12.5)= 1.14

40 1/(10*10)= 1 510 1/(6*10)= 

55 1/(10*15)=0. 67 410 1/(5*15)= 1.33

67.5 1/(10*12.5)=0. 8 310 1/(4*12.5)= 2

82.5 1/(10*15)=0. 67 210 1/(3*15)= 2.22

100 1/(10*17.5)=0. 110 1/(2*17.5)= 2.86
117.5 1/(10*17.5)=0. 0 1/(1*17.5)= 5.7

following figures shows the functions of Example 1-
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�
( )iN a ( )b a

i i


. 
The following table and figures shows the results of the 

( )
 

i ib a i
1

N(a )h t =
 i ia t b  01) 

1/(10*5)= 2 

1/(9*5)= 2.22 

1/(8*7.5)= 1.67 

1/(7*12.5)= 1.14 

1/(6*10)= 1.67 

1/(5*15)= 1.33 

1/(4*12.5)= 2 

1/(3*15)= 2.22 

1/(2*17.5)= 2.86 

1/(1*17.5)= 5.7 

-9: 
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Example  1-10  

   800 units of a product were placed on the life test and every 3 

hours the number of failures were recorded (see table below). 

Estimate and plot the density function, the reliability function & 

hazard function for the time intervals.(Example. 1.2 Grosh,1989  ) 

Solution 

The appropriate equations  are: 

 �  
( )

f
if

N b a
i i


0

t =   ,     ( )�( ) iN b
i NR b 

0
,          �  

( )( )

f
ih

N a b a
i i i


t =   

Polygon of failure rate Histogram of failure rate 

  

Polygon of density function Histogram of density function 

 

 

Cumulative  density function  and Reliability function 
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The following table and figures shows the results of the 

Calculations: 

Calculations of Example 1-10 

 

i 

  

no. of 
failures 

Density function

  ( )
�  

    

i

i i

f
N b af



 

0

i i

t =  
a t b

 
( )

� ( )

i

i

N b
N

R b


0

 

Failure rate 

  ( )( )
�    

  

i

i i i

f

N a b a
h



 i i

t =  
a t b

 
ai  bi 

1 0 3 185 185/(800×3)=0.0771 615800 185/(800×3)=0.0771 

2 3 6 42 42/(800×3)=0.0175 573800 42/(615×3)=0.0227 

3 6 9 36 36/(800×3)=0.015 537800 36/(573×3)=0.0209 

4 9 12 30 30/(800×3)=0.0125 507800 30/(537×3)=0.0175 

5 12 15 17 17/(800×3)=0.0071 490800 17/(507×3)=0.0112 

6 15 18 8 8/(800×3)=0.0033 482800 8/(490×3)=0.0054 

7 18 21 14 14/(800×3)=0.0058 468800 14/(482×3)=0.0097 

8 21 24 9 9/(800×3)=0.00375 459800 9/(468×3)=0.0064 

9 24 27 6 6/(800×3)=0.0025 453800 6/(459×3)=0.0044 

10 27 30 3 3/(800×3)=0.0013 450800 3/(453×3)=0.0022 
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Polygon of failure rate Histogram of failure rate 

 

 

Polygon of density function Histogram of density 

function 

Cumulative  Distr . 
function  and 
Reliability function 

 

The functions of  Example 1-10 (Grosh,1989  Example 1.2) 

Example  1-11 

  Estimate the density function, the reliability function and the 

rate function related to a product whose life test results for 200 

units are shown on the following histogram. 
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Fig. 1-13   Histogram of 200 Switch lifetimes (Feigenbaum,1990) 

Solution  h�(t)٬ f�(t) , R�(t) were calculated using Eqs. 1-35-1, 1-36-1 and 
1-37.  The following table shows the  results: 

Estimation of �(�),�(�),�(�), �(�) for the lifetime of the switches in 

Histogram  of Fig 1-12 

12 11 10 9 8 7 6 5 4 3 2 1 
1000-hr 

interval 

62 69 77 86 96 107 119 132 146 162 180 200 

Items volume 

working  at 

the beginning 

of the interval 

6 7 8 9 10 11 12 13 14 16 18 20 
Failure 

frequency 

       
0.1 

 
0.098 0.1 0.1 

No. of 

Failures in 

the interval h(t) ≅ 0.1 

62

6

69

7

77

8
86

9

96

10

107

1112

119

14

146

16

162


18

180


20

200

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Estimation of �(�),�(�),�(�), �(�) for the lifetime of the switches in 

Histogram  of Fig 1-12 

12 11 10 9 8 7 6 5 4 3 2 1 
1000-hr 

interval 

62 69 77 86 96 107 119 132 146 162 180 200 

Items volume 

working  at 

the beginning 

of the interval 

6 7 8 9 10 11 12 13 14 16 18 20 
Failure 

frequency 

       
0.1 

 
0.098 0.1 0.1 

No. of 

Failures in 

the interval h(t) ≅ 0.1 

            

�= 2 × 10� 

 

t  in hour 

            

   

t  in 1000 

hours 

 

            

 t  in 

1000 hours 

 

0.28 .48 .36 0.39 0.43 .48 .54 0.6 0.66 0.73 
0.8

1 
0.90 

 

End of Example   

 

62

6

69

7

77

8
86

9

96

10

107

1112

119

14

146

16

162


18

180


20

200


6

D

7

D

8

D

9

D

10

D

11

D

12

D

13

D

14

D

16

D

18

D
20

D
�f(t)

200

6

200

7

200

8

200

9

200

10

200

11

200

12

200

13

200

14

200

16

200

18

200

20
�f(t)

200

144

200

138

200

131

200

123

200

114

200

104

200

93

200

81

200

68

200

54

200

38

200

20
�F(t) 

� �R(t)=1-F(t)
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1-11-2   Estimation of  �(�),�(�),�(�), �(�) from ordered 

random sample 

Suppose a random sample of n  units of a product were 
placed on life test and the n failure time are : �(�) < �(�) < ⋯ < �(�). 
h(t), R(t), F(t), f(t)   could be estimated similar to Example 1-8 by 

forming  subintervals with frequency 1. However at the ith ordered 

time i.e. �(�).they could be estimated from the following relations as 

well( K&L p 32):  

����(�)� =  
���.����.�                            (1-38) ����(�)� = 1 −  

���.����.�                      (1-39) ℎ���(�)� = ����(�)� − ����(���)���(���) − �(�)������(�)��⟹                    ℎ���(�)� = ���(���)��(�)�(�����.�)          (1-40) ����(�)� = ��(����) − ��(��)�(���) − �(�) ⟹                 ����(�)� = ���(���)��(�)�(���.�)                (1-41) 

Example  1-12 

8 units of a kind of spring were placed on the life test. The 
spring failed at the following kilo cycles: 

  400  و370 325٬ 320٬ 300٬ 265٬ 245٬ 190٬
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Estimate F (t), R (t), f (t) and h (t)at the above points in 

time. 

Solution 

    The computations are shown in the following table. 

Failure 

No.(i) 

� = �(�) F�(t) R�(t) f�(t) h�(t) 
1 190 0.083 0.917 0.0022 0.0024 
2 245 0.202 0.798 0.0060 0.0075 
3 265 0.321 0.679 0.0034 0.0050 
4 300 0.440 0.560 0.0059 0.0170* 
5 320 0.560 0.440 0.0248  
6 325 0.679 0.321 0.0025 0.0082 
7 370 0.798 0.202 0.0040 0.0198 
n=8 400 0.917 0.083 _ _ 

Because the short interval of time between failures 5 and 6 produced 
a large increase in h�(t), this interval was combined with the previous 
interval and h(t=300) was estimated as follows: h� = 2(325 − 300)(8 − 4 + 0.7) = 0.0170  
With empirical data this kind of smoothing must frequently be done 

 Some of the calculations are shown below: 

h� = �(�������)(�����.�)=0.0024 

 

R� = 1 − ���.����.�= R (195)=0.9167 

 h� = �(�������)(�����.�)=0.0050 

 

R� = 1 − ���.����.� = R(300)=0.5595 

 h� = �(�������)(�����.�)=0.0082 

 

R� = 1 − ���.����.�= R(325)=0.3214  
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Example  1-13 

  In Example 1-9, 10  units of a kind of components were placed on 

life test. The failures occurred at the following times: 

5   10  17.5  30  40 55   67.5   82.5   100       117.5   

Use Eqs. 1-38 through 1-41 to estimate F (t), R (t), f (t) and h (t) 

Solution 

 The computations are shown in the following table1.  

i t = t(�) f�(t)= 1(t����� − t(�))(n+ 0.4) 
F�(t)= i − 0.3n+ 0.4 

R�(t) = 

1− F�(t) h�(t)= 1(t(���) − t(�))(n− i+ 0.7) 
1 5 

1(10− 5)(10 + 0.4) = 0.0192 

1 − 0.310 + 0.4 = 0.0673 

0.9327 

1(10 − 5)(10 − 1 + 0.7) = 0.0206 

2 10 0.0128 0.1635 0.8365 0.0153 

3 17. 5 0.0077 0.2596 0.7404 0.0104 

4 30 0.0096 0.3558 0.6442 0.0149 

5 40 0.0064 0.4519 0.5481 0.0117 

6 55 0.0077 0.5481 0.4519 0.0170 

7 67.5 0.0064 0.6442 0.3558 0.0180 

8 82. 5 0.0055 0.7404 0.2596 0.0212 

9 100 0.0055 0.8365 0.1635 0.0336 

10 117.5 Cannot  be computed 0.9327 0.0673 Cannot  be computed 

 

End of Example  

                                                           

1 Prepared by:Mr M Morrdi former student of  Kerman University 
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In summary, if the lifetime distribution is known or could be 

specified, the relationships related to the distribution have to be 

used for reliability computations; if the distribution is unknown 

but sufficient data regarding the lifetime is available, the 

relationships related to grouped data should be used, otherwise 

prepare an ordered sample of the lifetimes and perform the 

calculations using  the ordered sample. 

1-12 The density function &Cumulative distribution function  of 

sample minimum 

    Suppose random sample of size n (X�, X�,… , X� ) is taken 

from a d\statistical distribution having CDF ��(�)  − ∞ < � <∞. Either the smallest or the largest of the n observations is 

referred to as an extreme  value statistic. Practical applications 

of extreme value statistics are many; e.g  a chain is not stronger 

than its weakest link. Let  X(�) denote the smallest of the n 

observations.  If X�, X�, … , X�  are independent then: 

Pr�X(�) > �� = Pr[(X� > �), (X� > �), … , (X� > �)] =�Pr(X� > �)�
��� ⇒ 

Pr�X(�) > �� = [1 − F�(y)]� or  ��(�)(�) = 1 − [1 − ��(�)]�    − ∞ < � < ∞    (1-42) 

If the distribution  of ��  is continuous then the density function 

of �(�) is: 
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��(�)(�) = �����(�)(�)    − ∞ < � < ∞        (1-43) 

Example 1-14 

     Random samples of size n are taken from a population whose 

pdf and CDF are: 

�(�) = �����      � ≥ 0, ��(�) = 1 − ����      � ≥ 0 

Find the pdf and CDF  of the smallest extreme value. 

Solution 

The CDF of the smallest value of the n observation is given by 

Eq. 1-42  

��(�)(�) = 1 − �1 − 1 + ������ = � 1 − �����    � ≥ 0   0                   � < 0  � 
The pdf is given by Eq. 1-43: ��(�)(�) = �������,   � ≥ 0; 

therefore: 

The minimum of the samples of size n taken from an 

exponential distribution with parameter � has an 

exponential distribution with parameter ��.  

End of example  
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 1-12-1The CDF of the minimum of samples of 
largish size taken from a population with known ��(�) 
     If the CDF ��(x) of the population from which the samples 

are taken is known, as the sample size(n) becomes large1 the 

following approximate approach is helpful in the study of the 

sample minimum distribution (from K&L page 42).  

To derive ��(�)(�), when the sampling size(n) from the 

distribution with CDF ��(�) is large, let random variable Un be 

defined as: U� = �����(�)� which has a value between 0 &1.  

This variable is  used in determining the limiting distribution of �(�).  Below it is shown that ���(�) i.e. the CDF of U�is as 

follows: ���(�) = 1 − �1 − ����                        (1-44) 

And as n approaches infinity we have: lim�→� ���(�) = ��(�) = 1 − ���               (1-45) 

 Proof: 

���(�) = ��(�� ≤ �) = ��������(�)� ≤ �� ⇒ 

���(�) = �� �����(�)� ≤ ��� = �� ��(�) ≤ ��� ����� ⇒ 

                                                           

1 This assumption in the fracture of structures  is logical because the number 
of their defects are large.   
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���(�) = ��(�) ����� �����         0 ≤ � ≤ � 

Substituting  y = F��� ����, in Eq. 1-42   i.e  

 F�(�)(y) = 1 − [1 − F�(y)]�  

��(�) ����� ����� = 1 − �1 − �� ����� ������� 

Since  F[F��(x)] = x   then the  CDF of �� is: 

���(�) = 1 − �1 − ����              0 ≤ � ≤ �      
We know from mathematics that  lim�→�{ �1 − ����} = e��    u ≥ 0      therefore:  

    lim�→����(�) = 1 − ���      � ≥ 0 

Here it is reasoned that(K&L p 42, Mann et al,1974p 102):that 

since the sequence of the following CDF's converges to1 − ��� 

 ���(�) = 1 − �1 − �1�� , … , ���(�) = 1 − �1 − ���� 

Therefore the sequence of random variable �� �. � 

�� = 1����(�)�,         �� = 2����(�)�, … ,   �� = �����(�)� 
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Converges in distribution to a random variable U with CDF 1 − e��: 
��(�) = lim�→����(�) = 1 − ��� 

The pdf of U is: 

��(�) = ���(�)�� = ��(�) = ���     � ≥ 0.End of proof  

Now notice that 

 since �� = �����(�)� then   �(�) = ��� ���� �  and the sequence 

of  random variables  �(�) converges in distribution to a random 

variable, say Y, where  

� = ���� ����         ���     � = �������� ��  = ��������    �����(�)�     
Thus for large sample size( n) the limiting distribution of the 

smallest extreme value(�(�)) is given by the distribution of Y as 

described in the following steps; 

Derivation of   ����������(�)  i.e. the CDF of sample minimum 

or �(�)  when ������ ���� � → ∞ 

Step1     Given ��(�)  substitute x=�(�). 
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Step 2  Let ��  =  �����(�)� then calculate its inverse i.e. �(�) = ⋯ in terms of �� 

Step 3   Calculate the limiting �(�)  in terms of U(=limiting ��) 

from step 2 

Step 4  Calculate the following: 

F������� �(�)(y) = Pr(limiting �(�) < �) 

From this relationship  calculate F������� �(�) in terms of  

Pr(U< ⋯)=  ��. 

Step 5  Calculate F������� �(�)(y),  considering step 4 and 

 Eq. 1-45 i. e. Pr (� ≤ �) = 1 − ���. 

 Examples 1-15 and 1-16  illustrates the derivation. 

Example  1-15 

Random samples of size n  are taken from a uniform 

distribution on [0  1]. What is the CDF and pdf of the smallest 

extreme value when � → ∞. 
Solution  

The density function of the uniform distribution is: 
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��(�) = �1�             0 ≤ � ≤ �0                        �. � � 
To derive the CDF of the sample minimum as � → ∞ the above 

5 steps are followed: 

Step 1 

 ��(�) = � − 0�    ⇒    ����(�)� = �(�)�   
Step 2 

�� = �����(�)�    ⇒      �� = ��(�)�      ⇒     �(�) = ����  
Step 3 

Let   U = the limiting value of  ��, then: 

�(�) �→� = �� ( �) 

Step 4 

���������� �(�)(�) = ����(�) ≤ �� = �� ���� ≤ �� = �� �� ≤ �� �� 

⟹ ��������� �(�)(�) = �� �� ≤ �� �� = �� ��� �� 
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Step 5 

According to Eq. 1-45 the CDF of U is  ��(�) = 1 − ���     � > 0; then  

��������� �(�)(�) = �� ��� �� = 1 − ��  ��� ,    �� � ≥ 0  ⟹ 

��������� �(�)(�) = 1 − ��  ���,      � ≥ 0 

Taking derivative yields the pdf as follows: 

��������� �(�)(�) = � �� �����          � ≥ 00                       ��ℎ����.End of Example  

Example 1-16   

Random samples of size n  are taken from an exponential 

distribution with parameter �. What is the CDF and pdf of the 

smallest extreme value when � → ∞. 
Solution  

The density function of the uniform distribution is: 

��(�) = �   �����                   � ≥ 00                        �. � � 
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To derive the CDF of the sample minimum as � → ∞ the above 

5 steps are followed: 

Step 1 

��(�) = 1 − ����         ����(�)� = 1 − ����(�)        
Step 2 �� = �����(�)� ⇒ �� = ��1 − ����(�)�⟹     �(�) = 1� ln 11 − ���   = −1� ln(1 − ��� )  
Taylor expansion of f(x) about x=a is: �(�) = �(�) + ��! ��(�)(� − �) + ��! (� − �)����(�) +� 

This expansion for ln(1 + x) , −1 < � ≤ 1 is:  ln(1 + �) = 0 +  � − ��  �� + ��  �� − ��  �� +� 

Let � = − ���  ; then  

�(�) = −1� �−��� − 12 ���� �� − 13 ���� �� −⋯�  
Step 3 

Let as  � → ∞   U = the limiting value of  ��. Ignoring the terms 

of  order 2 and higher we could say that the distribution of �(�) 
when � → ∞ approaches the distribution of 

���            ∶�(�) �→� = ��� ×  �. 
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Step 4 

F�������� �(�)(y) = Pr(���������(�) < �)  = �� � ��� ≤ �� = ��(� ≤ ���) 
⟹ ��������� �(�)(�) = ��(���) 

Step 5 

According to Eq. 1-45 the CDF of U is  ��(�) = 1 − ���     � > 0; then  

��������� �(�)(�) = ��(���) = 1 − ��  ���,   ��� ≥ 0  ⟹ 

��������� �(�)(�) = 1 − ��  ���,      � ≥ 0 

Taking derivative yields the pdf as follows: 

f�������� �(�)(y) = � e�nλy          y ≥ 00                       others�    
End of Example  

The following  example  (extracted from K&L p 45) shows an 

application of  GEV  distribution   to reliability. 
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Example  1-17    

An applications of the extreme value distribution is to the study the failures of car exhauhs caused by 

corrosion. 

 

 Consider a kind of  automotive exhaust pipe that has various 

pits when new. The exhaust gases and other corrosives increase 

the depth of these pits and, ultimately, a failure occurs when the 

exhaust gases can escape through one pit that has penetrated the 

thickness of the pipe and has become a hole. If we assume that 

the time of penetration is proportional to the difference between 

the pipe thickness(D)  and the initial pit depth(��) and �� has a 

truncated exponential probability distribution between (0  D), 

show that the time to failure of the exhaust pipes is a GEV 

distribution and find the reliability function.    

Solution 

Symbols 

D Exhaust pipe thickness �� Initial pit depth of ith pit i=1,2,�N t� Failure time of ith  pit 

N Number of pits. 

T Failure time of  the exhaust pipe 

The distribution of ��   is a truncated exponential with the 

following density function: 
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���(�) = �������( 0 ≤ � ≤ �) = �����1 − ����           0 ≤ � ≤ � 

Since the failure time of ith pit (t�)is proportional to (D − ��), 
then 

t� = k(D − d�),    where k>0   is the constant of proportionality. 

The cumulative distribution of t� is as follows 

���(�) = ��(��  ≤ �) = ���(�� − ���) ≤ �� = ��(�� − � ≤ ���)  ⟹���(�) = �� �� − �� ≤ ���. 
 

Since the maximum of �� is D, then: 

���(�) = �� �� − �� ≤ ��  ≤ �� = ���(�) − ��� �� − ��� 

where 

  D is the thickness of the pipe and 

 di, the initial depth of the ith pit, i=l,2,,..,N.  

N  is the number of pits. 

 The di's constitute  a random sample  from  a  truncated 

exponential distribution defined on the interval (0    D) : 
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F��(x) = ������������  , 0 ≤ x ≤ D, i = 1,2, . . . , N 

Therefore 

���(�) = ���(�) − ��� �� − ��� = ������������  - �����(����)������  =
�������������������� = ����.���� �����������   ⇒ 

Since � − �� ≥ 0   and  � − �� ≤ � then  0 ≤ � ≤ ��  and  

���(�) = ���� − 1��� − 1          0 ≤ � ≤ ��, i = 1,2, . . . , N 

Let T =the failure time of the entire exhaust pipe, then  

� = m in
1

N

i
(��) and its CDF is: 

��(�) = ��(� < �) = 1 − ��(� > �) = 1 − ��(�� > �, . . . , �� > �) 
Assuming ��, . . . , ��   are independent and similar, we could 

write: 

��(�) = 1 − ��(�� > �)…��(�� > �) = 1 − �1 − ���(�)�… �1 − ���(�)�  
 ��(�) = ��(� < �) = 1 − �1 − ���(�)�� 

In mathematics it is shown that for 0 < � < 1 , [1 − �]� 

approaches ����  as ⟶ ∞ , then 
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Since  0 ≤ ���(�) ≤ 1   and there are a lot of pits in the pipe, 

therefore ��(�) ≅ 1 − ���×���(�). 
We saw earlier F��(t)    =

���� �������   then:  

��(�) = 1 − ���   ���� �������        ⇒  �(�) = 1 − ��(�) = ������� ������� 

This is an extreme value or a GEV distribution(K&L page 46) .  

Example 1-18   

In the previous example, suppose � = ���    ���ℎ, � = 10�, �=10�  ℎ�/�� and the average depth of pits is  
����    ��. 

Find the life time that will give a reliability of  90% . 

Solution 

If the pdf of the initial depth of a pit were λe����  , the average 

depth would be �� = ����  and λ = 128. However here the pdf is ���(�) = ����������� and to find the value of λ the following 

equation has to be solved: 

�(��) = � ����(�)�� = 1128      � � = 116   in           �(��) = 1128   in    ��
�  

�(��) = � � � �����1 − ��������
� = 1128 ⟹ ∫ ����������1 − ���� =  1128  
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Solving the equation ∫ ���������� ������ =  ���� in MATLAB:  

>>syms  landa  x;  landa =solve((int(landa*x*exp(-

landa*x),x,0,1/16))./(1-exp(-landa/16))==1/128) 

landa=127.64972 

Notice that ignoring ����  from the denominator yields λ = 128. 
Substituting the followings in �(�) = ���������� ��������   � = 10�  , � = 10�  , � = ���    , � = 128  , �(�) = 0.9  

Yields t ≅ 242 hr.  

Fisher -Tippet  and central limit Theorems 

Fisher -Tippet Theorem  

   If 
1,..., nX X  are independent and identically distributed(iid) 

random variables then as n increases   

the distribution of the maximum of these variables approaches a 

GEV distribution  and   

the distribution of the minimum of these variables ] approaches 

another GEV distribution.  

 

It is worth mentioning that: 

1) in the original theorem by Fisher and Tippet, states that  

the limiting distribution  is one of three extreme value 
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distributions (EV11=FT1, EV2=FT2 and EV3=FT3) but 

Jerkinson(1955) showed that the aforementioned three 

limiting distributions can be unified into a single 

expression known as the generalized extreme value 

(GEV) distribution. 

2) This theorem is used in extreme value analysis such 

finding the possible maximum of wind speed, wave 

length, etc�. Interested readers could refer to references 

such as  Coles (2001).  

3) For using this theorem, some random samples of largish 

size from the desired population  are needed.  Extract 

their minimum or maximum and prepare  a vector (titled 

say Data) of the minima or the maxima. Then use 

gevfit(Data) command to estimate the fitting GEV. 

Central Limit Theorem  

  According to the central limit theorem  the mean of  

random samples 
1,..., nX X of  sufficiently large size n from a 

population with mean μ and  finite variance σ2, tends towards a 

normal distribution with mean μ and finite variance 
�2√�;  even if the 

original distribution is not normally distributed. The theorem also 

                                                           

1 Extreme value 1=Fisher Tippet 1 
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states that sum of the sample elements(∑��) tends towards a 

normal distribution with meannμ and  finite variance �σ2. 

1-13 Bartlett's goodness of fit(GOF) test for 

exponential distribution 

To deal with the following hypotheses using a GOF test  

H0: The distribution is exponential 

H1: The distribution is not exponential 

we could use the  Bartlett� test   described below: 

Take a random sample of size at least 20 :t�, … , t�    � ≥ 20,  

where t� is the time of the ith event; calculate the statistic B 

given by(K&L p239): 

   
1 1

1 1
2 ln ln

1
1

6

r r

i ii i
r t t

r r
B

r

r

 

     
     

     





 
         (1-46)

 

which has a chi-squared distribution with r-1 degrees of freedom 

under the null hypothesis H0.  If B is outside the 

interval [   χ����  ,����       χ��  ,����   ], reject H0; α  is the level of 

significance of the test. 
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χ��  ,����  is  read from Table E or calculated in MATLAB from 

chi2cdf(1− ��   , r − 1) 
χ����  ,����  is  read from Table E or calculated in MATLAB 

from chi2cdf(
��   , r − 1). 

Example 1-19 

  The following sample of size r=20 is available from the 

lifetime of a kind of electric bulb. Does an exponential 

distribution fit the lifetime data? Use Bartlett's test with  α =10%.  If the answer is yes, give the mean and the pdf of the 

distribution? 

32.0 6.2 84.9 42.6 99.1 36.3 96.5 31.1 20.9 50.1 

10.7 88.6 84.6 11.5 1.8 2.5 4.6 14.2 87.7 30.4 

Solution 

H0: The lifetime distribution is exponential 

H1: The distribution is not exponential 

Let , 1,..., 20it i r  be the sample values. We  use Bartlett's 

test: 
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1 1

1 1
2 ln ln

1
1

6

r r

i ii i
r t t

r r
B

r

r

 

     
     

     




 
 

20

1
50.1 20.9 ... 88.6 10.7 836.3ii

t


       

20

1
( ) 50.1 20.9 ... 88.6 10.7 63.9385ii

Ln t Ln Ln Ln Ln


     
836.3 63.94

2×20 Ln -
20 20

19.34
20+1

1+
6 20

B

  
  
  

 



 

χ����  ,���� = chi2inv(0.05,19) = 10.1170 

χ��  ,���� = chi2inv(0.95,19) = 30.1415 

H0 is not rejected because, the value of statistic B does not 

fall outside  �   χ����  ,����            χ��  ,����   �.   Therefore the 

distribution of the bulbs are fitted to an exponential 

distribution with the mean and pdf: 

�� = ∑ ��������� = ���.��� ≅ 41.82,   �(�) = �� × ���� =  � ����.����.�� .  

It is worth mentioning that using Kolomogrov-Smironov 

test in MATLAB does not reject H0 
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>>Data=[� 

50.1 

� 

10.7]; 

>> H=kstest(Data, [Data expcdf(Data,mean(Data))] , 0.1) 

H=0 

This means that H0 is not rejected at the  significance level 

of 10%.  

1-14  Q-Q plot 

    Quantile-Quantile(Q-Q) plot is a  graphical device to observe  

whether a particular distribution fits a dataset  or not.  In this 

graph the observed data and the corresponding data obtained 

from the distribution are plotted versus each other in an X-Y 

coordinate plane.  The better the population follows the 

distribution, the closer the points to the angle bisector of the first 

quarter of the X-Y plane .The procedure for preparing a  Q-Q 

plot is as follows: 

 Sort The sample of data from minimum to maximum, 

giving rank 1 through n:
 ( ) ( ), ...,1 nX X  

 Allocate a number F(i), called plotting position calculated 

from  one the following formulae  to each  )( ix .  In fact  
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F(i) is a number  near to relative frequency and an 

estimate for the cumulative distribution function at ( ) .ix   
 

There are many formulae  for plotting position including the 

followings: 

A)Gumbel  Plotting position    

     One of the first formulae for plotting position was given by 

Gumbel: 

( ) , i 1,...,n 
1

i
F i

n
 

            (1-47) 

B) Plotting position for normal distribution 

There are some formulae for the normal case including 

(Besterfield,1990 page52): 

0.5
( )

i
F i

n


           (1-47-1)  

or  (Goda,2000 page 287): 

0.375
( )

0.25

i
F i

n





.    (1-47-2) 
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C) Plotting position for Weibull distribution with 

parameters A,B,C 

The Plotting position for Weibull distribution with parameters 

A,B,C   is (Goda,2000 page 287): 

( ) ( )
i a

F i
n b


 


1 4 8  

where 
. .

. .a b
C C

   
0 27 0 230 20 0 20  

 

D) Plotting position for Exponential Distribution  

   Since Exponential distribution could be considered  a Weibull 

with C=1 then: 

0.47
( )

0.43

i
F i

n





         (1-48-1) 

 From )(]�[ )( iFxF iX  for each F(i), i=1,..,n  calculate

,�
)(ix i=1,..,n from  where 

XF is the cumulative 

distribution function of the distribution under study. 

 Plot the pairs ( x(i)   ))(� ix& in an X-Y coordinate plane, 

and fit a line to the points. The closer this line to the 

angle bisector of the first quarter of the plane, the better 

fits the distribution to the dataset.  It is worth knowing 

that the better the distribution fits the data set  the closer 

the  correlation coefficient of x(i) )(� ix& to 1; but the vice 
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versa is not necessarily true i.e. if the  correlation 

coefficient of  x(i) )(� ix&  is close to 1,necessarily the 

distribution does not fit  the dataset well. 

The correlation coefficient is calculated by the following 

formula: 

   

( ) ( ) ( ) ( )

2 22 2
( ) ( ) ( ) ( )

� �

� �

i i i i

i i i i

n x x x x
R

n x x n x x




 

  

   
  (1-49) 

Example 1-20    

      The following table shows a sorted random sample, x(i) 's,  

from a population. Is the sample a representative of normal 

distribution? 

Solution 

To answer, a Q-Q plot is drawn. The mean and variance of 

the distribution is estimated as follows: 

54.81�  X      ,   
4

� 11.7287
s

c
    

F(i), i=1,..,n   was computed using 0.375
( )

0.25

i
F i

n





 as the 

plotting position, and inserted in the table. Then the 

corresponding )(� ix is calculated by equating the F(i)to the 
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normal standard cumulative distribution, and calculating )(� ix

from these equations.   

.�,�)()
�

��
Pr()�Pr(

4

)(
)( c

s
XiF

x
ZxX i

i 


 



  

sample calculation follows: 

For 1i  : 

 
� �( )

Pr( ) ( )
�

x i
Z F i







  , 
� 54.81(1)

�Pr( )   0.0294 32.37(1) 11.7287/0.9876

x
Z x



     

or  ��(�) = �������(0.0294,54.81,11.8751) = 32.3698. 
The following table contains all the results  

Rank(i) )( ix  F(i) )(� ix  Rank(i) )( ix  F(i) )(� ix  

1 32 0.0294 32.37 12 59 0.5471 56.21 

2 34 0.0765 37.84 13 59 0.5941 57.64 

3 39 0.1235 41.06 14 60 0.6412 59.10 

4 44 0.1706 43.51 15 61 0.6882 60.64 

5 46 0.2176 45.55 16 64 0.7353 62.28 

6 47 0.2647 47.34 17 67 0.7824 64.08 

7 50 0.3118 48.98 18 68 0.8294 66.11 

8 51 0.3588 50.52 19 70 0.8765 68.56 

9 51 0.4059 51.98 20 70 0.9235 71.78 

10 52 0.4529 53.41 21 71 0.9706 77.25 

11 56 0.5000 54.81     

Fig.1.14 2  shows ( )ix 's versus )(� ix 's  and a line fitted to them.  
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Fig. 1.14-1  Q-Q plot with

i-0.375
F(i )=

n+0.25
. 

Fig. 1.14-2   Q-Q plot 

with i-0.5
F(i )=

n
. 

Since the points are near to the fitted line and the line is close to 

the angle bisector of the first quarter of the X-Y coordinate 

plane, it is concluded that the normal distribution fits the dataset. 

    In MATLAB, the command qqplot could be utilized to make a 

Q-Q plot from the normally distributed dataset X.  The Q-Q plot 

of  Fig. 1.13-1 was made by this command.  The difference of 

the two plots  is not significant. It is worth mentioning that if the 

dataset X is not normally distributed, the following MATLAB 

command could be used to plot the  Q-Q plot: 

 

 X=[data]; pd=makedist('Distribution name'�);qqplot(X,pd) 

 

The correlation coefficient(r)  between ( ) ( )� ,i ix x is calculated by 

r=corrcoef(X,Xhat);r=R(1,2) 

30 40 50 60 70 80
30

40

50

60

70

80

Observed 

P
re

di
ct

ed
QQplot

pp=(i-0.375)/(n+0.25) 
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where  

X         is the vector containing  x(i), i,=1,2,3.. 

Xhat  is the vector containing  �(�)� ,     � = 1,2, ..    which gives  

0.9826.  This value, being near to 1,  together with the Q-Q plot 

of Fig. 1-13=1 or  Fig. 1-13-2 indicate that normal distribution is 

a good fit for the data best fit.  

1-15  Convolution 

    Since the concept of convolution of functions in statistics and 

probability is used to find the distribution of the sum of 

independent continuous random variables X and Y having the 

density function (pdf),  f�(x) ��� ��(�) and the cumulative 

distribution function F�(x) and F�(y);  this concept is reviewed 

below. 

1-15-1  CDF and pdf of  sum of independent variables 

X and Y 

   Let X and Y be 2 independent random variables and Z=X+Y. 

a)The CDF of  Z  i.e. ����(�) is derived from the following 

relationship which is called the convolution of �� &�� and is 

denoted by �� ∗ ��:
 
 

����(�) = �� ∗ ��(�) = ∫ F�(a− y)��(�)�����     (1-50) 
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Proof (from Ross,1983 page 17): 

����(�) = Pr(� + � ≤ �) = ∫ Pr(� + � ≤ �|� = �) ��(�)����� = 

∫ Pr(� + � ≤ �|� = �) ��(�)�� =��� ∫ F�(a− y)��(�)����� . 

End of proof of section a  

b) The pdf of Z i.e. ����(�) is derived from the following 

relationship which is called the convolution of �� &�� and is 

denoted by �� ∗ ��:
 
  

f���(a) = f� ∗ f�(a) = � f�(a− y)f�(y)dy =�
�� � f�(x)f�(a− x)dx�

��     (1 − 51)    
where  

��(�) is the pdf of random variable X 

��(�) is the pdf of random variable Y 

Proof (from Ross,1985 page 54): 

����(�) = ��� � F�(a− y)��(�)�� = � ��� F�(a − y)��(�)���
��

�
�� ⇒ 

����(�) = � ��(a− y)��(�)��.�
��  

End of proof of section b  
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Notice that  

- When calculating the convolution integral, usually it is easier 

to set the simpler function as the second function(Gordon, 

1993).  

-If the distribution of X+Y is known for us, there is no need for 

the above integrations 

-The concept of convolution has been extended for more than 2 

functions.  

Example 1-20 (Ross, 1985page 54) 

   X and Y are independent uniformly distributed random 

variables on the interval (0  1). Find the density function of 

X+Y.  

 Solution 

����(a) = � ��(a− y)��(�)���
����  

Considering the uniform distribution of  X and Y on  (0   1) ,it is 

evident that a value of X+Y, say a, lies in the interval (0   2); 

mathematically 0 ≤ a ≤ 2 .   

To find the limits of the above integral notice that: 

For 0 ≤ � ≤ 1,   ��(�) is nonzero  and 
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Then the limits of the integral are the intersection of  the 

intervals   0 ≤ � ≤ 1  and a− 1 ≤ � ≤ a .  To calculate the 

resulting interval which depend on the value, we divide the 

range of  0 ≤ a ≤ 2  into 0 ≤ a ≤ 1 and 1 ≤ a ≤ 2:    
If 0 ≤ a ≤ 1, as the following figure shows, the limits of integral 

would be 0 ≤ y ≤ a: 

 

If 1 ≤ a ≤ 2, using a similar figure it could be shown that  the 

limits of integral would be a− 1 ≤ � ≤ 1. 

Therefore  

����(a) = � ��(a− y)��(�)��∞

���∞
=
⎩⎪⎪⎨
⎪⎪⎧ � 1 × 1��    0 ≤ a ≤ 1�

���� 1 × 1��    1 ≤ a ≤ 2 �
�����

�⇒ 
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����(a) = � �           0 ≤ a ≤ 1 2 − �       1 ≤ a ≤ 2  �  

Example 1-21 

     X and Y are 2 independent random variables with density 

functions ��(�) = ���,    � ≥ 0  and ��(�) = ���,    � ≥ 0. Find the 

density function of Z=X+Y. 

Solution No.1 

����(a) = � ��(a− y)��(�)���
����  

Considering the range of X and Y, we could say that a ≥ 0.   
To find the limits of the above integral notice that: 

f�(y) ≠ 0 for  � ≥ 0 and  

��(a− y) ≠ 0 for a− y ≥ 0   �� � ≤ �. 
Therefore the range of integral to become nonzero is 0 ≤ y ≤ a: 
f���(a) = ∫ f�(a− y)f�(y)dy���� = ∫ e�(���)e��dy���� = ae��, a ≥ 0    
Solution No.2 

����(�) = ∫ ��(a − x)��(�)������� . 
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with a similar reasoning for the range of integral: 

����(�) = � ��(���)������
��� = ����   a ≥ 0   

 Solution No.3 

As it is well known that the sum of 2 independent variable with 

the same parameter has a ����� (� = 2, �)   distribution, then: 

����(�)= 1 2 1

( 1)! (2 1)!

( ) ( )
0

a n a
a

n

e a e a
ae a

    


 
    

Example 1-22  

  X and Y are  independent random variables with normal(�,�) 

and Uniform(0,1) distribution respectively.  Find the density 

function of X+Y. 

Solution  

����(�) = � ��(a− y)��(�)���
����  

The range of  a=x+y is  −∞ < � < ∞ .   

To find the limits of the above integral notice that: 
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f�(y) ≠ 0 for  0 ≤ � ≤ 1 and  

��(a− y) ≠ 0 for −∞ ≤ a − y ≤ ∞   �� −∞ ≤ y ≤ ∞ . 
The intersection of  these 2 interval is0 ≤ y ≤ 1.Therefore the 

integral is not zero between 0 to 1: 

����(a) = � ��(a− y) × 1 ���
���  

If we let a− y = t, the range of t would be  is a − 1 ≤ t ≤a 

����(a) = � ��(t)(−��)���
��� = � 1�√2� ��������� �����

����� → 

����(a) = ��(a) − ��(a− 1)      − ∞ < � < ∞ 

where �� is the CDF of standard normal distribution.  

1-15-2  n-fold convolution of f  with itself 

    Suppose we have n independent random variables with the 

same density function f(x) and we want to derive the density 

function of their sum i.e.�(�) = �∑��(�). �(�) which called n-

fold convolution of f  with itself and denoted by [�(�)]�∗ id 

defined as follows: �(�) = �(�) ∗ [�(�)](���)∗.         (1-52) 
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Furthermore, denoting � ∗ �   ��  ��∗, ��∗, the n-fold 

convolution of F(cumulative distribution function) with itself is 

the distribution of the sum of n independent random variables 

each having distribution F(Ross,1983, page17) is denoted by: F ∗ F(���)∗ = F�∗.                     (1-53) 

and also F ∗ F  = F�∗                                   (1-54) 
 

Example 1-23 

Find the probability density function of the sum of the 

exponentially distributed  lifetimes of 3 independent  

components with parameter �.   
Solution  

Using convolution: �(�) = [�(�)](�)∗ = �(�) ∗ [�(�)](���)∗= ����� ∗ �������(���)∗  [f(t)](���)∗ = [ f(t)]�∗ 
2*[ ( )] ( ) ( ) 0f a f a t f t dt a




    

Since the lifetimes are exponentially distributed 

0 0( ),t and a t t a     then � < � < � and: 
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( ) ( ) 2 2
2* 0 0

[ ( )]
a aa t t a af a e e dt e dt ae               

Continue with convolving 2 tte   and λe��� to reach the 

solution   which is:  
�� (λa)�e���. 

The solution was, because  the sum of 3 independent 

exponential distributions with the same parameter λ has a 

Gamma  distribution with parameters (n=3, λ). 

End of Example  

1-16 The pdf of  the difference of 2 independent 

and nonnegative random variables 

Suppose  X1, X2 are 2 independent nonnegative random 

variables with density functions Xf
1
and Xf

2
and let Y=X2-X1.  Y is 

sometimes called interference random variable. The density 

function of Y is calculated from (extracted from K&L page 

125): 

 

( ) ( )

( ) ( ) ( )

( ) ( )

X X

X

Y X X

x
X X

x y

f y x f x dx y

f y f y x f x dx

f y x f x dx y










 


  


 









1 2
2

1 2
2

1 2
2

2 2 2
0

2 2 2

2 2 2

0
 

0
1-55  

 Needless to say that if the distribution of X2-X1 is known  

There is no need for using The above equation. 
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1-17 Percentage of a distribution being outside 

limits 

    To calculate the proportion of a random variable which fell 

inside and outside any specified limits, lets distinguish 2 cases: 

 

a)If the distribution of Y is completely known  

The calculation is as simple as follows: 

For continuous random variable:Pr(a ≤ Y ≤ b) = ∫ f(y)dy��  . 
For discrete random variable Pr(a ≤ Y ≤ b) = ∑ p(y)�� . 
where f(y) and  p(y) are density or probability function of Y. 

b) If the distribution of Y is unknown 

In this case Tchebycheff  inequality could be used which  

states that in all statistical distributions the fraction falling 

outside  �� ± ���   � > 1 is at most  
��� : ����� − ��� ≥ ���� ≤ ��� ,     � > 1                       (1-56-1) 

or ����� − ��� ≤ � ≤ �� + ���� > 1 − ��� , � > 1  (1-56-2)      

where 

 �� and �� are the mean an standard deviation of Y.  c) A table containing some intervals and frequencies  

In this case if the frequency distribution shows the 

distribution of Y has only one mode and the mode is the same as 

the arithmetic mean and the frequencies decline continuously on 
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both side of the mode,(Grant &Leavenworth,1988),according to 

an adaptation of the above inequality by Camp and Meidel:  ����� − ��� ≥ ���� ≤ ���� = ��.����   , � ≥ 1              (1-57-1) 

Or 

  Pr(�� − �� < � < �� + ��) > 1 − ���� , � ≥ 1     (1-57-2)   

     

Example 1-24 

The strength of a kind of component is a random variable 

with �μ=X=40 . For each of the following  cases determine, what 

percentage of the components fall within the specification limits 

( 34, 46). 

1)The strength is normally distributed withσ=2    

2) the distribution is unknown but σ=2  

3) can the strength in part a be exponentially distribute? 

4) the distribution is unknown but has one mode andσ=2   

 Solution 

Normal distribution 

 

 

Pr Pr( )

34-40 46-40
Pr( <Z< )=Pr -3<Z<3

2 2

a b
a X b Z

 

 

 
     

 

From Table C: 

 Pr -3<Z<3 =0.99865 -  0.00135=0.9973  
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With MATLAB: 

 Pr 34 < X < 46 = normcdf(46,40,2)-normcdf(34,40,2) = 0.9973

That is 99.73% of the product fall within (34   46) 

2)Using Tchebychef Inequality: 

 
1

Pr X-kσ<X<X+kσ >1- 2k

X-kσ=34, X+kσ=46 k= 3
 

2 2

1 1 8
Pr(40-3×2< X < 40+3×2) >   1- =1- = =%88.9

k 3 9
 

In this case more than 88.99% of the product fall within 34 

and 46. 

3)The distribution cannot be exponential because the mean 

and standard deviation of exponential distribution are equal. 

4)Assume the conditions for applying Camp-Meidell 

inequality holds, therefore : 

More than  
2 2

1 4
1- =1-

2.25k 9k
 of the product fall within (34    46) ; 

or 

 
1 1

Pr 34<X<46 >1- =1- =%95.06
2 2.25×92.25k

 

Appendix 1  Parameter  Estimation Techniques  

     There many techniques for estimating the parameters of a 

statistical distribution including the following: 

1)Maximum Likelihood Estimation(MLE) 

2)Method of Moments(MOM) 
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3)Least  Squares  Method(LSE) 

4)Bayes Method 

5) Geometric Mean Slope1 

6) Pickands  Estimators  

7)Heuristic Algorithms 

8) Minimum chi-squared  Estimation 

9)Using Inverse Probability theory  

10)Bootrap Estimation Method  

From the above methods, MLE and MOM are described briefly below. 

 

1-Maximum  Likelihood Estimation  Method 

    To use maximum likelihood method, we first need to define 

likelihood function. Likelihood is a concept that works with 

joint distributions.  

Definition of Likelihood function 

   Suppose a random sample ��, � ,��  has been taken from a 

continuous or discrete distribution.   The following joint 

probability function  L is called likelihood function: 

For continuous distribution: 

          (1-58-1) 

                                                           

1 Refer to page 25.33 Handbook of Reliability by Irenson et al,1996  

11 1( ) ( ) ( )
nn x x nL f x x f x f x  



115                                                                                Reliabilty Engineering              

For discrete distribution: � = Pr(�� = ��, … , �� = ��) = Pr(�� = ��) × …× Pr(�� = ��)   
                                                         (1-58-2)      

e.g.: 

 for exponential distribution: 

       1 )... )( ( in xnx x eL e e       
      (1-58-3)   

for binomial distribution:                                 

     � = ∏ ����� �∑ ������ × (1 − �)∑ (����)��������          (1-58-4) 

Notice that the calculation of this method is based on the 

assumption that  ��,… ,�� are independent and identically 

distributed(iid).  

 

Steps of  Maximum Likelihood Estimation(MLE) Method 

To estimate the parameters � = �1, �2, ... , �k of a 
distribution, MLE method could be used through a 3-step 
process. 

1. Find the likelihood function L for the given random 

variables (X1, X2, ... , Xn), 

2. Maximize the likelihood function by taking the 

derivatives  of L with respect to θ. 

Notice that log(x) is a monotone1-increasing function of x, 
maximizing logarithm of a function is equivalent to maximizing 
the function(based on Barlow and Proshan,1996 p166). 

                                                           

1 A function is monotonic if its first derivative is always positive or negative 



Chap 1  Introduction  and Basic  Concepts                                                  116 

 

 

Therefore it is often simpler to maximize the logarithm of 
function L rather than L itself (Bowker and Lieberman, 1972 
page287) 

3. Estimate the value of θ1, θ2, ... , θk by setting the 

derivatives obtained in Step 2 equal to zero. 

Notice that if  ��, � , �� is random sample from a uniform 

distribution with   ٬it is proved that: 

 

Example 1-25  

     a)Given a random sample ��, � ,�� from an exponential 

distribution, use MLE method to estimate �. 
      b)If  the sample is  (1.1, 0.9, 1.21, 0.8)calculate the value of �.  
Solution 

a)Since the sample is random,  �� 's are independent. 

 

  1�0 ( )

i i
xn xn

i

i

L e lnL ln nln xe
d nlnL MLE

d x X

   

 


         

    
 

 

b)���(�) = � =� ��� = �∑ ������ = ��.���.���.���.� = 1  

Lemma1 

                                                           

1 Based on page 290 Bowker & Liberman (1972). 

 f xx 


  
1 0

   
1

max
n

ii
MEL x



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    If θ� is the maximum likelihood estimator of θ and T(θ) is 

the function of θ possessing a single inverse(i.e. its derivative is 

always positive or negative) , then T�θ�� is the maximum 

likelihood estimator of �(�): 
 

End of lemma  

Example 1-26    

     If ��,… ,��  is a random sample of size n, taken from an 

exponentially distributed lifetime, estimate θ = �� . 
Solution 

    Since θ�(λ) = �� �� <0  therefore θ  has a unique inverse and 

according to the above lemma: MLE[θ(λ)] = θ(MLE(λ)) = ���� = ��. 
Example 1-27   

Given a random sample ��… . , �� from a Weibull 

distribution with location parameter A=0, use MLE method to 

derive the relations for calculating the scale and shape 

parameters B and  C. 

Answer 

� = �∑ ���� �� �������∑��� − ∑ ��������� ���       (1-59-1) 

� = �∑���� ���                                             (1-59-2) 

[ ( )] [ ( )]M L E g g M L E 
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It is worth mentioning that the MATLAB command wbfit 

estimates the parameters of a Weibull distribution.  

Example 1-28 

    a)Write a MATLAB code to return the estimates of a 2-p 

Weibull distribution from which the following sample is 

available.   

b)Also use wblfit function  to estimate the parameters. 

Solution  

a) 

%Sample X=[X(1)......X(n)] 

X=[113.0634   49.5432   53.4872   93.7147   74.0594  114.3216   97.1033   

61.5069   74.7216   52.8807]; 

for C=.01:0.001:40 

for I=1:length(X) 

LNX(I)=log(X(I));XIC(I)=X(I)^C;XICLNX(I)=XIC(I)* LNX(I); 

end 

A=C-(sum(XICLNX)/sum(XIC)-sum(LNX)/length(X))^(-1); 

if abs(A)<= 0.001 )C1=C;disp(sprintf('C= %6.4f ', C1)) end 

end 

B=(sum(X.^C1)/(length(X)))^(1/C1); 

disp(sprintf('B=  %6.4f    ',  B)) 

b)  

>> wblfit(X) 

ans =     87.1543    3.7149  

Example 1-29 

  Let  ��,i=1,..,k  be the number of successes  in a sample of size n 

from  a binomial distribution with parameter p, Find MLE(p). 
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Solution   

 

 

     End of Example  

 

MATLAB commands for estimating Distributions 

parameters 

  The MATLAB commands for estimating the parameters of 

some  statistical distributions are given in Table H.  

For example, given a sample the MATLAB command  

( )

...

i i

i i

i i k k

k k

i i
i i

k
x n x

x x
i i

k
x n x x n x x n x

i i k

k x n x

i i

n
L P P p q

x

n n n
L p q p q p q

x x x

n
L p q

x
 





  







 
   

 

     
         

     

  
    

 







1 1

1 1

1

1 1

1

( )

ln( ) ln( ) ln( ) ln( )

ln( ) ln ln ( ) ln( ),

k k

i i
i i

k x n x

i i

k k k

i i
i i ii

n
L p q

x

n
L x p n x p

x

 





  

  
    

 

 
     

 



  

1 1

1

1 1 1
1

( ) ( )
ln( )

k k k k

i i i i
i i i i

k k

i i
i i

x n x n x nk x
L p

p p p p
x x

   

 

  
 

       
 

   

 

1 1 1 1

1 1

10 0
1

( )

( )

k

i
i

k

i
i

x
nk

MLE p
p knx

x
k MLE p

n





    

  





1

1

1 1 1

1
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expfit   returns parameter θ  for �(x) = �� �� ��;  
poissfit returns parameter � of a Poisson distribution 

binofit   returns parameter p of a binomial distribution. 

 

Example 1-30     

The following sample shows the lifetime(in year) of some 

units randomly taken from a batch of a device having  an 

exponentially distributed lifetime. Estimate the parameter of the 

distribution. 

0.04    0.15    0.04    0.09    0.03    0.01    0.04    0.06    0.01    0.15    

Solution 
X=[ 0.04    0.15   0.04   0.09   0.03    0.01    0.04    0.06    0.01  0.15 ] ; expfit(X) 

This yields θ� = 0.062 which is the mean of the distribution. 

Thus λ� = �
θ
�  = 16.13, which the average number of  annual 

failures. 

Example 1-30    

The annual number of failures of a device has a Poisson 

distribution; given the following sample estimate the distribution 

parameter.  

17    13    19     8    17    17    12    19    18    19 

Solution 

>> X=[17  13  19   8  17    17    12    19    18   19 ];poissfit(X) 

This returns  λ� = 15.9.  End of  Example  
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Example 1-30    

To estimate the failure probability(p) of the cables used in the 

construction of a kind of bridge, 5 samples of size n from this 

kind of cable was set to life test.  The number of failures in these 

5 samples are as follows: �� = 2, : �� = 1, : �� = 4, : �� = 0, : �� = 1. What is the 

maximum  likelihood estimate of p? 

Solution 

k− 5,n = 100, MLE(p) = ∑ x�����kn = X�n = 2+ 1 + 4+ 0 + 15100 ⟹ MLE(p) = 0.016 

Using MATLAB: 

Given �� = 2, : �� = 1, : �� = 4, : �� = 0, : �� = 1 As seen 

below, binofit function returns 5 estimates with mean 

of   �̂=0.016. 

 

>>x=[2   1    4   0    1]; P=binofit(x,100); phat =mean(P) 

 phat=0.016. 

2-  Methods of Moments(MOM) 

  A widely used technique in estimation is method of 

moments . 

Before describing the method, it is reminded that: 

   

the kth moment of random variable X about zero(0) is 
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E(��) = expected value of �� and 

the kth  moment about 0 of  sample  ��, � , �� is    

. 

    Methods of moments for estimating the parameters of  the 

distribution of random sample X is based on  the fact the g the 

kth moment of X could be estimated by the kth  sample moment 

i.e.��(��) = �� , k=1, 2�. 

 

Steps of MOM 

  To estimate parameters  ��, � , �� of the statistical 

distribution  of random variable X ,  

i-Compute  �(��), � = �,… ,� in terms of ��,… ,��. 

Notice that always the first moment of a distribution is its 

mean and the second moment is equal to the variance of the 

distribution plus the squared mean.   

ii-Form  the k equations  �(��) = �� , j=1, �.,k 

iii-Solve the equations for the parameters  ��, … , ��. 
The resulting values are called method of moments 

estimators for the parameters. 

 

xk
i

n

iMk n



1
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Example  1-32 

   Let  ��,… ,��  be a random sample  taken from an 

exponential distribution with parameter � , Estimate the 

parameter by the method of moments. 

Solution 

 

End of  example  

Example  1-33 

   Let ��,… ,��  be a random sample  taken from an normal 

distribution with parameters �  ��� �� , estimate the 

parameters by the method of moments. 

 

Solution 

 

�( ) i

i

X n
E X M

n X






   


1
1
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X i
E MX n
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 
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 
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In statistics theory it is proved that instead of  the above 

estimate for variance i.e.

n

i
i

x
X

n
 


2

21  sample variance i.e.  

( )
n n

i i
i i

x X x nX
S

n n
 

 

 
 

 
2 2 2

2 1 1
1 1  is a good estimate for the 

variance of X because of being unbiased i.e. �(��) = ��.  
Appendix 2: Application of MATLAB in Reliability theory 

Softwares have provided calculations easy. Here some MATLAB 

functions which might be used in reliability subject is described. 

A-Plotting the frequency distribution of lifetime 

Given a sample of the lifetime of a kind of product, the 

frequency distribution which consists of classes and their 

corresponding frequencies could be  plotted using the following 

command; 

>>hist(Data,K) 

where  

Data is a vector consisting the life times of a sample selected at 

random from a lot of  the product,  

K is the number of classes  into which the range of life 

time is desired for partitioning. 
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B-Parameter estimation  

Once the histogram in the above section was prepared one 

might guess the statistical distribution to which the life tomes 

belong.  The parameters of this distribution could be estimated 

using some commands given in Table H at the end of the book 

e.g.: 

To estimate θ in an exponential distribution with f(x) = 1θ e−xθ, 
thetahat=expfit(Data) 

To estimate the parameters of a normal distribution:  

[muhat,sigmahat] = normfit(Data) 

To estimate the parameters B and C of a Weibull distribution 

with reliability function ��(���� )�
 and A=0:  

BhatandChat= wblfit(data) 

where Data is a vector containing a sample of the life times of 

the product. 

C-Goodness of fit (GoF)   

    Goodness of fit implies a comparison of the observed data 

with the data expected under the model using some fit. It 

describes how well a statistical model fits a set of observations.  
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To accomplish this, one could use several GoF tests as well as a 

kind of graph known as Q-Q plot. 

  There are a number GoF tests including Pearson chi-squared  

test for continuous ad discrete distributions and 

Kolmogorov_Smironov test for continuous distributions.  In this 

section the latter test is introduced. 

C-1 Kolmogorov-Smironov(KS) test 

The Kolmogorov-Smirnov test is used to examine whether a 

sample comes from a population with a specific CDF F(x) or not:  

 �� The distribution with CDF F(x) fits the data �� CDF F(x) does not fit the data 

The MALAB function related to this test is as follows: 

H = kstest(Data,CDF,�)  

where  

Data A column vector containing data � Level of significance e.g .  0.05,0.10 

CDF hypothesized, continuous cumulative distribution function F(x) 

Examples for the format of specifying the desired CDF are 
given below: 
     [Data  wblcdf(Data,A, B)] , 
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     [Data  expcdf (Data, �)], 
    [Data, [Data   normcdf(X,  σوμ  )]. 
if omitted or  

    If the CDF is unspecified (i.e., set to an empty matrix []), the 

hypothetical distribution is assumed to be a standard normal: 

N(0,1). 

H indicates the result of  the test: 

 H = 0 ⟹ Do not reject the null hypothesis at significance level �. 

  H = 1 ⟹ Reject the null hypothesis at significance level �. 

Example  1-33  

  Could it be said that the following sample comes from an 
exponential distribution with significance level � = 0.05? 
 
[110, 520, 645, 680, 330, 75, 95, 480, 360, 575, 1065, 170, 
415, 15, 20,1275, 270, 90, 1500, 1923, 715, 1523,427, 730, 
1120, 390, 240, 40, 220, 673, 2397, 1032, 315] 
 
Solution 
Entering the data as a column vector: 

>>Data=[� 
110 
520 
� 
1032 
315]; 

Giving the command: 
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       >>H=kstest(Data, [Data expcdf(Data, mean(Data))], 0.05) 

The answer for H is 0; i.e. it is not rejected that the data belongs 
to an exponential distribution with significance level � = 0.05 . 

 

C-2  Q-Q plot 

   Quantile-quantile ( Q-Q) plot examines  the conformity 

between the empirical distribution and the given theoretical 

distribution through command qqplot( X , pd)   which  displays 

the quantiles of the sample data X versus the theoretical 

quantiles of the distribution specified by the probability 

distribution object pd: 

>> X=[�.data];  
pd=makedist(distribution name );    e.g. 
pd=makedist ('exponential') 
pd=makedist ('Gamma') 
qqplot(X,pd) 
 
Figure1-15 shows a sample Q-Q plot.  

 
Fig. 1-15 A sample Q-Q plot 
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The more the points near to the line and the line near to the 

bisector of the  first quarter, the better the distribution fits the 

data. 

D  Calculation of Reliability 

Once the distribution of the lifetime of a device is determined 

to be one of the well-known distributions, the reliability could 

be easily calculated using the CDF commands in Table H; e.g.  

for  exponential : 

 R=1-expcdf(x,θ)  where  x  is mission time and  θ is the 

distribution mean, 

for  normal : 

 R = 1-normcdf(x, μ, σ) where  x  is the mission time and μ, σ 

are the distribution mean and standard deviation. 

for 2-parameter Weibull( location parameter A=0) 

R = 1-wblcdf(x, B,C) where where  x  is the mission time and 

B,C are the scale and  shape parameters of the distribution. 

E  Calculation of the inverse of cumulative distribution 

function (CDF )and Reliability function 

   The inverse of a CDF gives a value say a associated with 

random variable X such that the probability of the variable being 

less than or equal (X ≤ a)to a  is equal to the given cumulative 

probability. 
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Table H shows the MATLB command for this purpose. The 

commands have the suffix .inv   

Example  1-34  

    Suppose the life time(X) of a device is exponentially 

distributed with mean of 100 hours, 

a)Find a in Pr(X ≤ a) = 0.3935 

answer : 

>>x=expinv(0.3935,100) 

x=50 

b) Find the reliability for lifetime equal to 50.  

answer 

>> p=1-expcdf(50,100) 

p =  0.6065 

c)Find  the lifetime value for which the reliability of the device 

is  0.6065. 

>>x= expinv(1-0.6065,100) 

x = 50.0051  
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F   Finding polynomial roots and Solution of Equations in 

MATLAB 

  During the calculations of problems the following MATLAB 

commands might be helpful 

F-1: Finding Roots of Polynomial Equation 

  To find the roots of  ��x� +⋯ . +��x +⋯+ �� − 0 the 

following command in MATLAB is used: 

  >>roots([a�    …   a�   a�]). 

F-2: Finding solution of algebraic equations 

   Solve function in MATLAB finds the solution of an equation 

of asimultaneous equations. For example to find the value of  � 

which satisfies the equation    
∫ �����������������( ���) =

����,  the following 

commands could be used: 

>>syms  landa  x;  landa =solve((int(landa*x*exp(-landa*x), 

x,0,1/16))./(1-exp(-landa/16))==1/128) 

landa=127.65 

One who brag , 

will not become savant 
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Exercises 

1-(Problem 3 Page49 K&L) Two designs for a critical 

component are being studied for adoption. From extensive 

testing on prototypes it was found that the time to failure(TTF) 

is Weibull distributed with a minimum life of zero. Design I 

costs $1,200 to build and has Weibull parameters of C= 2 and � = 100√10. Design II costs $1500 to build and has Weibull 

parameters of C= 3 and B= 100 hours, 

 (a) The component has a 10 hour guaranteed life. Which design 

should the manufacturer produce and why? 

 (b) For a 15 hour guaranteed life what should the choice be? 

2(Problem 6 Page49 K&L)  Consider the piecewise linear 

bathtub hazard function defined over three regions of interest 

given below. 

h(t) = b� − c�t,        0 ≤ t ≤ t�  h(t) = b� − c�t� − c�(t − t�),        t� < � ≤ t� h(t) = b� − c�t� − c�(t� − t�) + c�(t − t�),        t� < � < ∞ 

The constants  b and c  in the above expressions are determined 

so that they satisfy the normal requirements for h(t) to be a 

hazard function. Find the reliability function based on the above 

hazard function.  
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3(Problem 11 Page49 K&L) If h(t) is a hazard function prove 

that∫ ℎ(�)��⟶ ∞.��  

4- (Problem 7 Page50 K&L) Which  of the following functions 
can serve as hazard function 

2t
-at at +5 -3

3

e
) e b) e c)ct d)et e)

t
a  

Develop the density and Reliability functions for those which 
are hazard function. 

5- (Problem 9 Page50 K&L) 

50 automobile components are placed on test with a hazard 

[unction as below: 

( )h t  510  where t is in kilometers 

Compute the expected number of failures after  10,000 

kilometres. 

Hint: Let  X= the life time; use binomial distribution with 

4
Pr( 10 )50, Xn p     

6- Repeat  the previous Problem for hazard functions 

2
100- t-6 -4i)h(t)=10 t ii)h(t)=10 e t km  

7- (Problem 15 Page50 K&L)Given the population distribution 

is uniform on (0   �) , find the CDF and the pdf for the smallest 
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extreme value in a random sample of size n. use the exact theory 

not the approximation for large n. 

8-(Problem 17 Page50 K&L)Rework the previous problem, 

assuming n large and asymptotic distribution of extreme values. 

9-If a population is uniformly distributed on ( )0  find the 

expected value and the variance of the minimum of the samples 

taken from this  distribution. 

10-What is the maximum likelihood estimate for parameter b in 

Rayleigh distribution with CDF
2x

2b
_

F(x)=1-e ? 

11- Write the required relations for estimating the parameters of 

Bernoulli and normal distributions using MLE method. 

12-Assuming f(x) is a unimodal pdf with modal value ��, prove 

that 2( ) ( )'h x h x  . 

Solution:ℎ(�) = �(�)�(�) ⟹ ℎ�(�) = ��(�)�(�)���(�)�(�)��(�)  

⟹ ℎ�(��) = ��(��)�(��)���(��)�(��)��(��) = �×�(��)���(��)�(��)��(��) ⟹ ℎ�(��) = ���(��)�(��)��(��) =
���(��)�(��) × �(��)�(��) 2( ) ( )'h x h x    
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2-1 Definition of static reliability models 

  Here, the word static means that the time coordinate is not 

presented in the calculations.  In modeling  a system from a 

reliability stand point using static models, the component or 

subsystem reliabilities are considered to be constants; thus some 

base time period is implied(K&L page 55).  Before dealing with 

some conventional component configurations, a graph is 

introduced below.   

2 
Static  Reliability Models    

Aims of the chapter 

     This chapter is concerned with modeling the reliability of the 

systems  in which time coordinate is not presented in the 

reliability of their subsystems or components. In this regard the 

chapter after introducing a diagram called reliability block 

diagram (RBD); deals with some reliability configurations such 

as series, parallel, k-out-of n configurations.  Furthermore 

calculation of upper and lower reliability bound for the complex 

systems  is described.     
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2-2 Reliability Block Diagram 

 A reliability block diagram(RBD) is a graphical model of the 

elements of a system permitting the calculation of system 

reliability given the reliability of the elements . Figures 2-1 and 

2-2 are RBB examples. Each component or subsystem of the 

system is presented by a block or box in the RBD. This useful 

and important graph is used in the calculation of systems' 

reliability. Now some conventional configurations and their 

RBDs  are addressed   below. 

2-3 series configuration 

A series system is one that requires all of its subsystems to 

function in order for the system itself to function; in  other 

words, it has a configuration such that if any one of the  sub- 

systems fails, the entire system fails.  Figure 2-1 shows the RBD 

of  a system with series configuration(or simply series system).  

 

 

Fig. 2.1  RBD of a series configuration 

Let Ei=event that subsystem i operates successfully, then the 

reliability of  ith subsystem is  R� = Pr(E�)  and the  system 

reliability(����) equals: 

1 2 3 n 
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���� = ��(
Assuming the operation of the subsystems are independent of 

each other, we have:���� =
Since 0 < ��
a series system with independent components is not greater than 

the least reliable component(K&L page 56).  It is worth 

mentioning that in an n

reliability of all components is equal to 

then: ���� =
expansion: 

Therefore 

(1 − �)� =
Ignoring higher order terms, 

follows if ��

Static  Reliability Models                                                  138(�� ∩ ��…∩ ��). 
Assuming the operation of the subsystems are independent of 

each other, we have: = ��(��)…��(��) =  �� × …× ��  ⇒ 

���� = ∏ ������  .                (2-1) 

< 1 therefore ���� ≤ min
1

n

i
{��} ; that is the reliability of 

a series system with independent components is not greater than 

the least reliable component(K&L page 56).  It is worth 

mentioning that in an n- component series system, if the 

reliability of all components is equal to �� = 1 − �, � == (1 − �)�.  Now notice since according to binomial 

1 + �(−�)� + �(� − 1)2 (−�)�+. . . +(−�)� 

Ignoring higher order terms, ���� could be approximated as �� < 1: 

138 

Assuming the operation of the subsystems are independent of 

; that is the reliability of 

a series system with independent components is not greater than 

1,…,n 

.  Now notice since according to binomial 

 

)  

could be approximated as 
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If the components do not have the same reliability and ith 

element failure probability is denoted by �� = 1 − �� , an 

approximation for the series system reliability is given by(K&L 

page 58): 

n n

sys i i
i i

R q q
 

   
1 1

1 1  

Example 2-1 

    A ten-component system with 95% reliability is to be 

designed.  The system is to be designed in such a way that if any 

component fails the system would fail. What should be the 

reliability(R) of each component? 

Solution  

The system configuration is series and its reliability is :  ���� = (1 − �)�   0.95 =  (1 − �)��           ⇒      � = 0.0051 ⇒ � = 1 − �  = 0.9949 

Using approximation: ���� ≅ 1 − ��    ⇒    0.95 = 1− (10)(�)     ⇒      � = 0.005 

� = 1 − � = .995   
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    Notice that  if the components are not independent   Eq. 2-1 

could not be used for computing the reliability of  a series 

system.   In this case, the chain rule for factorization, as 

described below, might be useful: 

Chain Rule for Factorization 

Let Ei=event that subsystem i operates successfully; then the  

system reliability(����) equals: 

���� = ��(�� ∩ ���� ∩…∩ �� ∩ ��),     
Using the chain rule for factorization, this joint probability can 

be rewritten as follows: 

= Pr(E�|E���, … , E�, E�)Pr(E���|E���, … , E�)… Pr(E�|E�)Pr(E�) 
=Pr(nth component is on|other components are on)× �× Pr(1st component on)   (2-2) 

2-4 Parallel configuration 

  A system is said to  have a parallel configuration if any of the 

elements in its structure permit the system to function; in other 

words parallel system is a  configuration that works   as long as 

not all of the system components fail. 

   Assuming the components work independently of one another, 

������������ = 1 − (1 − ��)(1 − ��)… (1 − ��) = 1 −�(1 − ��)�
���      (�− �) 
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 It could be easily verified  that the reliability of  a parallel 

system is more than any of its components reliability. 

 

              Fig. 2-2  Reliability block diagram of a 
parallel system-all components working 

Proof of Eq. 3-2 

    Suppose in a 2-component system, components 1and 2 are 

connected in parallel, and let E1  and E2 denote the events that  

1and 2 operate successfully. Since the systems works if either 1 

or 2 works ,then the system reliability�Rsys� is equal to: 

R��� = The probabilty  that either 1 or 2 works= Pr(E� + E�)  ��(��) = ��                  ��(��) = ��  R��� = ��(�1 +�2) = ��(�1)+��(�2)−��(�1�2) = R� + R� − R�R� = R� + R�(1 − R�) = 1 − (1 − R�) + R�(1 − R�) = 1 − (1 − R�)(1 − R�) 
Or  R��� = 1 − Pr(both components fail ) = 1 − (1 − R�)(1 − R�). 

1 

2 

3 

n 
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And in general if n components of a system are connected in 

parallel independent of each other ,then the reliability of n-

component parallel system is:  ���� = 1 − (1 − ��)(1 − ��)… (1 − ��) = 1 − �(1 − ��).�
���         (2 = 3− 2)                         

If  the unreliability of component i is dented by �� = 1 − �� then: ���� = 1 − ��…��.            (2 = 3 − 3) 
End of proof  

Example 2-2   

a)A 6-componet parallel system with a reliability of 80% is 

to be designed, determine the reliability of each component. 

     b)How many components in a parallel system leads in a 

reliability of 99.9% system reliability? 

Solution 

a- ���� = 1 − (1 − �)6 ≥ 0.80 ⇒    � ≥ 1 − (1 − 0.8)16 =02353    =  23.53%   
b-  ���� = 1− (0.5)� = 0.999   ⇒ � = 10   

Example 2-3 (K&L page 71) 

In an electrical distribution system, electronically operated 

circuit breakers(CBs) can be activated to interrupt the current. If 

the current exceeds 105% of the rated line current it is required 

that the circuit breakers open, thereby disconnecting the supply. 
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The probability that a circuit breaker functions correctly is 0,98, 

and each breaker has its own line voltage sensor. If the 

reliability associated with interrupting the circuit is to be at least 

0.999, how many circuit breakers in series are necessary to 

achieve the desired reliability? 

Solution 

98%  of the times a CB could disconnect the un-allowed 

current load. To increase the reliability associated with 

interrupting the circuit, series configuration cannot be used   

because a series configuration  of number of the  CBs would 

result in a reliability of less than 98%; instead a parallel 

configuration is used,  the necessary number of CBs in parallel 

is calculated as follows: � = 1 − (1 − 0.98)� = .999 → � =���(.001)/���(.02) ≅ 2   

Example 2-3 (from K&L)  

 

A detection system for the CO level in a test cell is under 

cosideration.  Specifically, there is a sensor available that will 

close a circuit and thereby signal the personnel if it detects a 

particular level of CO concentration. However, this sensor can 

fail in the following ways: 
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Failure   Statuts Probability 

Signal  high CO level when none is present 0.10 

Not detect high CO level when it is present   0.15 

Obviously, the sensor is not too reliable and it is ecided to use 3 

of them ia DC circuit. 

(a) Arrange   the   sensors   such  that   the  probability  of   

delecting  a  high emission level if it is present, is maximized. 

(b) Calculate the probability of a false signal for each 

arrangement considered in (a)       

Solution 

a) The reliability of  the sensor is:   � = 1 − � = 1 − (0.1 + 0.15) = 0.75 

The reliability of the system is  ��������:  R��� = 1 − (1 − 0.75)� = 0.98 ������:       R��� = (0.75)� = 0.42 

Select  parallel configuration. 

b) 

    The false signal probability is 0.1, then the probability of false 

signal in a parallel arrangement is:  1 − [1 − (1 − 0.9)�] = (0.1)� = 0.001.  
    Since the probability of without-error operation of   the series 

system  is (0.9)� ; then the probability of a false signal for series 

configuration is 1 − (0.9)� = 0.271  
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2-4-1 Types of parallel configurations  

In a parallel system the components might be arranged in the 
following  ways; 

1-Active redundant  

In this parallel configuration more than one components are 

active and failure of one component still makes the system keep 

working(Fig 2-2).  Eqs. 2-3-1 through 2-3-3 are related to this 

type of parallel systems. 

2-Standby redundant 

In this parallel configuration one component works and some 

similar components are waiting to replace the on-line 

component when it fails. he system is functional until all 

components  fail.  It is worth mentioning that waiting (standby) 

units might be subject to failure when waiting  for eplacement.  

3-Shared  parallel configuration 

In the shared parallel system, the failure rate of surviving 

components increases as failures occur. An automobile wheel 

assembly is an example of the shared parallel arrangement; if a 

lug nut comes loose the remaining nuts must support an 

increased load, and hence the failure rate is increased with each 

successive failure. Thus, the shared parallel is not truly a static 

model (K&L page99). 
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Definition of Perfect and Imperfect switching 

    In standby redundant configurations by "perfect switching" it 

is meant that when the active component fails and a standby 

component is to replace it by the help of a switch, the switch 

does not fail during or before  replacement operation, 

mathematically the switch is 100% reliable (Ps=1).   

   "Imperfect switching" refers to the situation in which the 

switch has a probability of failing to change over from active 

component A to component B when A fails in a standby 

redundant configuration. 

2-4-1-1 Two-component system with 1 active and 1 standby-

Perfect switching  

Consider a system composed of an original and a backup 

component shown in Fig. 2-3.  When the original component 

fails, a perfect switch(i.e.100% reliable) turns on the standby 

backup component and the system continues to operate.  Let 

R1,R2 denote the reliability of the components. 

 

Fig. 2-3 RDB of a 2-component standby system 

 The reliability of this system  is equal to: 

A 

B 



147                                                                                

 ���� = Pr(system works=   �� + ��(1
Therefore the reliability 

the same as to that of

2

sys
R R R

2-4-1-2  n-component system with 1 active and 

Perfect switching

Consider 

operating subsystem

system is functional until 

system is: 

standby 1 (1 ).....(1 )

  
Fig. 2

           
(https://egyankosh.ac.in/bitstream/123456789/35169/1/Unit

                                                                                Reliabilty Engineering             

works) = Pr( A works) + Pr ( A does not work )× Pr( B works( − ��) = �� + �� − ���� 

Therefore the reliability of a two-component standby system is 

the same as to that of a 2-component active system as given below

2

1 21 (1 )(1 )
sys

R R R               Ps  1=         (2-3-1

component system with 1 active and n-1 standby

Perfect switching  

Consider an n-component standby system with one normally 

subsystem and n-1 in standby status(Fig 2-3-

system is functional until n failures occur.  The reliability of this 

1standby 1 (1 ).....(1 )
n

n
sys

R R R                   (2-

Fig. 2-3-1 RDB of  n-component standby system
            

(https://egyankosh.ac.in/bitstream/123456789/35169/1/Unit-15.pdf)

Reliabilty Engineering              

works) 

component standby system is 

component active system as given below: 

1) 

1 standby- 

component standby system with one normally 

-1). The 

.  The reliability of this 

-3-2) 

component standby system 

15.pdf) 
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Proof  of Eq. 2-3-2 

Suppose a system includes  1 active subsystem and 2 redundant 

subsystems in standby status with a perfect switch. The 

reliability of this system(
3

sys
R )is: 

 
Reliabilty1-active   1 standby3

1 2 31 1 [1 (1 )(1 )] 1
sys

R R R R
 

        
   

Stand by 

3

1 2 3(1 )(1 )(1 ) 1
sys

R R R R Ps      
Standby 

This was proof for a 3-component standby system; if the 

calculations continue in a similar manner for 4-component, 5- 

component �.standby systems, the result would be Eq. 2-3-2. 

End of proof . 

Example 2-5  

   A parallel system has an active device with 90% reliability.  

When this active fails, a perfect switch  replaces it by a standby 

backup with 80% reliability. Calculate the system reliability. 

Solution    

2

1 2
sys

R =1-(1-R )(1-R ) =1-(1-0.9)(1-0.8)=0.98  
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2-4-1-3 Two-component system with 1 active and 1 standby-

Imperfect switching 

Consider a system composed of an original and a backup 

component as shown in Fig. 2-3.  When the original component 

fails, an imperfect switch with reliability 0 < �� < 1 turns on 

the standby backup and the system continues to operate. Let 

R1,R2 denote the reliability of the components in the system  

R1,R2 and Ps are constants not functions. The redundant 

component do not share any of the load and is not probable to be 

in a  failure mode before turning on. In this case the system 

reliability ( 2

sys
R ) is given by the following relationship (based on 

Billinton&Roy,1992 page77  Eq.4-12): 

2

1 s 2 1 1 s 2
sys

R =R +P R (1-R )=1-(1-R )(1-P R ), P 1s 
 

(2-3-3) 

Example 2-6  

   Evaluate the reliability of the system in Fig. 2-3 if A has the 

reliability of 0.9, B has a reliability given A has failed of 0.96 

and switch has a reliability of 0.98.  

Solution   
2

1 s 2
sys

R =1-(1-R )(1-P R )=1-(1-0.9)(1-0.92×0.96)=0.9883  
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2-5  Combination of Series and Parallel Configurations 

Some systems have a series-parallel configuration as the ones 

shown in the following example. 

Example 2-7 :    Consider the series-parallel configurations 

A&B given below; which one is more reliable? A or B? 

 A 

  

 

B  

Solution   

    Assuming the components are independent from each other, 

�� = [1 − (1 − ��)(1 − ��)][1 − (1 − ��)(1 − ��)] �� = 1 − (1 − ����)(1 − ����) 
�� − �� = ����(1 − ��)(1 − ��) + ����(1 − ��)(1 − ��) > 0 
Then  A is more reliable than B.  

 

1 

2 

3 

4 

2 

4 

1 

3 
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Example 2-8 

       In example 2-7 let 0.95 , 0.851 2R R  , 0.75, 0.83 4R R  and 

the components work independent of each other.  Calculate the 

reliability of the configuration. 

 Solution   

AR = [ 1 - ( 1 -0 .9 5 ) ( 1 -0 .8 5 ) ] [ 1 - ( 1 -0 .7 5 ) ( 1 -0 .8 ) ] = 0 .9 4 2 9  

BR = 1 -( 1 -0 .9 5 × 0 .8 5 ) ( 1 -0 .7 5 × 0 .8 )= 0 .9 2 3 0  

 

2-5-1  Redundancy Level  

      Redundancy is the duplication of critical 

components or functions of a system.  It is a common 

approach to improve the reliability and availability a 

system. In this chapter you were introduced with active  

and standby redundancies.    

      One of the most fundamental determinants of component 

configuration concerns the level at which redundancy is to be 

provided. Lewis,1994, Chap. 9). In this regard the following 

redundancies are introduced: 

 High-level redundancy(HL) or the system level redundancy 

 Low-level(LL) redundancy or the component level redundancy   

High-level redundancy involves the duplication of the entire 

system while low-level redundancy is limited to the duplication 

of components or subsystems. 

 



Chap.  2  Static  Reliability Models                                                  152 

 

 

High-level redundancy(HL) or the system level redundancy 

Suppose we have n types of component and using k 

components from each type, a series configuration is formed.  If  

the n subsystems are  connected as a parallel configuration then 

high-level(HL) redundancy or the system level redundancy  has 

been formed(Fig 2-4-1). 

 

Fig. 2-4-1 Example of  High-level(HL) redundancy (Lewis, 1994 p272) 

The reliability of the above RBD is; 

��� = 1 − [(1 − ������)]� 
 

Low-level(LL) redundancy or the component level redundancy   

Suppose we have n types of component and using k 

components from each type, a parallel configuration is formed.  

If  the n subsystems are  connected as a series configuration, 

then low-level(LL) redundancy or the component level 

redundancy  has been formed(Fig 2-4-2). 

c 

c 

a 

a 

b 

b 
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Fig. 2-4-2  Low-level(LL) redundancy (Lewis, 1994 p272) 

Remember that if 2 similar components with reliability R are 

paralleled then the resulted system would have the following 

reliability:  

  1− (1 − �)(1 − �) = 2� − �� 
Therefore the reliability of the  above RBD is equal to:  

��� = (2�� − ���)�2�� − ����(2�� − ���) 
If �� = �� = �� then  

��� − ��� = 6��(1 − �)� > 0     ⇒     ��� > ���. 

Regardless of how many components the original system has 

in series, and regardless of whether two or more components are 

put in parallel, low-level redundancy yields higher reliability, 

but only if a very important condition is met. The failures must 

be truly independent in both configurations (Lewis,1994 page 273) 
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Example 2-9 

Find the reliability of a system having the RBD shown in Fig. 

2-5-1 in which m  series subsystem of n components are 

parallel.  

 

Fig. 2-5-1   The RBD of part a of  Example 2-9 

Solution  Let r� denote the reliability of ith component 

for i=1,2,�,n. Then each subsystem reliability is equal 

to  ∏ r����� , and the system reliability is given by: ���� = 1 − (1 −∏ ��n�=1 )�              (2-4-1)    
where  
m    number of  subsystems     
n     number of components in each subsystem    ��     the reliability of ith component i=1,2,...,n 
 

b) Find the reliability of the following system 

3  1 2 n 

3 1 2 n 

3 1 2 n 
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Fig.2-5-2   The RBD of part b of  Example 2-9 

 

Solution 

The figure shows that the system has m parallel subsystems each 

having n components. The reliability of this LL redundancy  

system is given by: 

���� = [1 −∏ (1 − ��)���� ]�                     (2-4-2   )  

 

Example 2-10( Lewis, 1994 page271) 

Find the reliability of the RBD given in the following figure: 

 

 

1 2 

3 

4 

1 

2 

3 

n 

1 

2 

3 

 n 

1 

2 

3 

 n 
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Solution: ���� = [1 − (1 − ����)(1 − ��)](��)    
 

Example 2-11 

In the following 2-component system, the reliability of the 

components are respectively  R�, R�.  If the reliability of this 

system is not enough for us, and we have the following two 

options to use,  which one has more reliability? A or B? 

 

Solution 

�� = ��(�� + �� − ���) �� = [�� + �� − (��)(��)](��) �� − �� = (����)(�� − ��)       
Therefore if   �� > �� , configuration B would be more reliable than 

configuration A . 

Not surprisingly, this expression indicates that the greatest 

reliability is achieved in the redundant configuration if we 

duplicate the component that is least reliable; if R2 > R1 then 

system B is preferable, and conversely. This rule of thumb can 

be generalized to systems with any number of non-redundant 

components; the largest gains are to be achieved by making the 

least reliable components redundant(Lewis, 1994 page271).  
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2-6 k-out-of-n  configuration 

A k-out-of-n system has n identical independent components 

or subsystems, of which only k need to be functioning for 

system success(Fig. 2-6). It is supposed that Each component 

works, independently of all the other components .. 

 

Fig 2-6   A   k-out-of-n system 

xamples of real world applications  

     Applications of k-out-of-n systems can be found in many 

areas such  as communication, electric and electronic,  safety 

monitoring systems and human organizations. 

 In a cable-supported bridge having n  supporting cables,  at 
least k cables must be working 
    A committee with n members who must decide to accept or 

reject innovation-oriented projects and the committee will 

accept a project when k or more member (Nordmann and Pham 1999) 
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2-6-1  Reliability of  k-out-n configuration 

In k-out-of-n configuration, if  k=1 the configuration is active 

parallel configuration with the following reliability: �� = 1 − (1 − ��)… . (1 − ��) 
If k=n, the configuration would be: ������� = �� × …× �� 

If k=n-1,the system does not fail with the failure of one 

component, but it fails with the failure of 2 components.  

 In the simplest form, let the reliability of all components be 

the same and equal to R.  To compute the reliability of this k-

out-of system notice that(Lewis, 1994 page 269): 

For identical components, the reliability of an k-n system 

may be determined by the binomial distribution. Suppose that p 

is the probability of failure over some period of time for one 

unit. That is, p = 1 - R,  where R is the component reliability.        
From the binomial distribution the probability that n units 

will fail is just ��(� = �) = ������(1 − �)���  
The n-k system will function if there are no more than n-k 

failures. Thus  the reliability is as follows: 

��(� ≤ � − �) = � ���� ��(1 − �)������
���  

Substituting 1-R for p  yields; Rsys = ∑ �nx�(1 − R)x(R)n−x       n−kx=0       (2-5) 
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             Rsys = binocdf(n − k, n, 1 − R)        (2-5-1)                  

The system failure probabilty or system unreliabilty is calculated 

from: 

1− ���� = 1 − �������(� − �, �, 1 − �) 
Alternatively,  

we could say that system work as far as n-k components out 

of  n component fail.   Then the probability of system 

failure is given by: 

��(� > � − �) = � ������(1 − �)����
�������  

Then the system reliability (����) is; 

���� = 1 − � �����
�=�−�+1 (1 − �)���−�                     

Or  we could say that system work as far as k components 

out of  n component work.   Then the reliability of system  

is given by: 

���� =� �����
�=� ��(1 − �)�−� 

where R is component reliability. 

 

This relationship and the following integral are equal(Barlow & 

proshan,1998 page218): 
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 ���� = �����∫ ����(1 − �)������� .                    
In summary, if the reliability of components in a k-n system is 

denoted by R then: ���� = ∑ ��� ����� ��(1 − �)��� = �����∫ ����(1 − �)������� .   (2-6) 

where 

R component reliability ���� system reliability 

n Total number of components in the system 

i no. of components that work 

n-i no. of components that fail 

 

using MATLAB: Rsys = 1 − binocdf(k − 1, n, R)                  (2-6-1)             

Notice that Eqs. 2-5 and 2-6 are equal. 

 

Example 2-12 

A system  has a 3 out of 5 active redundancy configuration. 

The  reliability of each component is R=0.9.  Calculate the 

reliability of the system. 

Solution 

Using integral of Eq. 2-6: ���� = 3�53� ∫ �3−1(1 − �)5−3���0 =6R5-15R4+10R3 

R=0.9 ⟹ ����=0.99144 

Using Σ  in Eq. 2-6: 
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Rsys = 1 −� �ni�k−1
i=0 Ri(1 − R)n−i = 1 −� �5i�3−1

i=0 0.9i(1 − 0.9)5−i 
With Matlab: 

Eq. 6-2 

3*nchoosek(5,3)*int(R^2*(1-R)^2)= 6R5-15R4+10R3 

Eq.  2-5-1 �������(� − �, �, 1 − �),���� = �������(5 − 3,5,1 − .9) = 0.9914 

Eq. 2-6-1: ���� = 1 − �������(2,5,0.9) = 1 −   0.00856=0.99144 

End of Example  

Example 2-13    

    The system shown in the following figure has only 4 

components   A� ,A�, A� and  A� . Each component works, 

independently of all the other components  .Determine the 

configuration of the system. 
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Solution 
It is evident from the figure that the  system works in the 

following conditions: 

If      A� , A�  &  �� work, 
If      A� ,A� &  A� work, 
If      A� , A� &  �� work, 
If      A� , A�  &  �� work,  If       A� ,A� , A�  &  ��  work.  
Therefore  the system works if  at least 3 components work; i.e. 

the system has a k=3/n=4 configuration. End of Example  

Example 2-14     

   The system shown in the following figure has only 3 

components 1,2 ��� 3 . Each component works, independently 

of the two others  .Determine the configuration of the system. 

 

 

 

 

 

Solution 

It is evident from the figure that the  system works in the 
following conditions: 
 

If   1  &2   work, 

If    1  &3   work, 

If    2  &3   work, 

2 

1 2 

3 

3 1 
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If all 3 components  work.  

That is at least 2 components out of 3 must work in order to 

have a working system.  Therefore the system has  a 2-out-of-3 

configuration.  

Example 2-15     

Verify that a k-out-of-n configuration converts to a series 

configuration for k=n and reduces to parallel configuration for 

k=1. 

Solution 

According to  Eq. 6-2, the reliability of a k/n system is: 

���� =� ��� ��
��� ��(1 − �)��� 

substituting k=n: 

���� =� ��� ��
��� ��(1 − �)��� = ������(1 − �)��� = �� 

k = n⟹ ���� = �� 

substituting k=1: ���� =� ��� ��
��� ��(1 − �)��� 

���� =� ��� ��
��� ��(1 − �)��� − ��0���(1 − �)��� ⟹ 

���� =� ��� ��
��� ��(1 − �)��� − (1 − �)� 

According to Newton binomial expansion: 
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(� + �)� =� �����
��� (�)����� 

then � �����
��� (1 − �)����� = (1 − � + �)� = 1� = 1 

therefore ���� =� ��� ��
��� ��(1 − �)��� − (1 − �)� = 1 − (1 − �)� 

i.e.  for k=1   k/n configuration reduces to parallel configuration. 
End of Example  

2-6-1-1 Upper bound for k-out-of-n reliability 

The reliability of  k/n configuration is given by Eq. 5-2 : 

R��� =� �nx� (1 − R)�(R)������
���  

Then  ���� = 1 − � ���� (1 − �)��
������� (R)��� 

= 1 − � �� − � + 1� (1 − �)�����(R)��(�����) −� �� − � + 2� (1 − �)�����(R)��(�����) −⋯ 

Then 

���� ≤ 1 − � �� − � + 1� (1 − �)�����            (2 − 7) 
This is an upper bound for the reliability of a k-out-of n 

configuration.    
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Example 2-16 

A pressure vessel is equipped with 6 relief values that work 

independent of each other. Three values are enough for the safe 

operation of the vessel.  The failure probability of each valve is 

0.1%.  Calculate the probability of safe working of the vessel. 

Solution  

The reliability of this system, which has a 3-out-of-6 

reliability configuration, is given by Eq. 2-6-1: 

� = 1 − 0.001 = 0.999 

���� =  1 − �������(� − 1, �, �) 
1 − �������(2,6,0.999) =  0.99999999998502 

The probability of failure(unreliability probability): 

1− ���� ≅  1.4976 10���.End of Example  

Notice that: 

In Reliability literature related to k-out-of-n configuration 

sometimes the binary  variables  �� and � are defined as: 

 ��  = � 1        �� ���������     �   �� �����������0                                                             ��ℎ������� 
i.e. The structure of the ith component is described by this binary 

variable. 
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� =
⎩⎪⎨
⎪⎧ 1          ��� ≥ ��

���0           ��� < �.�
���

� 
The binary variable � indicates the state of the k/n system. 

These binary variables might be used in the optimization 

problems related  to k/n systems. 

2-7 Complex System Analysis 

Not all designs can easily be tackled for reliability 

computations.  Certain designs such as those shown below are 

so complex that pure parallel or series are not appropriate for the 

calculation of their reliability. Such systems are known as 

complex systems. There are some methods for calculating the 

reliability of complex system including: 

a)Enumeration method 

b) Path Tracing 

c) Conditional Probability Method or Application of Bayes 

theorem or Conditioning on a key element  

d)Delta-Star Transformation Approach for Reliability Evaluation 

e)  Method based on Markov chain 

f) Cut and tie set analysis  
Methods c, d and f are described below. 
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2-7-1 Conditional Probability Method 

To evaluate the reliability of a complex system using 

conditional probability approach or the decomposition method , 

follow the steps explained below: 

1.Choose a component, say K, which appears to  bind 

together the reliability of the system as a keystone component.  

A poor choice may increase the number of steps in the 

calculations. 

2. Decompose the original system first by considering the 

keystone component to be working all the time, which means is 

100% reliable. Secondly, consider it as not working (which 

means that it is not reliable at all or has failed). Prepare 2 new 

RBDs as reduced subsystems: 

 in the first one, replace the working K by a line in the 

reliability block diagram of the original RBD. This means that 

the information can flow in either direction with no interruption.  

For preparing  the other subsystem remove component K 

from the RBD of the original system. This is because if 

component K does not work, it means that the path(s) of 

information which goes/go through component K is/are 

interrupted. Hence, information cannot pass through component 

K 
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3)Calculate the reliabilities of the reduced subsystems and 

then calculate the reliability of the system (Rsys)  from: 

Rsys = 

Pr(system success| component K is working) + 

Pr(system success | component K does not work at all) 

 

It is worth explaining that this method has been extended to 

choosing more than one key element. For more details refer to 

references such as Wang & Jiang(2004). 

 

Example 2-17(Lewis,2014Page 281) 

Calculate the reliability of a system with the following RBD:   

 

 

Solution 

Component 2a is chosen as the key element and system 

operation is conditioned on: 

i) 2a works all the time 

ii) 2a does not work at all 

With the following symbols : 

Y The event that the original system works successfully 

x The event that Component 2a fails 
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R1 The reliability of  Components 1a&1b 

R2 The reliability of  Components 2a&2b 

R1 The reliability of  Components 3a&3b 

The sample space(SS) includes 2 events: �� = {�,� �}. 
Applying Bayes theorem: 

��{�} = ��(�|�)��(�) + ��(�|��)��(��)        (2-8) 

Let   ��{�} = ��        ��{��} = ��            
Then  ��{�} = 1 − �� and and Eq. 2-8 is  could be written as: 

� = ��(�) = ��(1 − ��) + ����                 (2-9) 

Now, we must  evaluate the conditional reliabilities  �� and  ��. 

     For �� in which 2a has failed, all paths leading through 2a in 

the original RBD are disconnected.  The resulting RBD is as 

follows: 

 

This reduced system forms a series configuration of components 

1b, 2b  and 3b then: 

�� = ��(�|�) = ������ 
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Conversely,  for �� in which 2a is operational a line is drawn 

instead of 2a.  This action bypasses component 2b. 

 

Therefore in this case the resulting RBD appears as follows: 

 

which has the following reliability 

�� = ��(�|��) = [1 − (1 − ��)�][1 − (1 − ��)�] 

Substituting the expressions for  ��  and �� into Eq. 2.8, the 

reliability of the original system is as follows: � = ������(1 − ��) + [1 − (1 − ��)�][1 − (1 − ��)�](��)   (10-2) 

2-7-2 Delta-Star Transformation Approach for 

Reliability Evaluation 

In this section, the reader is presented with the so-called delta 

configuration and star configuration,  delta-Star conversion and 

the use of this transformation to simplify complex reliability 

block diagrams.   
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Figure 2-7 shows the star and delta configurations.  Here we 

use the capital letter R for the reliability of each component of 

star connections and lower case r for that of  delta configuration. 

Capital letter V stands for vortices. 

 

Fig. 2.7   Star and delta configurations 

Delta- Star transformations help us to transform some reliability 

networks into series parallel networks.  This is dealt below. 

 

2-7-2-1 Transforming a delta configuration  into an 

equivalent star configuration (Grosh,1989 Page137)     

Suppose a delta configuration is completely known and given 
in Fig 2-7 and we would like to find a star configuration which 
has the same reliability.  The reliability equivalence of the 2 
configurations in Fig. 2-7 requires that: 

1)The reliability of the section between vortices 1V and 2V  in 

star configuration ( 1R  in series with 3R ) must be equivalent to 

the reliability of same section in delta configuration 
(subsystem  r� in parallel with"�� in series with ��"); i.e. 

3 1 3 1 2 2 1 3 1 2 31 (1 )(1 ) CR R r r r r rr rr r         
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2)With a similar argument for vortices 1 & 2,we could write : 

1 2 3 3 2 1 1 2 31 (1 )(1 )1 2R R r r r r r r r r rA         

3)Similarly: 

1 (1 )(1 )
2 3 2 3 1 1 2 3 1 2 3

R R r r r B r r r r r r         

The equivalent star configuration: 

Solving the above 3 equations simultaneously for 1 3, ,2R R R would 

result in: 

(2-10-1)

[ ( )( )][ ( )( )][ ( )( )]
1

( )( )

2 (2-10-2)

3 (2-10-3)

( )( ) ( )( )

( )( )

ABC
R

B

r r r r r r r r r
R

r r r

ABC
R

C

ABC
R

A

r r r r r r

r r r

A B
C





         


  










        

    

1

3 2 1 1 2 3 2 3 1
1

1 2 3

2

3

1 2 3 2 3 1

3 1 2

1 1 1 1 1 1 1 1 1
1 1 1

1 1 1 1 1 1
1 1 1

 

Example 2-18 

Suppose the components of the  delta configuration in Fig 2.7 

has the following reliabilities r1=0.7 , r2=0.8 , r3=0.9.  Find the 

equivalent star configuration. 
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Solution 

1 2 3

ABC ABC ABC
R R R

B C A
    

1 2 3 3 1 2 1 2 3

2 3 1

3 1 2 2 1 3 1 2 3

A=1-(1-r r )(1-r )=1-(1-r -r r +r r r )=0.956

B=1-(1-r r )(1-r )=0.916

C=1-(1-r r )(1-r )=1-(1-r -r r +r r r )=0.926

 

1

2 3

0.900497
ABC=0.900497 R =  =0.9831

0.916
0.900497 0.900497

R = = 0.9725 R = =.9419 
0.926 0.956

 

2-7-2-3 Transforming a star configuration  into an 

equivalent delta configuration 

In this section r1, r2,r3   have to be found from the 3 equations 

of  Sec. 2-7-2-3 in terms of R1,R2,R3.  The following MATLAB 

code could be used to do this: 

% Star2Delta.m 
clc; 
clear; 
close all; 
% Parameters input 
R1=input('Please Insert R1 value in Y config.: '); 
R2=input('Please Insert R2 value in Y config.: '); 
R3=input('Please Insert R3 value in Y config.: '); 
global A B C; 
A=R1*R2; 
B=R2*R3; 
C=R1*R3; 
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%% calculations 
options=optimset('Display','Off'); 
 Eq=fsolve(@Delta,[0.5,0.5,0.5],options); 
  
Eq1=Eq(1); 
Eq2=Eq(2); 
Eq3=Eq(3); 
 display(['r1=   ' num2str(Eq1), '   r2=   '  
 num2str(Eq2) ,'     r3=  ' num2str(Eq3)]) 
The sub-code Delta.m  used above is as follows: 
 
function W=Delta(r) 
        global A B C; 
        W=[1-(1-r(1)*r(2))*(1-r(3))-A; 
            1-(1-r(3)*r(2))*(1-r(1))-B; 
            1-(1-r(1)*r(3))*(1-r(2))-C]; 

Performing star2Delta using the data in Example 2-11 
>>star2Delta 
Please Insert R1 value: 0.9831 
Please Insert R2 value: 0.9725 
Please Insert R3 value: 0.9419 
Results:  r1= 0.69991      r2= 0.79993      r3= 0.90017 

Special case: identical components 

    If a delta configuration consists of 3 identical component 

with a reliability of  r  ; the equivalent star configuration must 

have the following components: 

             3 2
1 2 3 YR R R r r r R                         (2-11) 

Conversely a  star configuration with identical components YR  

has an equivalent delta configuration in which all its 3 

components has the  reliability r obtained from the following: 

   Yr r r R      3 2 2 0                   (2-12) 
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Example 2-19 

In a delta configuration the reliability of the 3 subsystems is 

Δ
r =0.9 .  Find the equivalent star configuration. 

Solution 

3 2
Δ Δ ΔYR = -r +r +r =0.99045  i.e.  1 2 3 YR =R =R =R =0.99045  

Conversely if Eq. 2-12 is solved with YR =0.99045  ,

3 2 2
Δ Δ Δ-r +r +r -0.99045 =0  would give 3 answers(-0.995 ,1.0952 and 

0.9) for Δ
r , the acceptable answer is Δ

r =0.9 . 

End of Example  

     The following example illustrates the delta-star 

transformation approach for reliability evaluation of complex 

systems. 

Example 2-19  

 A system has the following RBD.  The components work 

independent of each and the reliability of %90.  Find the 

reliability of the system. 
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Solution No.1

   The vortices 1,2 and 3 in the given RBD constitute a delta 

configuration. Th

components with the following reliabilities

1 2 3

ABC ABC ABC
R R R

B C A
  

where 

A = B = C = l

R =R =R = =0.9904
1 2 3

Replacing the delta configuration with this star 

would yield the following equivalent RBD for the system
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No.1:    star-delta approach 

The vortices 1,2 and 3 in the given RBD constitute a delta 

configuration. The equivalent star configuration has 3 

components with the following reliabilities: 

1 2 3

ABC ABC ABC
R R R

B C A
     

A = B = C = l-[l-(0.9)(0.9)](l-0.9)=0.981         

30.981R =R =R = =0.9904
1 2 3 0.981

  

Replacing the delta configuration with this star configuration

would yield the following equivalent RBD for the system

176 

 

The vortices 1,2 and 3 in the given RBD constitute a delta 

configuration 

would yield the following equivalent RBD for the system 
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The reliability of the system based on the new RBD is calculated 

as follows: 

RSys = 0.9904 ×(1

Solution No.2

The Element No 3 is chosen as the key element.  If this element is 

not functional, the following RBD with a reliability denoted by 

would be obtained

R =1-(1-0.9×0.9)(1-0.9×0.9)= 0.9639SP

                                                                                Reliabilty Engineering             

The reliability of the system based on the new RBD is calculated 

= 0.9904 ×(1-(1-0.9904 ×0.9) (1-0.9904 ×0.9))= 0.9787. 

Solution No.2  Conditional Probability Approach 

The Element No 3 is chosen as the key element.  If this element is 

not functional, the following RBD with a reliability denoted by 

would be obtained.:   

R =1-(1-0.9×0.9)(1-0.9×0.9)= 0.9639  

Reliabilty Engineering              

 

The reliability of the system based on the new RBD is calculated 

 

The Element No 3 is chosen as the key element.  If this element is 

not functional, the following RBD with a reliability denoted by SPR
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Suppose Element No. 3 in the original RBD works all the time. 

Replacing it with a line would result the following RBD with a 

reliability dented by  

PSR =[1-(1-0.9)(1-0.9)][1-(1-0.9)(1-0.9)]=0

 

Now sysR ( the reliability of the system

Rule (Eq. 2-8) as follows:

sys R ×(1-r )+R ×r =0.9639×0.1 +0.9801 ×0.9= 0.9SP 3 PS 3R  =  

2-8 Calculation of upper and lower bounds for 

complex system using cut and tie s

In this section

upper  and a lower reliability bound for complex systems. This 

procedure is based on the so

some complex systems are shown below.
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Suppose Element No. 3 in the original RBD works all the time. 

Replacing it with a line would result the following RBD with a 

reliability dented by  PSR . 

R =[1-(1-0.9)(1-0.9)][1-(1-0.9)(1-0.9)]=0.9801
  

the reliability of the system)  is calculated using Bayes 

8) as follows: 

R ×(1-r )+R ×r =0.9639×0.1 +0.9801 ×0.9= 0.9785SP 3 PS 3R  =  

8 Calculation of upper and lower bounds for 

complex system using cut and tie set analysis

In this section a procedure is introduced for calculating an 

upper  and a lower reliability bound for complex systems. This 

procedure is based on the so-called tie and cut sets.  The RBS of 

some complex systems are shown below. 

178 

Suppose Element No. 3 in the original RBD works all the time. 

Replacing it with a line would result the following RBD with a 

 

sing Bayes 

R  =   

8 Calculation of upper and lower bounds for 

et analysis 

a procedure is introduced for calculating an 

upper  and a lower reliability bound for complex systems. This 

called tie and cut sets.  The RBS of 
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Before performing

introduced: 

Definition of 

     This set is  

guarantee the failure of the system(Grosh,1989 page125); in 

other words the

all paths from the input to the output of  the system. 

Definition of 

A minimal path is a minimal set of components by functioning 

ensures the system operation(Grosh,1989 page125).
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Fig. 2-9  Three complex systems 

Before performing the calculations, some definitions are 

 

Definition of  minimal cut set 

This set is  a minimal set of components  which by failing 

guarantee the failure of the system(Grosh,1989 page125); in 

other words the failure of its components cause interruption of 

all paths from the input to the output of  the system.  

Definition of  minimal path  

A minimal path is a minimal set of components by functioning 

ensures the system operation(Grosh,1989 page125). 

Reliabilty Engineering              

a minimal set of components  which by failing 

guarantee the failure of the system(Grosh,1989 page125); in 

failure of its components cause interruption of 

A minimal path is a minimal set of components by functioning 
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Notice that 

-Each complex system has usually several minimal path and cut 

sets. A set could be both cut and path. 

- In the foregoing discussion, by mentioning cut set, minimal cut 

set is meant and by mentioning path set, minimal path set is meant

Example 2

  Find the minimal path and cut sets for the following RBD.

Solution 

The minimal cut sets are:

The minimal path are:
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Each complex system has usually several minimal path and cut 

sets. A set could be both cut and path.  

In the foregoing discussion, by mentioning cut set, minimal cut 

set is meant and by mentioning path set, minimal path set is meant

Example 2-21 (Grosh,1989 page 125)  

Find the minimal path and cut sets for the following RBD.

 

The minimal cut sets are: 

components Cut set no. 

C1C2 1 

C4C5 2 

C1C3C5 3 

C2C3C4 4 

The minimal path are: 

180 

Each complex system has usually several minimal path and cut 

In the foregoing discussion, by mentioning cut set, minimal cut 

set is meant and by mentioning path set, minimal path set is meant.  

Find the minimal path and cut sets for the following RBD. 
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End of Example

Example 2

The  RBD

and path sets on the RBD.

Solution 

The minimal cut sets are 

The minimal path sets are 
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components Cut set no. 

C1C4 1 

C2C5 2 

C1C3C5 3 

C2C3C4 4 

xample  

Example 2-22(O'connor,2003 page175) 

RBD of a system is given below.  Show the minimal cut 

and path sets on the RBD. 

 

The minimal cut sets are (1-3    2-3   and  4 )as shown below:

 

The minimal path sets are (1-2-4    3-4 ) shown below:

Reliabilty Engineering              

of a system is given below.  Show the minimal cut 

 

as shown below: 

 

shown below: 
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End of example

Example 2

What are the minimal cut and path sets

target b  given below?

Solution 

If all components fail but Component 1,the connection 

between a and b does not interrupts  then the  set  

If all components fail but Components 2& 5,

between a and b does not interrupts  then

set 

� 

Functioning of 

system operation

�.. 
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End of example  

Example 2-23(Shooman,2002 page285) 

What are the minimal cut and path sets between source a 

given below? 

 

If all components fail but Component 1,the connection 

between a and b does not interrupts  then the  set  {1} is a tie set

If all components fail but Components 2& 5, the connection 

between a and b does not interrupts  then the set  {2,5} is a

Functioning of  the set with minimum elements 6,4  ensure

system operation ,  then Set {6,4} is a minimal path. 

182 

 and 

If all components fail but Component 1,the connection 

is a tie set 

the connection 

is a tie 

ensures the 
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The other cut and tie sets are determined with similar reasoning. 

The following table shows the minimal  cut sets and minimal 

paths. 

 

The minimal  cut sets and minimal paths of Example  2-23 

Path no. Components Tie set no. Components 

1 5,4,1 1 1 
2 2,6,1 2 2,5 
3 3,6,5,1 3 6,4 
4 4,3,2,1 4 2,3,4 
5 6,3,5   

 

End of Example  

2-8-1  Calculation of reliability upper& lower bounds  
for complex systems using auxiliary  networks  

To compute upper and lower reliability bounds for a complex 

system, based on the minimal cut sets and minimal paths, two 

auxiliary  systems are constructed(Grosh, 1989, page 125). 

1)Auxiliary network N1 is composed  of parallel 

configuration of all the minimal path elements in series.  This 

network is based on this fact that as far as one minimal path 

work the system works. 

2)Auxiliary network N2 is composed of the series 

configuration of all the minimal  cut elements in 

parallel(Grosh,1989 p 127). 
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   After calculating

of network N

the reliability 

For some reasons such as dependence of the subsystems of 

Network N1, The calculated upper bound(

estimated by this method.    If 

Example 2

   Draw the auxiliary

lower bounds for RBD of Example 2

Solution   

Network N1 which is a  parallel configuration of all the 

minimal path elements in series is shown below:

The reliability of this RBD given by the following relationship 

is the upper bound for the original system reliability of Example 

2-21: 
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After calculating 1NR , the reliability of Network N1and that 

N2 ( 2NR ),we have the following inequality for 

the reliability of  the original system (based on Grosh, 1989 p 125 

2 1N sys NR R R                          (2-13) 

For some reasons such as dependence of the subsystems of 

, The calculated upper bound( 1NR ) is usually over

estimated by this method.    If 1NR  exceeds 1 set 1 1NR 

Example 2-24   

Draw the auxiliary networks for calculating the upper and 

lower bounds for RBD of Example 2-21. 

   a)Auxiliary network N1 

Network N1 which is a  parallel configuration of all the 

minimal path elements in series is shown below: 

 

The reliability of this RBD given by the following relationship 

is the upper bound for the original system reliability of Example 

184 

and that 

),we have the following inequality for sysR , 

(based on Grosh, 1989 p 125 -6) 

For some reasons such as dependence of the subsystems of 

) is usually over-

1  

networks for calculating the upper and 

Network N1 which is a  parallel configuration of all the 

The reliability of this RBD given by the following relationship 

is the upper bound for the original system reliability of Example 
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1 1 4 2 5 1 3 5 2 3 41 (1 )(1 )(1 )(1 )NR rr r r rr r r r r     

b)Auxiliary network N

Network N2 which is the series configuration of all the minimal  

cut elements in parallel is shown below:

The reliability of the above RBD given by the following 

relationship is the lower bound

reliability: 

N2

1-(1-r )(1-r ) 1-(1-r )(1-r ) 1-(1-r )(1-r )(1-r1 2 4 1 3 2 3 4

R =

    

Then    2 1N sys NR R R

 

Example 2

Draw the auxiliary

lower bounds for the following  RBD. The number in the box is 

the reliability of  the component.
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1 1 4 2 5 1 3 5 2 3 41 (1 )(1 )(1 )(1 )R rr r r rr r r r r       

b)Auxiliary network N2  

Network N2 which is the series configuration of all the minimal  

cut elements in parallel is shown below: 

Network N2 

The reliability of the above RBD given by the following 

relationship is the lower bound for the original system 

1-(1-r )(1-r ) 1-(1-r )(1-r ) 1-(1-r )(1-r )(1-r ) 1-(1-r )(1-r )(1-r )  5 51 2 4 1 3 2 3 4         

2 1N sys NR R R    

Example 2-25  

Draw the auxiliary networks for calculating the upper and 

lower bounds for the following  RBD. The number in the box is 

the reliability of  the component. 

Reliabilty Engineering              

Network N2 which is the series configuration of all the minimal  

 

) 1-(1-r )(1-r )(1-r )  1 2 4 1 3 2 3 4    
 

networks for calculating the upper and 

lower bounds for the following  RBD. The number in the box is 
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Solution 

The minimal paths are: 

1-3-6-7    1-3-5-7      1-2-4-7       1-2-5-7   
The minimal cut set are: 

1      7      2-3      4-5-6       2-5-6       3-4-5 

 

The auxiliary networks N1  and N2 are shown below. 

 

 

Network  N1 
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                  Network N2   

After calculating the reliability of Network N1( 1NR ) and that 

of Network N2( 2NR )   we could write  2 1N sys NR R R    

2-8-2  An approximate formula for the upper and 
Lower reliability bounds of complex systems 

Approximate bounds  on system reliability from minimal cut 

sets and minimal  path are given below (O'Connor& Kleyner 2012, p153) 

1 1

Cut sets Paths

1 (1 )
j k

C T

i sys i
j ki A i B

R R R
  

     
 (2-14) 

c The number of minimal cut sets 

N The number of ct set 

T The number minimal paths(tie sets) 

jA  The components of jth cut set, 1,2,...,j c  �� 
The components of kth path,   1,2,...,k T  
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1

1 (1 )
j

C

i
j i A

R
 

  = 

1-( Product of unreliabilities of the components of A1+�+ product of 

unreliabilities of the components of Ac ) 
T

1 K

i
K i B

R


   

Product of  reliabilities of 1st path components  +�+ Product of reliabilities 

of  last path components   

 

In the relationship 2-14, if the calculated upper bound is  

greater than 1, let the bound equal to 1; if the calculated lower 

bound is negative let the lower bound equal to zero.    

Example  2-26 

Calculate  the upper and lower bound for the reliability of the 

following system.  Each component has the reliability of 90%. 

 

Solution 

The minimal cut sets and the  minimal paths are given in the 

following table.  
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components Cut Set No. j 
1-3 j=1 
2-3 j=2 
4 j=3 

 
components Path No. k 

1-2-4 k=1 
3-4 k=2  

 

Method 1: Using auxiliary networks 

 

Network  N2 

C=3,   A1={1, 3}, A2={2, 3}, A3={4}

 

Network N1 

T=2,     B1={1, 2, 4}, B2={ 3, 4}

 

The reliability of the system( sysR )lies between: 

N1 1 2 4 3 4R =1-(1-R R R )(1-R R )=0.948  

and 

R =[1-(1-R )(1-R )][1-(1-R )(1-R )])(R )=0.8821N 1 3 2 3 42
 

Then   sys0.8821<R <0.948. 
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Method 2: Using Relationship 2-14 

 

1 1

1 3 2 3 4 1 2 4 3 4sys

1 (1 )

1- (1-R )(1-R )+(1-R )(1-R )+(1-R ) < <R R R +R RR
j k

C T

i sys i
j ki A i B

R R R
  

      
 

 

 1 3 2 3 41- (1-R )(1-R )+(1-R )(1-R )+(1-R ) =0.88  

1 2 4 3 4R R R +R R =0.729+0.81=1.539 1  

Then sys0.88<R <1. 

It is obvious that this was an illustration for the methods.  

There was no need to apply these 2 method to this simple RBD; 

because its exact value of reliability is simply calculated as 

follows:   1 2 3 4[1-(1-R R )(1-R )](R )=0.8829   

2-9 Applications of Bays reliability in Design 

According Bays' theory, if the sample space of an experiment is 

1{ ... }KSS H H   and iH 's are mutually exclusive( i.e. 

i jH H = for i,j=1,2,�,k; i≠j ), then:  

1

Pr( )Pr( / )
Pr( | )

Pr( )Pr( )

i i
i k

i i
i

H B H
H B

H B H





                 (2-15) 

where B is an event defined on Sample space SS. 
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Example 2-27(K&L page 392) 

Suppose a design engineer has developed a new mechanical 

system that has never been built or tested before. The engineer 

believes, based on his previous experience and intuition, that if 

the system has been designed properly to meet the performance 

criteria, the time to failure, is normally distributed with a mean 

of 50,000 kilometers. If the system is improperly designed, the 

mean life may be 30,000 kilometers. Based on his experience, 

the engineer has good confidence in his design. A priori, he says 

that the probability that the design has a mean life of 50,000 

kilometers is 0.80, and hence 0.20 is the probability that the 

design has a mean life of 30,000 kilometers. 

A single prototype is built and tested in a simulated environment 

that duplicates as nearly as possible the actual environment. The 

system is tested, but economic considerations dictate that (he 

testing be stopped at 40,000 kilometers. The engineer also says 

that, based on past experience, it is known that the standard 

deviation for the life of the system is 10% of the mean life. 

The objective is to predict the reliability of the design . 

Solution 

Let  

A = the event that the system has been tested and operated 

successfully for 40,000 kilometers.  

B1 =the event that the mean life is 50,000 kilometers, Pr( ) .B 1 08 
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B2 = the event that the mean life is 30,000 kilometers, Pr( ) .B 2 0 2 

1 2

i i
i

1 1 2 2

1

1

SS=B UB

Pr(B )Pr(A B )
Pr(B A)= i=1,2

Pr(B )Pr(A B )+Pr(B )Pr(A B )

Pr(B )=0.8

40000-50000
Pr(A B )=Pr(X³40000,μ=50000)=Pr Z>

(50000)(0.10)

=Pr(Z³-2)=0.9772

 
 
 

 

2

40000-30000
Pr(A B )=Pr(Z> )=0.00045

30000×0.10
  

1 1
1

1 1 2 2

2 1

Pr(B )Pr(A B )
Pr(B |A)= =0.9999

Pr(B )Pr(A B )+Pr(B )Pr(A B )

Pr(B |A)=1-Pr(B |A)=1-0.9999

 

    Suppose later, after production stage, one of these devices 

was selected for a mission of  35000-km- experiment. Assuming 

a normally distributed life time with mean 50000 km and � 

=5000 km the reliability is given by 

35000-50000
R=Pr(X>35000)=Pr(Z> =Pr(Z>-3)=0.99865

5000
 

We are 99.99% confident about the  mean used for this 

calculation because 1Pr( | ) 0.9999.B A   Therefore we are 99.99% 

confident that the reliability of the device is 0.99865 . 

 

However  before performing the test on the prototype which 

lead to a life of 40000 km we were able to  state with 80% 

certainty(obtained from the engineers original beliefs) that the 
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35000-km reliability of the device is 0.99865 .  Because we 

were 80% confident about the  mean used for the calculation. 

After the testing which was terminated after 40000 km, the 

probability of the event μ=50000 km conditioned on Event A 

was obtained 99.99%.  Therefore the confidence for the 

predicted reliability shows increase using the Bays' theorem. 

End of Example  

 

Exercises1 

1-(Problem 1 Page 68 K&L) Calculate the reliability of each of the 

following RBDs, where each component has the indicated 

reliability 

                                                           

1 From K&L  chapter 3 
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2.    A system consists of 100 parts connected functionally in 

series. Each part has a 1000- hour reliability of 0.9999. 

Calculate the reliability of the system. 

3    A system is comprised of four major subsystems in parallel. 

Each subsystem has a reliability of 0.900. At least two of the 

four subsystems must operate if the system is to perform 

properly. What is the reliability of this system? 

4    A system is comprised of 10 subsystems connected 

functionally in series, [f a  system   reliability  of   0.999   is  

desired,    what  is  the  minimum  subsystem reliability that is 

needed? 

5- -(Problem 5 Page 69 K&L)  Assume  that  4  wheel  bolts  are  

adequate  from  a  design  standpoint. However,   the  wheel  

attachment  under  consideration  has  5  bolts.   If  the chances 
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of losing a wheel bolt are 0.

bolt system?

6- -(Problemn 7 Page 70

describes the circuitry for a neutral start switch on a manual 

automobile transmission. According to the service manual, in 

order to start this vehicle the clutch pedal must be fully 

depressed and the ignition switch must be

(a)  Define reliability as it relates to this system

(b)  Draw an appropriate reliability block diagram

(c)  Assuming that each  functional  block  in  your 

0.0001 chance of failing, calculate the 
 

 

7-  A manufacturer wishes to know the reliability of a skid 

protection system Io be used on military tractor trailers. The 

system consists of:

(a)  Two battery or generator powered sensors per wheel.

(b)  One logic unit per sensor to predict wheel skid

(c)  A command unit,  which operates an electric or an engine 

vacuum solenoid.
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of losing a wheel bolt are 0.00001, what is the reliability of this 

system? 

(Problemn 7 Page 70 K&L)  The system diagram given below 

describes the circuitry for a neutral start switch on a manual 

automobile transmission. According to the service manual, in 

order to start this vehicle the clutch pedal must be fully 

depressed and the ignition switch must be in the start position.

Define reliability as it relates to this system 

(b)  Draw an appropriate reliability block diagram(RBD) 

(c)  Assuming that each  functional  block  in  your RBD 

0.0001 chance of failing, calculate the system reliability. 

A manufacturer wishes to know the reliability of a skid 

protection system Io be used on military tractor trailers. The 

system consists of: 

(a)  Two battery or generator powered sensors per wheel.

(b)  One logic unit per sensor to predict wheel skid. 

(c)  A command unit,  which operates an electric or an engine 

vacuum solenoid. 

Reliabilty Engineering              

00001, what is the reliability of this 

The system diagram given below 

describes the circuitry for a neutral start switch on a manual 

automobile transmission. According to the service manual, in 

in the start position. 

 

 has a 

 

 

A manufacturer wishes to know the reliability of a skid 

protection system Io be used on military tractor trailers. The 

(a)  Two battery or generator powered sensors per wheel. 

(c)  A command unit,  which operates an electric or an engine 
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(d)  The solenoids in (c) operate an actuator that controls the 

pressure to the

. The system diagram (not reliability diagram) is shown below.

8) A  DC battery has a time to failure that is n

with a mean 

 (a) What is the 25

 (b) When should a battery be replaced to ensure, that there is no 

more than a 10% chance of 

 (c) Two batteries are connected in parallel to power a light. 

Assuming, that the light does not fail, what is the 35

reliability for the power source?

 (d) A particular battery has been in continuous use for 30 hours. 

What is the probability that this battery will last another 4 

hours? 

9)Calculate the reliability of the following  two systems,

each component has the indicated reliability
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(d)  The solenoids in (c) operate an actuator that controls the 

pressure to the brake. 

. The system diagram (not reliability diagram) is shown below.

DC battery has a time to failure that is normally distributed 

with a mean of 30 hours and a standard deviation of 30 hours,

(a) What is the 25-hour reliability? 

(b) When should a battery be replaced to ensure, that there is no 

more than a 10% chance of failure prior to replacement? 

(c) Two batteries are connected in parallel to power a light. 

Assuming, that the light does not fail, what is the 35

reliability for the power source? 

(d) A particular battery has been in continuous use for 30 hours. 

hat is the probability that this battery will last another 4 

9)Calculate the reliability of the following  two systems,

each component has the indicated reliability 

196 

(d)  The solenoids in (c) operate an actuator that controls the 

. The system diagram (not reliability diagram) is shown below. 

 

ormally distributed 

of 30 hours and a standard deviation of 30 hours, 

(b) When should a battery be replaced to ensure, that there is no 

 

(c) Two batteries are connected in parallel to power a light. 

Assuming, that the light does not fail, what is the 35- hour 

(d) A particular battery has been in continuous use for 30 hours. 

hat is the probability that this battery will last another 4 

9)Calculate the reliability of the following  two systems, where 
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10)A customer of a bank uses 2 different cards for Automatic 

Teller Machines.  One of them is connected to 2 accounts with 

reliabilities RI and RII  and the other is connected to the account 

with reliability RI.  The reliability of the cards  is  R.  Which 

card do you prefer?  

 

Ans.  I IIR R . 

11)To have a 6-component series system of at least 95% 

reliability, how many components do you suggest? 

12) A system consists of several components with 94% 

reliability To have  a system with 95% reliability, what 

configuration do you suggest and many components?  

14) In the following RBD, each component has the indicated 

reliability.  B2 is a standby component which replaces B1 by a 

switch.  The failure probability of the switch and the standby 

component when they are needed is negligible.  Calculate the 

reliability the system with the given RBD  and compare it with 

the case as if there is no redundant standby component. 



Chap.  2  Static  Reliability Models                                                  198 

 

 

  

 

 

It is best to start every thing with 
trustfulness and 

 end it with 
 faithfulness
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3.1 Reliability Considerations in Design  
   The design process  dictates the system  configuration  and the 

configuration chosen influences the reliability level as well as 

the cost of achieving this level. Thus, a preliminary reliability 

analysis as well as the many other design factors should be 

considered during the design phase. .(K&L page 62)  

     Since the designer is the system architect he or she should be 

familiar with the basic reliability analysis concepts that can be 

used to evaluate the design. Only after the design is completed can an 

independent reliability group analyse and test the product. So it is 

important that the designer evaluate the reliability levels and costs of 

various designs before the final choice is made.(K&L page 63) 

A frequently used measure of complexity is the number of 
components in a system. It is a fundamental tenet of reliability 

3 
Reliability Considerations in Design + UGF Technique 

Aims of the chapter 

     This chapter is divided into two sections.  First section deals 
with reliability considerations in design. The second section 
introduces one of the methods  used to conduct reliability 
analysis; i.e. the universal generating function(UGF) method 
which is a method of modern discrete mathematics.  
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engineering that as he complexity of a system increases, the 
reliability will decrease, unless compensatory measures are 
taken(Lewis, 1994pace). 

     This section will emphasize some trade-offs between  
reliability and the number of components. This might be helpful 
to a designer in developing alternatives(K&L page 63). 

3.1-1Reliability considerations in series configurations 

Consider the series system shown in Fig 3.1 

 

                      

Fig 3-1 A series configuration 

If the reliability of each component is equal to R i.e.   R� = R� = ⋯ = R� = R then according to Eq.2-1 the 
system reliability(R���) is given by  R��� = R�.   

 R��� depends on R and n(reliability and number of 
components). This relationship is shown in Fig 3.2. 

  

3 1 2 n 
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Fig 3.2 The relationship between An n-component system's 
reliability, and the number components for 3 values of R 

Some considerations on the design of a series configuration 
follows.  According to Fig 3.2: 

1)For a given component reliability(R), the reliability of  a series 
system can be improved by decreasing the number of 
components in series. Conversely the system reliability id 
decreased as the number of components increases.  

2)for a given number of components , the reliability of a series 
system will improve if components of greater  reliability are 
used. 

3)When the number of components is increased, the system 
reliability will not change if  components of appropriate greater  
reliability are used. 

     The following figure also conveys some concepts similar to 
those that does Fig. 3.2.  
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Fig.3.3 Series system reliability as a function of number and 
reliability of components (Lewis,1994 page 253) 

3.1-2 Reliability considerations in parallel configurations 

The paralleling of  components is usually mentioned as a 
means to improve system reliability. However the gains are not 
always realizable(K&L page 64). Consider the RBD of m- 

component system in which all components are actively 

parallel. If the reliability of components are the same and equal 

to R, the reliability of the system shown in Fig. 3-4 is: R��� = 1 − (1 − R)�. Figures 3.5 and 3.6 plot this relationship.   
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Fig 3-4   A Parallel-active system 

Fig. 3.5 Parallel system reliability as a function of reliability of 
components for 4 values of  m (K&L page 64) 
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. 

Fig. 3.6 Parallel-active  system reliability as function of no. of  
components for 3 values of R. 

Some considerations regarding this system follows: 

1- For a given component reliability the more the number of 

components (m) the more the system reliability; however for 

m>4 the increase slows down(see Fig. 3.5 and 3.6 ) 

2-  To use cheaper and less reliable components and at the same 

time to keep the system reliability fixed, the number of 

component has to be increased, as it is evident from Fig. 6.3. 

3-  For a given number of components, the more the component 

reliability (R) the more the system reliability.  
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For example if  m =2  Fig. 3-6  gives the system reliability0.84  

for R=o.6 and 0.91  for R=o.7. 

It is worth knowing that 

designing a parallel system for a mechanical device is usually 

extremely difficult. Some forms of parallel arrangement such as 

providing spare parts (a standby parallel arrangement) or using a 

load-sharing design (a shared parallel arrangement) are probably 

more representative of the true situation.(K&L). 

3.1-3 Reliability considerations in series-parallel 
configurations 

Remember that given an n-component series system, we can 

either provide redundant components, which give a system 

design diagram as shown in Fig.3.7, or provide a total redundant 

system as shown in Fig.3.9. 

  As you know the former redundancy is known as low-level 

redundancy whereas the latter(system level redundancy) is also 

called  high-level redundancy. 
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Fig. 3-7  Component redundancy or low-level (LL) redundancy 
Now we would like to make some comparisons between LL 

and HL redundancies. Assume all components are independent 

of each other and have the same reliability of R.  

  

Reliability of LL redundancy 

The reliability of LL configuration in Fig 3.7 is given by:  �������� = [1 − (1 − �)�]�            (3-1) 

This equation is plotted in Fig 3.8 
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Fig. 3.8 LL configuration's reliability in terms of no. of subsystems (n) 
and number of components(K&L p66) 

Reliability of HL redundancy 

The reliability of HL configuration in Fig 3.9  is:  

 

             �������� = 1 − [1 − ��]�،                     (3-2) 

where 

 m is the number of subsystem and  

n is the number of components in each subsystem  
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Fig. 3.9 High-level or system redundancy  
 

Eq. 2-3 is plotted in Fig. 3.10 in terms of n for 3 values of m and 
2 values of  R.  

 

Fig. 3.10 HL configuration's reliability in terms of no. of 
components of subsystems (n) (K&L p67) 

Now we would like to compare HL and LL redundancies. 
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By comparing the graphs in Figs. 3.8 and 3.10   it is evident 

that the low-level redundancy gives a higher system reliability in 

all cases. However, the difference is not as pronounced if 

components have high reliabilities. Basically the 2 Figures 

indicate that providing spare components will result in better 

overall reliability than providing a spare system. Of course, this 

can be applied at different levels to subsystems, depending on 

the possible system breakdown, for, in some instances, design or 

system peculiarities make it impossible to apply all of these 

rules. Also the total system operation must be considered. For 

instance, if your automotive brake system fails at 80 km/h in 

heavy traffic it would not do you any good to have a complete 

set of components in your glove compartment. So the rules must 

be used as guides and applied with discretion( K&L page67-68). 

Example 3.1  Find the reliability of the LL redundancy given 
in Fig. 3.7 and that of  the HL redundancy given in Fig 3-9 for  a) n = 3 m = 4, R = 0.7 b) n = 3 m = 2, R = 0.9 
Solution 
a) 
From Eq. 3.1  �R������ = [1 − (1 − R)�]�,n = 3 m = 4, R = 0.7   
( ) 0.9759sys LLR   
From Eq. 3.2   �R������ = 1 − [1 − R�]�, � = 3 � = 4, � = 0.7 

H L( ) 0.81368sysR   
b) for n = 3 m = 2, R = 0.9From Eqs. 3.1 and  3.2⟹ 

sys HL sys LL(R ) =0.93 (R ) =0.97  
End of example  
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3-2Universal Generating Function(UGF) analysis of 
Reliability Systems 

Before dealing with  Universal Generating Function.; It is 

worth reminding that in the reliability analysis of system  2 

different systems are identified: binary -state  system and multi-

state system (MSS). 

a  binary -state  system assumes only two possible states for a 

system and its components: either perfect functional  or 

completely down   

    and multi-state systems reliability models allow both the 

system and its components to assume more than two levels i.e.  

different performance levels and several failure modes with 

various effects on the entire system performance .  In other 

words, in multi-state systems  the system and its components 

have  multiple possible states:  some intermediate states as well 

as complete failure and perfect functioning. 

Different methods, such as Monte Carlo simulations,  

extension Boolean models, stochastic processes and the 

universal generating function (UGF) method have been 

proposed to conduct the reliability analysis of MSSs1. 

Although the UGF method which is a method of modern 

discrete mathematics  has a high computing speed in the 

reliability assessment of multi-state systems (MSSs), it can be 

                                                           

1 Jinhua, Mi, et al, 2015 
Belief Universal Generating Function Analysis of Multi-State Systems 

Under Epistemic Uncertainty and Common Cause Failures IEEE 
Transactions on Reliability Vol. 64 No.4  
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used for the analysis of binary-state systems. we proceed now 

with the use of UGF in the latter case  .  

Universal generating function(UGF) is an extension of 

moment generating function(MGF) and probability generating 

function(PGF).  UGF could be used in determining the prob- 

abilistic distribution of complicated functions of  some discrete 
random variables. Before proceeding with UGF, some 

definitions are reminded. 

3.2-1 Moment generating function of discrete random variables 

Consider a discrete random variable(rv) X which can take 

values 0 ,..., kx x such that  Pr(X = x�) = p� and ∑ p� = 1���� . the 

mapping x�    ⟶ p� is usually called probability mass function. 
The mean of   and MGF of this rv is: 

 �(�) = ∑ ��������      ����(�)  or  ��(�) = �(���) =
0

i

k

i

t x
ip e 



  

For example if  X has  a binomial distribution �(�, �), 
then ��(�) = (��� + 1 − �)�. 

Some properties of moments generating functions (MGFs) are 
as follows: 

1. The MGF of a random variable(rv) is  unique i.e.  
if the MGF exists for an rv, then there one and only one 
distribution associated with that MGF uniquely defines the 
distribution of the rv.  
 

2. The MGF of the sum of some independent rv's is  
equal to the product of the MGFs of the rv's: 
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 �∑ ������ (�) =
1

k

i 
���(�). 

3. 
( )

( )
k

k
k

d
E X

dt
 ��(�)|��� 

i.e. the kth derivative of  ��(�)with respect to t gives the 
value of kth moment of the distribution about the origin, 
for t=0. 

4. The additive property of some distributions such as 
Poisson and normal distributions could be verified by 
MGF. 

3.2-2 Z-transform or probability  generating function of 
discrete random variables 

The probability generating function of  a discrete random 
variable is defined as follows: �(�) = �(��) =�������

���                                (3− 3) 
This function is also called Z-transform if  variable X. 
Example 3.2    

If  a variable X takes on the values  x� = 1 ,   x� = 2 and  x� = 5 with probabilities 0.3 ,0.5 and 0.10. Find the Z-transform  
of  the variable. 
Solution ��(�) =������ =�

��� 0.3× �� + 0.6× �� + 0.1 × �� 
End of Example  

Some properties of z-transform 

    A useful property of z-transform is its ability to solve 
difference equations. Some other common properties are: 

1.The  probability function  of a random variable whose z-
transform is �(�) is derived from the following relationship: �� = ��! × �(�)��� �(�)|���                                                                       (3-4) 
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2. The first derivative of  �(�) with respect to z gives the value 
of the  distribution mean, for z=0. ��(�) = ����(��) = ����(�����) =� ����������

���        (3− 5) � = 1    ⟹ ��(�) = ∑���� = �(�)                                               
3.The z-transform of the sum of some independent rv's is equal 
to the product of the z-transforms of the rv's: �∑ ������ (�) =

1

k

i 
���(�)                            (3− 6) 

4. If in the definition of the MGF e� is replaced by z, then one 
gets z-transform of the random variable. 
Example 3.3  
 

 Suppose k independent trials each having 2 outcomes: 
success with probability � and failure with probability 1- �. are 
performed independently. For jth trial let �� defined below:  ����� = 1� = �        ���� = 0� = 1 − �� (�)���      يا              = ��            �� = 11 − �     �� = 0� 
Therefore the z-transform of �� is:  ���(�) = ��� + (1 − �)�� 

If 
1

k

j
j

X X


 then X represents the number of successes that 

occurs in the k independent trials and the z-transform of X is: 
 ω�(z) = [πz+ (1 − π)] × …× [πz+ (1 − π)] = [πz + (1 − π)]� 
 
This  z-transform is that of a binomial random variable with 
parameters (k, �) whose  probability function is given by: �� = ��� � ��(1 − �)���       0 ≤ � ≤ � 

End of Example  
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3-2-3  The Universal Generating Function(UGF)  

Consider independent random variables ��, � , ��, … , �� with 

mapping � , � . If we want to find the probability function of �(�� ���), we have to obtain a vector Y composing  all 

possible values of f and the probability of the occurrence of the 

values.  

Each possible value of f corresponds to a combination of the 

values of its arguments ��,… ,�� . Let the probability function 

of �� taking ��  values be represented by: x = ��1, … , ����          p = ��1,… , ���� 
Then the total number of possible combinations constituting 

the range of  �(��…��) is =
1

k

i 
 (��) , where �� is the number of 

possible values that �� takes. 

Since �� ��� are independent the probability of the jth 

combination of the realization of f   variates is equal to: 

probability of jth  variate of  f=��=∐ ��������  

where(Levitin,2010page) ����  is the probability of the realization of the arguments 

composing the combination. 

And  the corresponding value of f can be obtained as: �� = ������ , … , X����. 
Some combinations might have the same values.  Since all 

combinations are mutually exclusive, therefore the probability 
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that the function f  takes on some value is equal to the sum of the 

combination producing this value(Levitin,2010 page 6).  Let ��  

be a set of combinations producing the value ��. If the total 

number of different realization of the function �(�� ���) is H, 

then the probability function of f is: 

 

1 11
( ,..., ) `1

:1 ,

:1
j j hn

h

ix x A

Y f h H

n
q p h H

ij
i

  

 
 

   
  

 
              (3− 7) 

Example  3-4 

Consider independent random variables 1 2,X X  with the 

following probability functions: ���(�) = �0.6      � = 10.4      � = 4 �                      ���(�) = �0.1        � = 0.50.6           � = 10.3          � = 2 � 
Find the probability function of � = �(��,��) = ����. 

 
Solution 
     All possible combinations of 1 2,X X and the probability 

function of Y is given in the following table: 
 ��(�) � = ���� X2 X1  

0.6 0.1=0.06 1 0.5 1 1 

0.4 0.1=0.04 2 0.5 4 2 

0.6 0.6=0.36 1 1 1 3 

0.4 0.6=0.24 4 1 4 4 

0.6 0.3=0.18 1 2 1 5 

0.4 0.3=0.12 16 2 4 6 
As the table shows some combinations have the same value .  

Since all combinations are mutually independent then the 
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probability of the occurrence of this same value is the some of 

the probabilities of the combinations  producing the value. e.g.: �(� = 1) = Pr(X� = 1, X� = 0.5) + Pr(X� = 1, X� = 1) + Pr(X� = 1, X� = 2)    ⟹ �(� = 1) = 0.06 + 0.36 + 0.18 = 0.6 
  Therefore according to the calculations in the table;  
 � = {�� = 1 ,�� = 2 ,�� = 4 ,�� = 16 } ,      � = (0.6, 0.04,0.24,0.12).End of Example       

For solving problems such as the one given in Example 3-4, 

another approach  called the UGF technique could be used.  The 

technique, based on using z-transform and a composition 

operator (denoted by ⊗�), is described below. 

Let �� takes on  ���, … , ����  with probabilities ���, … , ���� , 
the corresponding z-transform is the following polynomial: 

���(�) =��������                                      (3− 8)��
���  

As you know the z-transform of the sum of independent random 

variables 1,..., nX X is the product of their z-transforms: 

The probability function of  a combination of several 

independent random variable such as  Y given  in Example 3-4 

could be obtained from its z-transform.  Therefore if one could 

find the z-transform of  a combination,  it will be easy to obtain 

the probability function of the combination. 
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UGF Technique 

   In the so-called UGF technique, To calculate the z-transform, 

U(z) , of every arbitrary combination(function) of independent 

random variables 1 nX ,...,X  , replace the product operator ( ) on 

the z-transforms in Eq. 3-6 with an appropriate operator denoted 

by ⊗�.   Here the z-transform of random variable ��  of 

independent  variables 1,..., ,...,i nX X X is denoted by ��(�). 
The z- transform of  �(��, … , ��) is denoted by �� (z)  ���(z) 

(Livitin, 2010page 8). According to this notation for 2 variables: 

�(�) =⊗� ���(�), ��(�)] = [��(�)⊗� ��(�)�     (3− 9) 
for n variables(Livitin, 2010page 8): �(z) �� ��(�) =⊗� (��(�), … , ��(�))                                 (3− 10) 
U�(z) = 
⊗� �� P���Z������

���� � = � � .
…� 1

( ,..., )

1

i j n jn

i

n
f x x

ij
i

p z


 
 
 


��
����

��
����

��
����             (3 − 11) 

The technique based on using z-transform and composition 

operators ⊗� is named universal z-transform or universal 

(moment) generating function (UGF) technique (Livitin, 2010 

page 8 ).  UGF technique has applications such as finding the 

probability function of an arbitrary function of several 

independent random variables and finding the reliability of 

complicated systems. For other applications refer to reverences 

such as chapter 2& 3 in Levitin(2010).  
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 Notice that(Livitin,2010 page 8): 

1-Although ��(�) resembles a polynomial, �(�) is not 

necessarily a polynomial. 

2-When the �(�) represents the probability function of  a 

random function  �(��, … , ��), the expected  value of this 

function can be obtained as the first derivative of U(z) at z=1. 

Example 3-5(Levitin, 2010, page9) 

  Consider the probability function of Y from the table in 
Example 3-4. The z-transform of  Y takes the form: �(�) = 0.06�� + 0.04�� + 0.36�� + 0.24�� + 0.18�� + 0.12��� 

Merging the like forms results in: �(�) = 0.6�� + 0.04�� + 0.24�� + 0.12��� 
As you may have noticed, this function represents the 
probability function for Y as follows: Y = (1, 2, 4, 16) ,          q = (0.6,   0.04,    0.24,   0.12) 

which is the same as what was obtained in Example3-4.  

The described technique of determining the probability 

functions is based on an enumerative approach, which is 

extremely time consuming.  Fortunately, many functions used in 

reliability engineering produce the same values for different 

combinations of the values of their arguments (��′�). The 

combination of recursive determination of the functions with 

simplification techniques based on the like terms collection 
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allows one to reduce considerably the computations needed to 

obtain the probability function of  complicated functions. 

The following procedure is  easier for solving this example. 

Based on the data in Example 3-4 the u-function of �� and �� is 

as follows: 

1 4 0.5 1 2
1 2( ) 0.6 0.4 , ( ) 0.1 0.6 0.3U z z z U z z z z    

 
Let u-function of  Y = X��� be denoted by ��(�), then 

according to Eq, 3.9 

1 2

1 4 0.5 1 2

( ) ( ) ( )

( ) (0.6 0.4 ) (0.1 0.6 0.3 )

Y power

Y power

U z U z U z

U z z z z z z

  

    
 

0.5 1 2(1 ) (1 ) (1 )( ) 0.6×0.1   Z +0.6×0.6  Z +0.6×0.3  Z +

0.5 1 2(4 ) (4 ) (4 )0.4×0.1  Z +0.4×0.6   Z +0.4×0.3  Z 

YU z 



   

��(�) = 0.6�1 + 0.04�2 + 0.24�4 + 0.12�16 

From this function the probability function of Y is obtained: 
 � = (1,     2,          4,      16)    probabilities = � = (0.6, 0.04,   0.24, 0.12) 

End of example  

Example 3-6( based on Livitin, 2010 page 9) 

Random variables ��,… ,�� are independent and the data for 

their probability functions are given in the following table: 
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0.5 1 0.6 0 0.1 0.6 5 1,0p =0.7  

1,0x =8  

0.5 1.5 0.4 2 0.5 0.3 8 1,1p = 0.3 
1,1x =10  

    0.4 0.1 12   

Find the probability function of  � = �(�� � ��) = [���(��, ��) + ���(��, ��)](��). 
Solution 

          The total number of term multiplication procedures that one has 

to perform using  enumerative approach is 2 × 3 × 3 × 2 × 2 = 72; however applying UGF technique as 

performed below reduces this amount to  only 26 (Livitin,2010 

page11). 

 
The u-function of the variables are: ��(�) = ��,����,� + ��,����,� = 0.7�� + 0.3��� ��(�) = ��,����,� + ��,����,� + ��,����,� = 0.6�� + 0.3�� + 0.1��� ��(�) = ��,����,� + ��,����,� + ��,����,� = 0.1�� + 0.5�� + 0.4�� ��(�) = ��,����,� + ��,����,� = 0.6�� + 0.4�� ��(�) = ��,����,� + ��,����,� = 0.5�� + 0.5��.�. 
 
Let us introduce the following 3 auxiliary random variables: �� = ���(��, ��)         �� = ���(��, ��)         �� = �� + ��   

Therefore � = ����.  Using composition operators on pairs of u-
functions, the probability function of Y is obtained as follows: 

  ��(�) = ��(�)⊗��� ��(�) = = (0.7�� + 0.3���)⊗��� (0.6�� + 0.3�� + 0.1���) = 
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0.42��.�×�.����� (�,�)+ 0.21��.�×�.�����(�,�)+0.07��.�×�.�����(�,��)� 018��.�×�.�����(��,�) +0.09����(��,�) + 0.03����(��,��) ⟹ ��(�) = 0.63�� + 0.27��� + 0.1��� 
 ��(�) = ��(�)⊗��� ��(�) = (0.1�� + 0.5�� + 0.4��)⊗��� (0.6�� + 0.4��) = 
 0.06����(�,�)+0.04����(�,�)+0.3����(�,�[)�0.2����(�,�) +0.24����(�,�) + 0.16����(�,�) ⟹ ��(�) = 0.64�� + 0.36�� 

 ��(�) = ��(�)⊗� ��(�) = 
 = (0.63�� + 0.27��� + 0.1���)⊗� (0.64�� + 0.36��) = 

 = 0.4032���� + 0.2268���� + 0.1728����� ++0.0972����� + 0.064����� + 0.036����� = 
        ��(�) = 0.4032�� + 0.3996��� + 0.01612��� + 0.036��� 
                                ��(�) = ��(�)⊗× ��(�) = (0.4032�� + 0.3996��� + 0.01612���+ 0.036���)  ⊗× (0.5�� + 0.5��.�) 

After necessary calculations and simplification, the final answer 
for U�(z)  is: 

 ��(�) = 0.2016�� + 0.1998��� + 0.2822��� + 0.018���+ 0.1998��� + 0.0806��� + 0.018��� 
From U�(z) the probability function of Y is  obtained as follows: 
 
Y=( 8,             10,          12,       14,          15,          18,        21) 
q= (0.02016, 0.1998,  0.2822,  0.018,   0.1998,   0.0806,  0.018) 
 
 End of Example   

3-2-4  derivation of the reliability using UGF 

Given the UGF of a system, its reliability could be 
estimated>  This is illustrated in the following Example. 
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Example 3-7 

The universal generating function of a system is: 
  �(�) = 0.1�� + 0.15��� + 0.4��� + 0.35���, 
Find 20-hour reliability of the system. 

Solution  ��� = ��(� > 20) = 0.40 + 0.35 = 0.75. 
End of Example   

3-2-4  Reliability Analysis of Binary -State  Systems using UGF 

Symbols ���� System Reliability �� The reliability of jth subsystem  �� The state of jth subsystem(either 1=working or 0=down) 
X The  system structure function  

The UGF method is very effective for the reliability analysis of  

multistate systems; however it could be used for binary-state 

systems, though that effective as compared to conventional 

methods (see Kuo &Zuo,2003). 

 
This section focus on the allocation of UGF technique to  

reliability systems whose components and the system itself have 

only 2 states: either working or not.   

Fّig 3-10 The RBD of a سeries-parallel system 
(Livitin, 2010page 30)  
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Consider the RBD of a system given in Fig. 3-10 with  the 
system structure  function(Livitin, 2010page 32) 

 � = ���[��,���(��, ��)] 
where X� is the state of jth subsystem(with 2 values :either x�=1=working or x� =0=down). 

Let  

  Rj=Pj be the reliability of jth subsystem for a fixed mission 

time, the probability that is on working conditions during the 

mission time 

  and   1-Pj be the probability that the jth subsystem is down. 

Then the expected value of �� is: ����� = 0�1 − ��� + 1�� = �� = �� 
where  R� is  jth subsystem reliability.  

  Therefore for a  fixed mission time the system reliability  

equals  the expected value of ��.    
    Similarly the reliability of the system for a fixed mission 

equals the expected value of the system structure function X: ���� = �(�),                          (3-12) 

Where  � = �(��, ��, … , ��) �� The state of jth subsystem(either 1=working or 

0=failed) 

Therefore for a  fixed mission time the system reliability  equals  

the expected value of X.  
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Usually the element reliability vector is known and we would 

like to obtain the system reliability as a function of ��′� . In 

systems with independent elements, such functions are available 

and depend on the system structure. 

Example 3-8(Livitin, 2010Page 31) 

Consider the  following RBD, Xj  denotes the state variable 

of  jth subsystem taking values   �� = 0 or 1. 

 

 

Let the static reliability of jth subsystem = �� , then 

����� = ��� = �����1 − �������          �� = 0  or �� =  1       � = 1,2,3  
If the subsystems are independent then: ��(�� = �� ∩ �� = �� ∩ �� = ��) =  �����(1 − ��)����������(1 − ��)����������(1 − ��)����� 
Suppose the system structure function or system state variable is � = ���[��,���(��, ��)], then the probability function of X is 

as the following table shows: 
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)()Pr( xpxX X  
value of � �� ,�� ,�� �� = 0 down, �� = 1   working 

 (1− ��)(1 − ��)(1− ��) 0 0,0,0 

1 2 3(1 )(1 )R R R   0 0,0,1 (1 − ��)��(1 − ��) 0 0,1,0 (1 − ��)���� 1 0,1,1 ��(1 − ��)(1 − ��) 0 1,0,0 ��(1 − ��)�� 1 1,0,1 ����(1 − ��) 0 1,1,0 ������ 1 1,1,1 

According to Eq. 3-12 for a binary system : ���� = �(�) =� ���(�) = [(1 − ��)(1 − ��)(1 − ��) × 0] +⋯+ [������ × 1]⟹  ���� = (�� + �� − ����)�� = ��[1 − (1 − ��)(1 − ��)]. 
If in this binary system R1=0.95; R2=0.9; R3=0.85 , the system 

reliability would be: 

R3*(1-(1-R1)*(1-R2))= 0.8458  

Having the reliability functions of independent system 

elements Rj (t) (1 ≤ � ≤ �) one ean obtain the system reliability 

function Rsys(t)    by substituting Rj with Rj (t) (Livitin 2010,p32)  
Example 3-9 

Consider the  system  form previous example  whose  RBD is  

 

and assume that the reliability functions of the system element 
are: 
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Then this series-parallel system reliability is: ����(�) = �{�(�)] = �3(�)[�1(�)+ �2(�)− �1(�)�2(�))]= ����������� + ����� − ��(�����)��, �� �(�) = ��(�)[1 − (1-��(�))(1 − ��(�))]= �����[1 − (1-�����)(1 − �����)] 
End of Example  

At the end, it is worth mentioning that having the u-functions 
of the elements of an n-element binary system of the form 

 U�(Z) = �1 − R��Z� + R�Z�          0 ≤ j ≤ n               (3-13) 

and  the system structure function � = ∅(��, ��, … , ��) 
The system reliability measure can now be obtained 

as(Livitin,2010, page34): 

E(X)= ��(1) = ��(�)��  = |z=1                        (3-14) 

where ( ) [ ( ),..., ( )]
1 nU z U z U z


 .  

The application of UGF technique  to n-element binary  system is 

discussed in references such as Livitin(2010) pages 32-41.  Moreover 

Wei-Chang(2009) is a reference on UGF. 

Exercises 

1.Consider the system given below, composed of 4 like elements 

having discrete life time of 20٬10 and 30  days with probabilities 0.2 ٬
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0.3and 0.5 . Calculate the UGF or U(z)  of this system and the 10-daay 

reliability of the system.  

 

2.Repeat the previous example for the following RBD: 

 

 

Keep in mind 
that you are 
never absent 

 from  
God�s sight,  

so keep looking 
how you are 

acting
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Chapter  4 
 Structural 
reliability 
Analysis 
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4.1 Introduction  

Designers of systems such as structures  take many factors 

into considerations including the reliability.  Strength(capacity)  

and load(stress) are 2 variables that affect the reliability of 

structures(dams ,bridges;  communication networks and 

antenna). To be reliable, structures  require to withstand ultimate 

loads without failure.     

There are 2 approaches for this purpose: deterministic and 

probabilistic.   

Structural  Reliability Analysis 

Aims of the chapter 

This chapter focuses on  the reliability of the networks and 

structures whose strength (capacity) and/or loads are 

probabilistic.  Reliability expressions for various statistical 

distributions of strength and load namely normal, exponential, 

lognormal, gamma and Weibull are presented. 
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The deterministic approach seeks out a worst case and 

specifies a factor of safety for the extreme case  to use in the 

design. The probabilistic approaches utilize the statistical 

distribution of input variables (here mainly load and strength) to 

calculate reliability.   

It should be added that in both approaches the amount of data 

influences the results.   

 . Load-strength Interference Analysis 

While the deterministic approach adopts the safety factor as 

stability index, the probabilistic methods adopt as the probability 

of failure (Queiroz, 2016) 

 

Structural failure occurs when load(stress) exceeds capacity 

(strength).Figure 1.4 shows such a case. 

 
Fig 4-1The interference of the time-dependent load and strength 

(Rausand & Hsyland, 2004 Fig 1.2) 
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4-2-1Deterministic approach: Application of  Safety Factor  

Safety factor is  defined as1 

SF= ��                        (4-1) 

where � is the strength and s is the load. 

SF<1 results in failure. An acceptable SF is traditionally 1.52. 

To cover unknowns and ensure safety, the deterministic 

approach introduces conservatism by specifying a largish factor 

of safety(SF).   Calculating such a  conservative SF  requires  a 

high  experience. On the other  hand, this approach practically 

forgets the randomness  nature of design  variables and 

parameters (load , strength�).  Of course the specialists  of this 

approach may notice the  randomness of them  but in 

computations, the specialists act as if they are not probabilistic. 

4-2-2Probabilistic Design Approach 

The probabilistic approach  incorporate the variability of 

input  parameters and variables  and utilizes their statistical 

characterization and attempts to provide a desired reliability in 

the design. Probabilistic approach  uses different methods. In 

                                                           

1 When the strength and load are independent random 
variables,  the average SF,E(SF), is approximately: 

 
( )

( ) ( )
SE

E SF
E s E s

  
  

  

2

21  

2 MIL-HDBK-17-3E, Working Draft page 6-7 
https://www.gla.ac.uk/external/asranet/Resources/milhdbk.pdf 
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its simplest form, the measure of reliability is made by 

comparing a component's stress to its strength(MIL-HDBK-17-3E).  

The system does not fail as far as load(s) is less than its  

strength(δ) and fails when  S ≥ δ.  
4-3 System reliability  -Load & Strength variable 

When the strength (�) and/or the load(s) are random variables. 

The reliability( R) of the system is given by  

  

Let  � = � − � then  

                          � = ��(� > 0)                        (4-2-5)    

 

If the distribution of Y is not known , the following 

relationship might be helpful: 

    , (4 3)Pr ,,R S f S d dSSS
  




   


 

where  ,,f SS  is the joint probability density function of 

strength and load.  

If S and  � are independent, then: 

(4-2-1) P r( )R S    

(4-2-2) P r( 0 )R S     

(4-2-3) 
Pr( 1)R

S


   

(4-2-4) 

 

P r( 1)R S F   
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 

0 0 0

0

( ) ( ) ( ) ( )

( ) 1 ( ) (4 4)

s s

s s s

ss

R f f s ds d f s f d ds

R f s F s ds



 

 



   
  

   





   
     

   

  

   


where 

sf  The pdf load 

f   The pdf strength 

F  The joint pdf of strength 

Moreover, if s and  � are independent, the pdf of � = � − � might be calculated from(K&L page 125): 

0

( ) ( ) 0

( ) ( ) ( )

( ) ( ) 0

s

Y s

s
s

y

f y s f s ds y

f y f y s f s ds

f y s f s ds y














 


   

  








(4-5) 

and the system reliability(R): 

0 0 0

Pr( 0) ( ) ( ) ( )Y s

y y s

R Y f y f y s f s dsdy

  

  

        (4-6) 
 

Example 4-1  
The stress and the strength distributions for a component are 

uniform  over the interval : 

Strength: [15   25] 
 Stress   : [20   25 
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How many percent of this  kind of component break  in a single 

application of the load? 

Solution 

 
¥ 25

s δs=0 s=20

25

s=20

1 s-15
R= f (s) 1-F (s) ds= 1- ds

25-20 25-15

1
R= (25-s)ds=0.25

50

 
 

 
 



 

100(1-R)=75%  break. 

End of Example  
 

4-3-1 Definition of safety margin(SM) 

Safety margin is an  index related to the subject of reliability 
defined as follows: �� =  �������������                                                (4-7)           

where  ��    ���    �� are the means of the strength and load, ���  ���   ��� are the variances of the strength and load. 

In a structure, if � < �, the more s far from � the less failure 

probability and the more reliability. Then the more the 

denominator the more the reliability; the less variation of the 

load and strength (or the less the denominator), the more we are 

confident. Therefore the greater SM>0, the more reliable the 
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structure.  It is worth noticing that actually SM equals 
μ��� where 

Y=δ-S. or it equals the reciprocal of the coefficient of variation of 

Y.  

 

An application of SM is in the calculation of structures' 

reliability when the strength and the load are independent and 

normally1 distributed (See Figs. 4-2-1 & 2) 

 

Fig 4-2-1 Normally distributed load and strength: Non- interference 

 

                                                           

1 In a exceptional case where the distribution is Weibul(A,B,C) 
with shape parameter C=3.44, the distribution could be 
approximated with a normal distribution with parameters 
(Carter,1986 as  refrence by O'Connor, 2003 ) � = � + �Γ(1 + ��) ≅ A + 0.9B ,    � = ��Γ(1 + Γ(��)) ≅ 0.3� 
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Fig 4-2-1Normally distributed load and strength: interference 

 

Suppose in a structure 

   the load is normally distributes with parameters  �� and �� . 
   the strength is normal with parameters  �� and ��  

   the strength and the load are independent. 

Then: 

� = � − �~������( S  ,
2 2

s  ) 

� = ��(� > 0) 
2 2 2 2

Pr( ) Pr( )S S

S S

R Z Z 

 

   

   

 
    

 
 

Since 
�������������   = ��  then  

( )R SM
Z
                            (4-8) 

where ϕ� is the CDF of standard normal distribution. 
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Therefore when the load and the strength are independent and 

normally distributed, the reliability(R) is calculated from Eq. 4-

8. The more SM the greater R. More specifically on the average 

the more the difference ((strength-load) or the less the variances 

of load and strength the more R.  Moreover  

.Negative safety margin indicates that on the average load is 

greater than strength of the structure which is  dangerous; 

.|SM|=∞ indicated that load and strength are deterministic.   

It is worth mentioning that if a random sample of normally 

distributed strength and a sample of normally distributed load is 

available, the estimates of the mean and variance of �  ��� � 

could be used when using Eqs. 4-7 and 4-8. 

Example 4-1a  
The strength and the load related to a structure are normally 

distributed.  Calculate the reliability for 0,25<SM< 6. 
Solution 

The following table shows the reliability calculated from Eq. 
4-8 for several SM .  Figure 4-3 shows the related plot.  

SM 

 

0 
0.

25
 

0.
5 

0.
75

 

1 

1.
25

 

1.
5 

1.
75

 

2 

2.
75

 

3 

3.
5 4 5 6 

R= ϕ�(��) .5
0

 .5
98

7 
.6

91
5 

.7
73

4 
.8

41
3 

.8
94

4 

.9
33

2 

.9
59

9 

.9
77

25
 

.9
93

7 

.9
98

65
 

.9
99

77
 

.9
99

96
8 

.9
99

99
9

.9
99

99
99
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Fig. 4-3  Plot of Reliability versus Safety Margin( K&L page 80 Redrawn) 

     
Fig 4-4 Plot of Logarithm of unreliability versus safety margin(SM) 
        

Fig 4-4  shows the logarithm of unreliability ( failure 
probability) per application of load  versus SM.  The figure has 
been plotted using the following MATLAB commands: 

0 2 4 6 8 10
-16

-14
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-8
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0

safety margin

lo
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1-
R

)(
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bi

lit
y 
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r 
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)
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�� =0:.25:10;R=normcdf(SM); F=log10(1-R);plot(SM , F) 
Table 4.1 gives the reader an idea about the variability in R 

related to different magnitudes of variability in normal y 
distributed strength and stress random variables(K&L page 79) 
 

Table 4-1 Effects of different cases of  normally distributed 
load and stress  on reliability  

C
as

e 
N

o.
 

Strength  Stress SF 
SM 

R=  �� (��) 
 


 


 

S
 

S
 / S   

1 50000 2000 20000 2500 2.5 9.37 1.0 
2 50000 8000 20000 3000 2.5 3.51 0.9997 
3 50000 10000 20000 3000 2.5 2.87 0.9979 
4 50000 8000 20000 7500 2.5 2.73 0.9969 
5 50000 12000 20000 6,000 2.5 2.236 0.987 
6 25000 2000 10000 2500 2.5 4.69 0.9(5)86 
7  25000 1000 10000 1500 2.5 8.32 0.9(16)6 
8 50000 20000 10000 5000 5.0 1.8\94 0.9738 
9 50000 2000 40000 2500 1.25 3.123 0.99909 
10 50000 5000 10000 5000 5.0 5.65 0.9(8)2 

 

End of Example  
Figure 5.4 is a sample plot of log(1-R)  versus SM per 

application of load.  The figure shows if  the SM  of a design 

lies in the third region (i.e. if SM is greater than a threshold), the 

logarithm of  failure probability is very small and the failure 

probability becomes infinitesimal and  the design is said to be 

intrinsically reliable . 
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Table 4-1  Expressions for different independent Distributions of Load (S) 
& Strength (�) 

Dist .of 
Load(s) 

Dist .of 
Strength( δ) 

E
q N

o. 
Eq. for reliability 

C
ase N

o. 

Exp(λ�) Exp(λδ) 

(4-9) 

R = λ�
λ��λδ                     1 

Ref:K&L page 157 

Exp( λ)  Normal 
(μ, σ) 

(4-10) 

R = 1 − exp (−μ × λ+ σ
�
λ
�� )     

                                           

2 

Ref:K&L page 157 N(σو�μ�) N(σδوμδ) (4-11) 

SM = μ
δ�μ��σδ��σ��       R = ϕ�(SM)=normcdf(SM) 

Calculable in MATLAB 

3 
K&L page 126 

logN(σو�μ�) logN(σδوμδ) (4-12) 

� = ��(z)=normcdf(z)                            

           z= ���������� ���  �� و  ��   �� و  ��  are the parameters not 
the mean and standard  deviation 

4 
Ref:K&L page 130 

Gamma 
(b, , ��)  Gamma 

(a, , �δ)   (4-13) : MATLAB

( )
( ) ,

( ) ( )

( , , )

s
s

s

s

x

a b

x

a b
R x x dx

a b

betacdf a b



 





 




 





 
 
 




1 1

0
1

    
Calculable in MATLAB 

5 
Ref:K&L page 141 

Normal 
(μ, σ) 

Weibull 
(A,B,C) (4-14) 

R = Pr(� >  �) = � �� − �� � + ��√2� × × ∫ exp [−�� − 0.5 ��� � + ���� ��∞� ]��,  � = ����     
Calculable  in Matlab , Maple�   

6 
Ref:K&L page 
142& Appendix III Weib(��, ��, ��) 

 

Weib(��, ��, ��) 

(4-15) 

R = 1 − � e��exp ∞

� [−(BδB� y ��δ + Aδ − A�Bδ )��]dy 

�� =   C��� � �������� d � 

� = ������� ���          
 

7 

Ref:K&L page 146 

In K&L  
�������  is seen in 

the expression which 
seems to be a typo 
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Fig. 4.5 Characteristic regions of a typical log(1-R) Vs SM curve 

  (O'Connor, 2003 page119) 

Example 4-2    

A normally distributed load with parameters (� ,� ) was 

applied once to a  structure  with constant strength ,  

a) Plot the failure probability(F=1-R) versus SM and also plot 

log(1-R) versus SM. 

b) Calculate a fixed value(δ) for the strength in terms of μ� 
,σ�  such that the structure lies in the  intrinsically reliable 

region. 
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Solution F = 1 − R = 1 − Pr(Z < ��), SM = μ� − μ��σ�� + σ�� = δ − μ��σ�� + 0 = � − ��  

 The following figure shows failure probability(  F )versus SM 

plotted by the following MATLAB commands: 

SM=.001:.01:8.5    ;F=(1-normcdf(SM)); plot(SM,F) 

The following figure shows logarithm of  F versus SM plotted 
using: SM=.001:.01:8    ;LF=log(1-normcdf(SM)); plot(SM,LF). 

 
This figure shows that for SM>8 the structure is intrinsically 
reliable: � − �� = �� > 8    ⟹ � > � + 8� 

Note that for  SM = 8, the reliability and the failure probability 

is: � = (1 − �) = 1 × 10−15                                             

R=Pr(Z < �� = 8)=  normcdf(8) = 0.999999999999999  
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 4-3-2 Reliability Computation for Probabilistic 

independent  load and strength   

The reference  K&L  has done a lot of computations for 

deriving the reliability of systems having various independent  

distributions of  load and  strength.  Table 4-1 shows the results. 

It is worth  mentioning that  

1. exponential distribution could be considered a  special form 

of gamma and Weibull  distribution. Therefore  if , for example,  

our structure has a Weibull-distributed  load independent from  

the exponentially distributed  strength, then we could use case 

no. 7 of Table 4-1 to calculate the reliability. 

2. If we have  a structure with Weibull-distributed load and 

strength  having the same shape parameter C and  zero location 

parameter then the reliability of the structure ( R) is given by: 

� =  (��)�(��)��(��)�                 (4-15-1) 

Proof: Form Eq. 4.15 � = (� − ���� )�� 

� = Pr(� > �) = 1 − � e��exp �
� [−(���� ���)�]��= 1 −� e��exp �
� [−�(����)�]��= 1 −� e�[���������)]� �
� ��⟹ 
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� = 1 −� e������������� ����� ���
� ,             �� =    c�� � ������� d �⟹ 

� = 1 −� c�� � ������� e�[���������]( ���)�  �
� d � 

� = 1 − 11 + �������� �1 + �������� c�� � ������� e������������� ����� d ��
� ⟹ 

� = 1 − e−�1+���������∞���C − e−�1+��������(0)C1 + ������� = 1 − (��)C(��)C + (��)C 
⟹ R =  (��)�(��)��(��)�    End of proof  

Notice that  

-if C=1 i.e. the load and strength are both exponentially 

distributed with parameters λ� = ���   and λδ = ��� respectively, 

then Eq.4.9 is obtained 

-if  the load and strength are both Rayleigh distributed with 

scale parameters  ��   and ��   respectively, then the reliability is 

calculated from Eq. 4-15-1 for C=1: 

� =  (��)�(��)��(��)�  .                ( 4-15-2 ) 

Example 4-3-1   

A lognormal  distributed  load with mean of 60000 Kpa  and 

standard deviation of 20000  Kpa is applied to a structure which 
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has an  lognormal  distributed  strength with  a mean of  10� 

Kpa and standard deviation of 10� K pa . 

a) Find the parameters of th4e distributions: 

b) Estimate the system's reliability 

c) Using Eqs. 1-22-1 & 1-22-2 verify the parameters 

obtained in  part a for load distribution.   

 Solution 

a)Using MALAB software and Eqs. 1-22-5 & 1-22-6 : 

��� = ln ����(�)��(�) + 1� = ln ( 20000�60000� + 1) = 

���(20000^2/60000^2 + 1) = 0.1054                           
  ��   = ln�(�) − ����    = log(60000)-0.5*.1054= 10.9494  

��� = ln ����(�)��(�) + 1� = ln ( 10000�100000� + 1) = ��� � 10000�100000� + 1� = 0.01 

�� = ln�(�) − ���� =log(100000)-0.5*.01= 11.5079 

b) Using MALAB software and Eq. 4-12: 

� = ��(z)=normcdf(z)     z= ���������� ��� 
z= ������������� = ��.�������.����√�.����.���� = 1.6441 
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c)According to Eqs. 1-22-2 &3 

�(�) = ��������  = ��� �10.9494 + 0.10542 � = 60000                                  
���(�) = ��������������� − 1�. 
������������(����) − 1� = ��������(2 ∗ 10.9494 + 0.1054) ∗(���(0.1054)− 1)� = 20004 ..    The difference is due to 

approximations.    

Example 4-3-2   

The following random sample is from the load  random 

variable applied  to a structure.  The values are in KPa.  

284.9188  104.1661   20.6819  461.9137     197.4067 

159.5707  161.5850   50.4525  130.1263    161.5384  

 418.1608   29.1977    80.9464   7.0621      76.3582   

 87.0721    16.6974     64.4067   159.6288    39.7292 

The strength is also a random variable , of which is as follows: 

115.3541     26.0195      153.8555       264.6725     51.3116   

168.7690     214.7956     18.8720          22.9266   139.8943  

  66.7714    151.4207      164.2746       153.6125  219.3838  

 149.3005      206.9543     30.3550       91.1805       81.8012 

Assuming the 2 random variables are independent, calculate the 

reliability.  
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Solution 

Using softwares such as ARENA1 or goodness-of-fit tests or 

Q-Q plot help us to consider the load is exponentially distributed 

with mean 100KPa and know that a Rayleigh distribution with 

mean 111 or equivalently a Gamma(a=2, �� = 0.018) fits the 

strength.  Since the exponential distribution could be considered  

Gamma(b=1, �� = 0.01), therefore according to Eq. 4-13 the 

reliability of the structure is: 
λs

λ +λs δ

s

s δ

0.01
0.01+0.018

x=

a-1 b-1

x=0

λ

λ +λ

x=

2-1 1-1 0

x=0

MATLAB

Γ(a+b)
R= x (1-x) dx=
Γ(a)Γ(b)

betacdf( ,a,b)

0.01x= 0.010.028
Γ(2+1) 22 0.028x (1-x) dx= x(1-x) dx=x ] =0.1276

0Γ(2)Γ(1) 1×1
x=0



 

 

or  by MATLAB 

0.01
0.01+0.018( ,2,1) =0.1276R betacdf  

Example 4-3-3  

The strength(�) of a component  and the stress (S) applied to 

it are exponentially distributed with means 150 and 100 psi 

respectively.  Find the reliability( R) of the component using 

Eqs. 4.9 &4-15. 

                                                           

1 ARENAtools-input analyzer- new-file data file- use existing- fit all 
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Solution 

From Eq. 4-9: 

R = ������� = ��������� ���� = 0.60                                         
From Eq. 4-15: 

Since exponential distribution is a special case of Weibull 

distribution, then  C� = C� = 1       �� = �� = 0 � = 1 −� e��exp �
� [−(���� � ���)��]�� 

� = ������� ��� = � �����,    ���� =    ���� � �������� ⟹ d� = ��� d�  ⟹ 

� = 1 −�  �� � 1�� e�� ������ ������� 

Let �� = ��, �� = ��. Using the following MATLAB 

instructions results in R=
��. 

>>bd=150;bs=100;syms x;W=[(1/bd)*exp(-(x/bd)-x/bs)]  

>>R=1- int(W,x,0,inf)  

4-3-3 Definition of  Loading Roughness  

Load roughness (LR) is a factor in load-strength interference 

which combines the load information and strength information 
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(Wu & Xi, 2010)1. Quantifies LR is defined as follows 

(O'Connor &Keleyner,2012 page 121) : 

           
2 2

S
LR

S



 





           (4-16)  

where  

S is the standard deviation of  load(stress) random variable 

2 2
S

 

 is the standard deviation of the difference S  . 

An application of LR is in the calculation of the failure and 

reliability of components and systems subject to multiple 

application of loads. The most reliable situations are those with 

low LR  and high SM; and the least reliable situations are those 

with high LR  and low SM(Reuben,1994 page 209-210). 

SM and LR allow, in theory, to analyze the way in which 

load and strength distributions interfere and so generate a 

probability of failure(O'Connor &Keleyner,2012 page 121). 

                                                           

1 Wu,Y.  Xi,L. 2010 Load-roughness impact on reliability considering 
dependent failure ,Proceeding 16th  ISSAT conference on Reliability and 
Quality in Design  
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Moreover a value of  LR allows to know about the variations of 

S and � such that: 

For a largish SM, if the variance of  load is small and that of 

strength is large then LR will be small(e.g. 0.3); and for a fixed 

SM,  as the load spread becomes wider than that of the strength, 

LR increases. Therefore for a largish SM if the variance of  load 

is large and that of strength is small  then LR will be large (e.g. 

0.9). 

Figure 4-6 shows  four cases in which the distributions of 

strength and load are normal and have no  considerable overlap. 

The LR for each case is indicated on the figure; SM=4.5 and 

single application of  load results in a reliability of Φ�(4.5) =0.999997.  This figure also shows that: 

a)For SM=4.5 if we know that LR is small, it is concluded 

the variation of strength and load is large and small respectively.   

a)For SM=4.5 if we know that LR is large, it is concluded the 

variation of strength and load is small and large respectively.   
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  Fig. 4.6 Four cases of normally distributed load and strength 
                 with SM=4.5 and 4 different LRs(King.1990 page 348) 

                      

To study more about the effects of loading roughness and 

safety margin, refer to  O'Connor &Keleyner(2012) Fig5.2.   

Example    4.4(O'Connor,2003Example 4-1) 

 The strength of a component is normally distributed : δ~N(5000N,400N). The load it has to withstand is also 

normally distributed S~N(3500N, 400N). Assume the strength is 

independent of the laod. 
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a)What is the component reliability per application of load? 

b) Find the extreme load L such that  Pr L  equals the 

answer in part a. 

Solution     
a) 

� = ��� � ≤ ��� = ��⎝⎛ � ≤ 5000 − 3500�400� + 400� ⎠⎞ = 0/99598 

b)  

  L'-5000R=Pr δ>L =0.99598 Pr(Z< )=0.00402
400

L'-5000 =-2/65 L=3940 N
400

 



 

or by MATLAB 

L=norminv(1-0.99598,5000,400)= 3939.85N   

4.3-4  Effect of Safety Margin and Loading Roughness 

on Reliability (Multiple Load Applications)  

The reliability for multiple load application is calculated 

from(O'Connor, Kleyner, 2014 page 124): 

0 0

( ) ( )

n

s

s

R f f s ds d






 


 

 
  

 
           (4-17) 

where 

n is loading times , the number of load applications which are independent 

( )sf s is the load pdf and 

( )f   is the strength pdf independent from the load. 
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 Fig 4-8 Failure probability versus SM for large n as well as n=1 
             (O'Connor, Kleyner, 2014 page 125) 

Figure 4.8 shows the effects of different values of  LR and 

SM on failure probability per load application for large values of 

n as well for single load application(n=1).  

For details refer to O'Connor& Kleyner( 2014) and Wenxue 

Qian et al ( 2014). Wenxue  studies the reliability of a com- 
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ponent in relation to some parameters including  LR, SM and 

loading times(n). O'Connor gives 2 examples which illustrate 

the application of load-strength analysis to design of an 

electronic device and a mechanical one. 

4-4 Calculation of structures' reliability :  Load 

or Strength  deterministic 

In this section those systems are considered in which the 

capacity has  known deterministic value  and the load is a 

random variable or vice versa  the load is known and the 

capacity is a random variable. 

4-4-1 Calculation of structures' reliability when 

strength is deterministic 

Consider a system with a known capacity δ and a distribution 

of possible loads as plotted in Fig. 4.11.   

 

Fig . 4-11   Interpretation of reliability -Load :variable, strength: fixed 
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For a fixed δ if the probability density function of load is ��(�) and the CDF is F�(�) then the reliability of the system ( R) 

is the shaded area in the figure calculated as follows: � = Pr�� < δ� = F��δ� = � ��(�)��δ

�        (4− 18) 

Example 4-6 (Lewis, 1994 p181) 

Suppose the bending moment on a match stick during 

striking has an exponential distribution. The match stick have 

the given strength δ and break 20% of the time. The 

manufacturer increases the strength by 50%. What fraction of  

the strengthened matches are expected to break as they are 

struck? 

Solution 

Bending moment �~���(�), � = F��δ� = � ��(�)���
� = � ������

� �� = 1 − ���� 0.8 = 1 − ����     ⟹     ���� = 0.2 

Now the strength is multiplied by 1.5 i.e. δ��� =1.5 δ 
then 

New� = ∫ ������� = 1 − ���.��� = 1 − � �����.�.� = 1 −�.���(0.2)�.�  = 0.911 

The fraction of  the strengthened matches expected to 

break   is  1-0.911= 8.9%  
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4-4-2 Calculation of structures' reliability when load 

is deterministic 

Consider a system with a known load S and a distribution of 

the strength as plotted in Fig. 4.12.   

 
  Fig . 4-12  Interpretation of reliability - strength: variable, load: fixed 

 

For a fixed S if the probability density function of strength 

(capacity)  is ��(�) and the CDF is Fδ then the reliability of the 

system (R) is the shaded area in the figure calculated as follows: 

� =  Pr S  = � ��(�)���
� = 1 − Fδ(s)     (4− 19)  

Example 4-7 

A component is subject to the fixed load of 4000N. The 

strength is log-normally distributed with mean of 5000N and 
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standard deviation of 400N. Calculate the reliability for single 

load  application.  

Solution 

To find the answer we have to calculate the parameters μ&σ 

from the mean and standard deviation using Eq.1-22: 

2 2log(400 /500

ln[var( )

0 +1))

/ ( ) 1]

using MATLAB

σ=sqrt( =0.1

2
σ 0.01μ=lnE(X)- =ln( )- =8.5122
2 2

5000

X E X   2

 

 

0.1 =-2.182

R=Pr δ>S=4000 =

8.294-8.5122Pr(lnδ>ln4000=8.294)=Pr(Z> )=0.9854

 

or using MATLAB: 

 R =     1 − Pr(� < 4000) = 1 − �ogncdf(4000,8.5122,0.1) = 0.9854 

End of Example  
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4-5 Interrelation between reliability(R) and 

safety factor(SF):   Strength(�) and Load(S) 

independent and normally distributed 

Two different methods were pointed out in this chapter to 

cope with load-strength interference:  the reliability-based and 

safety factor (SF) methods. Are the safety factor and the  

reliability concepts contradictory or  they are interrelated? To 

answer this question note �� = �� therefore  if  the load(S) and 

the strength(�) are random variables then SF would be a random 

variable. The following 2 inequalities has been developed  to 

show the interrelation of random variable SF(having a mean of 

n and coefficient of variation V�) and the system  reliability(R).  

If � and R are independent and normally distributed, then  (Dao-

Thein&Massoud,1974): n� ≥ ����� � ����                        (4-20) 

R ≥ 1 − ���×����������(����)�                 (4-21) 

where  

   R The system reliability n� The mean of SF V� =  V� = ���
n
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If S and δ are independent with mean and standard deviation 
of ( ,S S  ) & ( ,   ), Based on Eqs. 5-12-1 ,5-12-3the mean and 

variance of �� = ��  could be approximated from:  

(4-22-1 )              S

S S

n  

 

 
  

 

2

21                         

            

  S S
SF

S S S

 



   


   

        
                     

2
2

2 2 4
   (4-22-2 ) 

 

Inequalities 4-20&4-21give a lower bound for  �� and R 

repectively. The relationship between the reliability(R), Vn and 

the lower bound of �� is shown in  Fig. 4-13. 

 Vn(%) 
Fig 4.13 Plot of  n� = ����� � ����  versus Vn for six levels of  R 

(Dao-Thein & Massoud,1974) 
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According to this figure the reliabilities of   90% , 95%, 97% 

with V� = 16% corresponds to the average safety factor of at 

least 2,3 and 10 respectively. 

It is worth mentioning  that if the load and strength have 
normal distributions ~ ( , )S SS N   and  ~ ( , )N     then 

(Handbook Sharpe, 2008 page 271): 

  � = Φ�( Sn  

2 2
s 

)                        (4-23) 

 Φ�  is the standard normal distribution  that could read from 

Table C or calculated usin a softwares  such as MATLAB.   

Needless to say 1n  results in Eq. 4.8.  references  such as 

Lewis(1994)page 182 has more on SF and R. 

Example 4-8-1 

The safety factor (SF)of a structure is a random variable with 

a standard deviation of 0.8357.  The mean of SF is at least 

4.4626.  Find the reliability of the structure. 

Solution  

From Fig.  4-21 the minimum of the reliability is 0.95. 
using Inequality 4-21: 

�� = σ��
μ�� = 0.83574.6426 = 0.18 

� ≥ 1 − �.�����∗�.����.�����∗�.����(�.������)� = 0.95. 
End of Example  
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Example 4-8-1 

The reliability of a structure should be at least 0.95 .  the 

coefficient  of variation is 18%. How much is the safety factor 

on average? 

Solution 

Eq. 4-20⟹ �� ≥ ���.��∗����� �.�����.��� = 4.6426 

End of Example  

4-6 Determining  the structural reliability 

bounds using nonlinear programming(NLP) 

In the real world, it might be difficult to know the true 

distributions over the complete range of the stress and the 

strength random variables(K&L page 88); Therefore the reliability 

cannot be calculated using Eq. 4-3 i.e. 

   Pr ,,R S f S d dSSS
  


   


 

or equivalently, in the case of independence of stress and 

strength, the failure probability cannot be computed from:  

Pr( ) ( ) ( ) [1 ( )] ( )s sR S F s f s ds F f d    
 

 
          (4-24) 

Where  

Joint pdf of the strength and stress(load) f�,�(δ, S) 
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pdf of the stress(load) 
Sf  

CDF of the stress(load) 
SF  

CDF of the strength F  

pdf of the strength f  

 

Fig. 4-14  Load- strength interference (K&L page123) 

A procedure has been developed for these cases which 

calculates a minimum and a maximum for the reliability. Note 

that  the reliability(R) depends on the interference of the two 

random variables(stress and strength); hence only the local 

information in the interference range is needed to compute R 

(K&L page 88).  In this procedure maxs and min  are determined 

as the upper limit for S and the lower limit for � respectively 

forming the interference  interval [min max, S ].  
min and maxS are 

either known from the pdfs of   and S respectively or  their  
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values are estimated according to the accuracy desired(K&L 

page 88); then a lower and upper bound is calculated for the 

reliability according to  the following algorithm which uses 

nonlinear programming(NLP). 

4-6-1 The algorithm for Reliability Lower & Upper 

Bounds using NLP 

Step 1 

Determine the load-strength interference interval min max[ ]s  

in such a manner that the probability beyond the interval is 

ignorable.   

Now the system failure probability( R  ) could be calculated 

from: 

max max

min min

s

δ s
δ

R=Pr(s>δ) F (u)f (u)du [1 ( )] ( )
s

SF u f u du


      (4-25) 

Step 2 

Divide the interval min max[ ]s  into n equal subintervals: 

 

Step 3 

Let the probabilities 1( ,... )np p  and 1( ,... )nq q  be defined as: 
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1P r ( ) 1, . . . ,i i ip a S a i n


           (4-25) 

1P r ( ) 1, . . . ,i i iq a a i n


           (4-26) 

Now it can be shown that Eq. 4-25 could be approximated 

by(K&L page89): 

1 1 1

n i n n

i k i k
i k i k i

R p q q p
   

      
       

      
              (4-27) 

Step 4 

pi and qi are the probability of occurring the load and strength 

in an interval. To add more uncertainty, lower and upper limits 

could be considered for them: 

, , 1,...,p i i p iL p U i n      (4-28-1) 

, , 1,...,q i i q iL q U i n      (4-28-2) 

Therefore in this step determine a lower bound and an upper 

bound for each of  1( ,... )np p & 1( ,... )nq q . Some designers state 

these bounds  as i ip p  and i iq q where   is a fraction 

between zero and 1. 

Step 5 

Since(K&L page 89): 

(4-29-1) max
1

Pr( ) ,
n

i
i

s q


   
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( 4-29-2) min
1

Pr( )
n

i
i

s p


   

and ip  & iq  are 2 probability values, to add more 

uncertainty, consider upper and lower bounds for them: 

1 1

,
n n

p i p q i q
i i

a p b a q b
 

      

Therefore in this step determine bounds for ip and ip  

One advice is to locate the bounds 2
  from ip or ip  .  

Step 6 

Now we would like to use the above bounds in order to 

determine the upper and lower bounds for �� and for R=1-��. To 

accomplish this the following 2 nonlinear models have to be 

developed and solved:  
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1 1 1

, ,

, ,

1

1

. .

1,...,

1,...,

,

0 0

n i n n

i k i k
i k i k i

p i i p i

q i i q i

n

p i p
i

n

q i q
i

i i

R p q q p

s t

L p U i n

L q U i n

a p b

a q b

p q

   





      
       

      

  

  

 

 

 

   





Max/Min

 

Use the optimal values of  the 2 objective functions as the lower 

and upper bounds for the failure probability of the system( R ). 

End of algorithm. 

 It should be pointed out that some researchers have used linear 

programming to calculate bounds  for reliability e.g. see Song & 

Kiureghian(2003) 

 Example 4-9(K&L page 89) 

The load on a structure is normally distributed with mean 

30MPa and standard deviation 3MPa(coefficient of variation  

equal to 0.1). The strength has a Weibull distribution with CDF �(�) = 1 − ������� �� and parameters:  

Minimum strength A 30 M Pa , 60MPaB  ,  C=2or3or4 
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Find the lower and upper bound for the reliability of this 

structure. 

Solution 

Step 1   min max[ ]S =? 

min is set equal to A=30.  If  we set max 50S  based on 

6 48S S   ,the probability that the load reaches an amount 

greater than it is infinitesimal( -9129×10 ). 

Step 2     
The interval min max[ 30, 50]S    is divided into ten subinterval  

With length 50-30 2
10

  and : 

0 1 9 10a =30 a =32 ..... a =48 a =50  

Step 3 Determining pi's & qi's 

pi's based on the load distribution i.e. S SN(μ =30,σ =3) :  

32-30
Pr(30 32) Pr(0 ) 0.2475

3
p s Z      1  
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2 Pr(32 34) 0.1613p s    normcdf(34,30,3)- normcdf(32,30,3)
p3=normcdf(36,30,3)- normcdf(34,30,3)= 0.0685
p4= normcdf(38,30,3)- normcdf(36,30,3) = 0.0189
p5=normcdf(40,30,3)- normcdf(38,30,3) =  0.0034
p6= n

9 Pr(46 48)p s







  

 

-4

-5

-6

ormcdf(42,30,3)- normcdf(40,30,3) = 3.9739 10
p7=normcdf(44,30,3)- normcdf(42,30,3)= 3.0141 10
p8= normcdf(46,30,3)- normcdf(44,30,3) =1.4824 10

normcdf(48,30,3)- normcdf(46,30,3)  4  -8.7226 10
 1 0 P r(4 8 50 )p s   

 
-1 0n orm c d f(5 0 ,3 0 ,3 )-  n orm c d f(4 8 ,3 0 ,3 )  9 .7 3 5 0 1 0  

 

Calculation of qi's based on the strength distribution i.e. Weibull 

with parameters A=30,B=60,C=2  

1

2

Pr(30 32) (32) (30)

32 30 30 302 21 exp( ) 1 exp( ) 0.0011
60 60

(32 30,60, 2) (30 30,60,2) 0.0011

Pr(32 34)  

exp(-((32-30)/60)^2)-exp(-((34-30)/60)^2) 0.0033

weibul weibulq F F

or

wblcdf wblcdf

q





     

    
       
   

   

   


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3

4

5

6

7

8

9

10

Pr(34 36) 0.0055

Pr(36 38) 0.0077

Pr(38 40) 0.0098

Pr(40 42) 0.0118

Pr(42 44) 0.0138

Pr(44 46) 0.0157

Pr(46 48) 0.0174

Pr(48 50) (50) (48)

50 30
1 exp(

60

weibul weibul

q

q

q

q

q

q

q

q F F

















   

   

   

   

   

   

   

    


 

48 302 2) 1 exp( ) 0.0191
60

   
     

   

 

Step 4 

Suppose an uncertainty of 2 %   (K&L page90 )was 

present in 1( ,... )np p and 1( ,... )nq q calculated above; therefore 

each of 1( ,... )np p  lies in the  interval [Lpi   Upi] where 

Upi=pi+(0.02)*pi ;  Lpi=pi-(0.02)*pi 

and qi  lies in the  interval [Lqi   Uqi] where 

Uqi=qi+(0.02)*qi ;  Lqi=qi-(0.02)*qi 

 As sample calculations the bounds  for  1 2 3 10( , , , )p p p p are: 

Up1=0.2475+(0.02)* 0.2475 ;  Lp1=0.2475-(0.02)* 0.2475 ;    

Up2=0.1613+(0.02)* 0.1613 ;  Lp2=0.1613-(0.02)* 0.1613 ;  

Up3=0.0685+(0.02)* 0.0685;    Lp3=0.0685-(0.02)* 0.0685; 



271                                                                                Reliabilty Engineering              

Up10=
-109.7350 10   +(0.02)*

-109.7350 10    ; 

Lp10=
-109.7350 10   - (0.02)*

-109.7350 10    ;         

The bounds for 1 10( ,... )q q  with ( 2 %)  are calculated from 

Uqi=qi+(0.02)*qi ;  Lqi=qi-(0.02)*qi      i=1,2,..,10 

As sample calculation: 

q1=0.0011;Uq1=0.0011+(0.02)*0.0011;Lq1=0.0011-(0.02)* 0.0011   

Step 5        Calculation of ip و  iq and their limits 

min

max

30-30
Pr( ) Pr( ) 0.5

3

50-30 2Pr( ) exp[ ( ) ]=0.105.
60

n

i
i

n

i
i

p s Z

q s









    

    





1

1
1

 

Suppose an uncertainty of 1% was present in iq and ip

calculated above(K&L page90); therefore they lie in the 

following intervals (K&L page 90): 

0.02 0.02
0.5-( ) 0.5 0.5+( ) 0.5

2 2

0.02 0.02
0.105-( ) 0.105 0.105+( ) 0.105

2 2

n

i
i

n

i
i

p

q





   

   





1

1
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The following MATLAB code performs steps 3, 4 and 5: 

format long 

%input 

r=[30 50];      %input 1 

n=10;           %input 2 

alpha=0.02;     %input 3 

%algorithm 

a=alpha;% specify an appropriate value for alpha 

x=r(1):(r(2)-r(1))/n:r(2); 

for i=1:n 

 %Load 

    p(i)=normcdf(x(i+1),30,3)-normcdf(x(i),30,3); 

 %Strength 

    q(i)=wblcdf(x(i+1)-30,60,2)-wblcdf(x(i)-30,60,2); 

end 

p=p'; 

q=q'; 

Up=p+p*a 

Lp=p-p*a 

Uq=q+q*a 

Lq=q-q*a 

Sigmap=normcdf(min(x),30,3) 

Sigmaq=wblcdf(max(x)-30,60,2) 

Usimgap=Sigmap+a*0.5*Sigmap 

Lsigmap=Sigmap-a*0.5*Sigmap 

Usigmaq=Sigmaq+a*0.5*Sigmaq 

Lsigmaq=Sigmaq-a*0.5*Sigmaq 

 

 



273                                                                                Reliabilty Engineering              

Step 6   Lower and upper bound for failure probability ( R ): 

       Step 6-1 The following model has to be solved once for 

maximization and once again for immunization to find the upper  limit 

for   failure probability( R ). 

The objective function is: 

10

1 1

( ) ( ) ... ( ... )1 1 2 1 2 3 1 2 3 10 1 2 10

. .

k i

i k
i k

Max R p q p q q p q q q p q q q

s t

Max R p q

or



 

          

  
   

  
 

 

The constraints of  type 1,...,10, ,L p U ip i i p i     : 

   

   

   

   

 

 

 

 

 

 

Lp =0.2475- 0.02 × 0.2475 p Up =0.2475+ 0.02 × 0.24751 1 1

0.1613- 0.02 × 0.1613 p 0.1613+ 0.02 × 0.16132

0.0685- 0.02 × 0.0685 p 0.0685+ 0.02 ×0.06853

0.0189- 0.02 × 0.0189 p 0.0189+ 0.02 ×0.01894

0.0034- 0.02 × 0.0034 p £0.5  

   

   

   

 

 

 

0034+ 0.02 ×0.0034

-4 -4 -4 -43.9739×10 - 0.02 × 3.9739×10 p  3.9739×10 + 0.02 ×3.9739×106
-5 -5 -5 -53.0141×10 - 0.02 × 3.0141×10 p 3.0141×10 + 0.02 ×3.0141×107
-6 -6 -61.4824×10 - 0.02 × 1.4824×10 £p £1.4824×10 + 0.02 ×1.4824×108

   

   

 

 

-6

-8 -8 -8 -84.7226×10 - 0.02 × 4.7226×10 p 4.7226×10 + 0.02 ×4.7226×109
-10 -10 -10 -109.7350×10  - 0.02 ×9.7350×10  p 9.7350×10  + 0.02 ×9.7350×10  10

 

The constraints of  Type 1,...,10, ,L q U iq i i q i     : 
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   

   

   

   

 

 

 

 

Lq =0.0011- 0.02 * 0.0011 q Uq =0.0011+ 0.02 * 0.00111 1 1

Lq2=0.0033- 0.02 * 0.0033 q Uq2=0.0033+ 0.02 * 0.00332

Lq3=0.0055- 0.02 * 0.0055 q Uq3=0.0055+ 0.02 * 0.00553

Lq4=0.0077- 0.02 * 0.0077 q Uq4=0.0077+ 0.02 * 0.00774

   

   

   

   

 

 

 

 

Lq5=0.0098- 0.02 * 0.0098£ q Uq5=0.0098+ 0.02 * 0.00985

Lq6=0.0118- 0.02 * 0.0118 q Uq6=0.0118+ 0.02 * 0.01186

Lq7=0.0138- 0.02 * 0.0138 q Uq7=0.0138+ 0.02 * 0.01387

Lq8=0.0157- 0.02 * 0.0157 q Uq=0.0157+ 0.02 * 0.01578

   

   

 

 

Lq9=0.0174- 0.02 * 0.0174 q Uq9=0.0174+ 0.02 * 0.01749

Lq10=0.0191- 0.02 * 0.0191 q Uq10=0.0191+ 0.02 * 0.019110

 

Constraints related to ip  & iq  :  

1 10.5-(0.02/2)*0.5 ... 0.5+(0.02/2)*0.5

0.1055-(0.02/2)*0.105 ... 0.105+(0.02/2)*0.105

0 1 0 1

n

p i p
i

n

q i q
i

i i

a p b p p

a q b q q

p p





      

      

   





1

1 10
1

0

Softwares such as Lingo or GAMS give the following results for the 

maximization and minimization : 

 The objective function has the optimal values: 

If minimized minR =0.00704= thelower limit  

If maximized maxR =0.0076= the  limitupper  

Therefore for  � = 2% and the Weibull shape  parameter C= 2, 

the failure probability lies in [ 0.00704     0.0076] and the 

reliability lies in:[ 1-0. 0076       1-0.00704 ] =[0.9924    0.99295 ]. 

The following table shows the unreliability limits for other 

cases(from K&L page 91): 
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Shape Parameter 
U

nc
er

ta
in

ty
 

(�)% C=4 C=3 C=2 

maxR  minR
 

maxR  minR
 

maxR  
minR  

0.00026 0.00024 0.001330.00123 0.00760.00704 2 
0.00027 0.00023 0.00138 0.00118 0.00789 0.00677 4 
0.00029 0.00022 0.00143 0.00113 0.00818 0.00650 6 
0.00030 0.00021 0.00148 0.00108 0.008480.00624 8 
0.00031 0.00020 0.00154 0.00104 0.00878 0.00598 10 

End of Example  

Appendix : Other definition of safety 

margin(SM) and its relationship to safety 

factor(SM) 

As well as the definition given in Eq. 4-7 for safety 

margin(SM), SM is usually expressed as the allowable working 

stress (���) divided by the applied stress f  minus 1(Ireson et 

al,1996 page 18-13). SM = ���� − 1.       (p-1) 

Any negative  SM value indicate that the structure will fail 
because the applied stress of the allowable material strength. 
This is only for unidirectional stresses ; biaxial and tri-axial 
stresses require further analysis(Ireson et al,1996 page 18-13).   

It is reminded that the safety factor(SF) which is a strength 

design factor is defined by the ratio of a critical  design strength  

parameter (tensile, yield, etc) to the anticipated operating stress 

under normal operating conditions((Ireson et al,1996 page 18-
12).  For example let 

 �  denote the material strength and  
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��� denote the allowable working stress  

Then the factor of safety becomes: 

mw

SF= .
f

  

Therefore mwf =
SF


 and: 

SM = ���×� − 1                       (p-2)    or   

SF = �(��+�)×�                    ( p-3) 
where 

SM The safety margin or margin of safety 
SF The safety factor � The strength of the material ��� The maximum allowable working stress � The stress applied to the structure. 

 

Have a good opinion of God, 
for whoever has a good opinion of God 

He will treat him in the same way 
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Exercises 

In the following problems the stress and the load(stress) are independent.  

1-(Problem 5 Page159  K&L)  The strength �  and the stress S for the 

design of a component are logomrally distributed with the 

following infonnation on � and S: 

E(�)=750.00 Mpa     �� =50.00 MPa 

E(S)=500.00 Mpa     �� =80.00 Mpa 

 2-(Problem 3Page159  K&L)A component is to be designed   for  a 

specified reliability of 0.990. The  stress and the strength 

random variables are known to be lognormally distributed for 

this component with the following information 

E(�)=1100.00 MPa,  E(S) = 850.00 ,     �� =100.00 MPa 

 Determine the maximum allowable standard deviation of the 

stress that can be be appliedto the component  which will give 

us the desired reliability. 

3 -(Problem 9 Page160  K&L)The strength of a component has a 

gamma distribution with parameters a=4, , �δ�1. The failure 

inducing stress also is gamma distributed with b=2,  ���1. 

Compute the reliability of the component. 
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4-(Problem 10 Page160  K&L) In Exercise 3, assume that �δ�4 

and �� = 2.5  . Compute the reliability of the component for this 

case. 

5-(Problem 11 Page161  K&L) A leaf spring for a truck is to be 

designed for a reliability 0.9995 based  on the fatigue failure of  

the  leaf  spring. The fatigue strength of the material out of 

which this spring is made is Weibull distributed with the 

following parameters: 

A= 500.00 M Pa    B= 500.00 M Pa      C=3.0     

The random loading of the spring induces stresses that are 

assumed to be normally distributed with a coefficient of 

variation of 0.08. Compute the permissible normal stress 

parameters that would yield the specified reliability. 

6-(Problem 13 Page160  K&L)The strength of a component is 

lognormally distributed with a mean of 800.00MPa and standard 

deviation of 150.00 MPa. The failure governing stresses have 

normal distribution with a mean of 600.00 MPa and a standard 

deviation of 110.00 MPa. Compute the reliability of the 

component. 

7-(Problem 15 Page161  K&L)The stress acting on a component 

is uniformly distributed over an interval{ 10,40]. Th« strength of 
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the component follows normal distribution (35 , 5)Derive an 

expression for the reliability of the component. Find R 

8-(Problem 16 Page162  K&L)The stress acting on a component 

is uniformly distributed  over [ 10 , 30] The strength of the 

component has a three-parameter Weibull distribution with 

parameters A=20,  B=30  and C=3. Derive an expression for the 

reliability of the component and caculate its numerical value. 

9-(Problem 17 Page162  K&L)The stress acting on a component 

is uniformly distributed over an interval [Smin     Smax]. The 

strength of the component has gamma distribution with parar 

ters n and �. Derive an expression for the reliability of the 

component. Let 

Smin = 10   Smax=30                  n=5           � = 0.2 

Find R. 

10-(Problem 8 Page160  K&L) The strength of a component is 

lognormally distributed with a mean value of 400 MPa and a 

standard deviation of 50 MPa. The stress acting on the 

component is normally distributed with a  mean  value of 250  

MPa and a standard deviation of 50 MPa. Compute the bounds 

on reliability for � equal to 5% . 
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11-(Problem 9 Page160  K&L) 

The stress and the strength distributions for a component are 

Weibull with the following parameters: 

Strength: A=300 MPa, B=400 MPa, C=3 
 Stress   : A=150 MPa, B=300 MPa, C= 4 

Compute the bounds on reliability for �=0.05   

12- Find the a component reliability with exponentially 

distributed strength with parameter 0.001   and normally 

distributed stress ( 35 , 5 )ssN K pa K pa    using the 

following equation (Eq. 6-31K&L p139) 

2 22 2

( ) exp( ) [1 ( )]
2

ss
Z Z

s s
s

s s

R 


    
   

 


        

normcdf(-35/5)+exp((.001^2*5^2)/35-2*0.001)*(1-normcdf((-35+ (.001^2*5^2)/5 ))4-  

13- Is it possible to derive Eq.4.9 from Eq.4-13 or 4-15 of this 

chapter?
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5.1  Introduction 

The reliability of an engineering design is often a function of 

several quantities.  Variability is inherent in most of these 

quantities; i.e. most of them are random variables(RVs).  As an 

example consider the design of a beam.  Stresses in beams due 

to bending is very important for an engineer; therefore he is 

usually interested in computing the bending stresses.  The 

following formula gives the maximum stress in a beam due to 

bending(K&L page 95: 

M c
S

I


                    (5-1-1) 

5 
On the combinations of random variables in design ;  
A glance at the tolerance concept 

Aims of the chapter 

     This chapter is concerned with finding some properties of a 

function of several random variables. The chapter also  reviews 

the concept of tolerance in designs quickly.    
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where 
S = the maximum stress at the farthest surface from the neutral 
axis (it can be at top or at bottom), kPa 
 
c = the maximum distance from the neutral axis to the extreme 
fiber (again, this can be to the top or bottom of the shape), m 
 
 I  = the moment of inertia of the beam cross section about the 
centroidal axis, m4 

M  = the bending moment along the length of the beam where 

the stress is calculated, N.m 

if the maximum bending stress is required then M is the 

maximum bending moment acting on the beam 

The moment of inertia of a  beam having circular cross 

section with radius r meters  and thickness of t meters is � = ����.  Thus according to Eq. 5-1-1, برابر    � = �×����� gives the 

maximum fiber stress in such a beam.  If the beam has a 

rectangular cross-section  of height a  meters and width b 

meters, then � = �����   in �� and the corresponding stress is 

calculated from S = 12�×����  
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Fig.5.1 Bending moment on a beam-    An illustration 

It is worth mentioning that if  yield stress(=   ��) replaces S,  

the external bending moment(��) causing the beam to reach the 

yield point is calculated as follows: �� = �� ��             (5-1-2) 



285                                                                                Reliabilty Engineering              

Figure 5-1 illustrates this equation. 

 
In real world, quantities such as M,c,b & a  are random 

variables.  Hence  to compute any property of  a function of 

these random variables such as M c
S

I


 , we need to know how 

to combine as M ،c ،b و   a.  Now for this reason  we focus on how 

to find certain properties of a function of random variables.  

5.2 Certain properties of a function of  some 

random variables 

In this section, given random variables ��, … , �� we are to 

show how to determine   certain properties �(��, … , ��) i.e. a 

function of them which is in turn a random variable(K&L p 96). 

 5.2.1 The pdf of a function of one random variable 

Suppose we are given Y=g(X) where  X is a random variable 

with known density function(pdf) f(x) and we would like to find 

the pdf h(y)for the random variable Y. h(y) is given bythe 

following relationship(K&L p97): 

ℎ(�) = ������ × �[�(�)]            (5-2) 

where  

k(y) is the inverse function of   g  i.e.  �(�) = ���(�) = �,  
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������  represents the absolute value of the derivative of  �(�) 
with respect to y. 

If  � = ���(�) has 2 answers �1, �2   then ℎ(�) = ������ × �(��) + ������ × �(��)              (5-3) 

In general, if the inverse function has n roots �1, … , �2, Eq. 5.3 
will have n items, one term for each root(K&L page97). 

Example 5.1   

Random variable X is normally distributed with density 

function(pdf)  
2

221
( )

2

x

f x e




 

 


and � = �� . Find the pdf of Y. 

Solution � = �(�) = ��,  
pdf of Y = ℎ(�) = ������× �[�(�)]  ,   �(�) = ���(�) 
� = ��⟹�= ���= �(�)        ���� = 1�  

 
2

2

ln

21
( ( ))

2

y

f k y e




 

 


 

ℎ(�) = ������ × �[�(�)]=1� ×  
;

2
ln1

22 2

y
e



  

  

This the pdf of lognormal distribution. This is well known in 

statistics that if random variable X  is normally distributed, �� 

has a lognormal distribution.End of Example  
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Example 5.2 (K&L p97)  

The diameter(D) of the circular cross section of a kind of rod 

has a normal distributionwith  
2

221
( )

2

x

f x e




 

 


. Find the 

probability density function of the cross section  i.e. � = � ���  . 

Solution 

� = ���4 ⟹ 1 2

4 4A A

 
   D ,D ; 

According to Eq. 5.3: 

ℎ(�) = ������ × �(��) + ������ × �(��)               
Here  y=A , k=D     �� = ��       �� = ��  thenℎ(�),the pdf of 
the cross section  is calculated from: 

ℎ(�) = ������× �� 4A


 � + ������× �� 4A


 � 

1 1
2 2 11

2

4 4 1
| | | |dD

dA

dD
D A A

dA A  


         

4 4

)]

2 2

1 1
( ) exp( ) exp(2 22 2 2

[

A A

h A
A

 
 

    

  

    

   
   
     . 

End of Example  
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5-2-2 Mean of 2 random variables 

If X , Y are  random variables( no matter whether continuous 
or discrete, independent or not) with mean ��, �� then: 

E[X+Y]=E[X]+E[Y] or  ��+� = �1 + �2            (5-4) 

Proof  for continuous case(Ross, 1985 p46): 

If X and Y are continuous random variables with marginal 
density functions ��(�)   ، ��(�) and joint  pdf  �(�,�), then  

 

End of Proof  

5-2-3  Variance of sum and difference of 2 random 
variables 

If  ��   and  �� are 2 random variables with variances ���&  ���  

and coefficient correlation ρ then for  � = �� + ��: ��� = ��� + ��� + 2���(����) = ��� + ��� + 2�����          (5-5) 
and for � = �� − ��: 

                    �� = �� − ��                                   (5-6-1) ��� = ��� + ��� − 2���(����) = ��� + ��� − 2�����.       (5-6-2) 
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5-2-3-1  Variance of sum of 2 independent random variables 

If  ��   and  �� are 2 independent random variables with 
variances ���&  ���  then for � = �� + ��: 

                 ��� = ��� + ��� .                                  (5-7) 

5-2-4  Approximating mean and variance of a 
function of a random variable 

Suppose  X  is a random variable with mean μ� and variance σ�� .  Let Y be a function of X, then (K&L p101): �(�) = �[�(�)] ≅ �(��) + ���� �"(��) ,          (5-8) 

and also(K&L p102): 

       ���(�) ≅ [�′(��)]����.             (5-9) 

Example 5.3(K&L page102) 

The radius of a kid of a bar is a random variable with mean �� = 2 �� & standard deviation �� = ���  ��. Find the values 

of the mean and the standard deviation of the bar cross section. 

Solution 

The cross section of the is calculated from: � = �(�) = ���          �′(�) = 2��           �"(�) = 2� 
From Eq. 5-8: �(�) ≅ �(��) + ���� �"(��) = �(2�) + (�.�)�� (2�) =  4.01� 

From Eq. 5-9: ���(�) ≅ [  �′(��)]���  � ⟹���(�) ≅ 2(2π×2×0.1) = 0.16�� 

End of Example  



Chap. 5 Combinations of random variables  + tolerance          290 

 

 

 

5-2-5  Approximating the mean of a function of some 
independent random variables 

If  X�, … , �� are independent random variables with means ��,… , �� and variances ���(��),�, ���(��), an approximation 
of the mean of a function of these variables  � = �(X�, … , ��) is 
given by(K&L page 103): 

�(�) ≅ �(��, … , ��) + ��∑ ����������� ⃒���  ���(��)             (5-10-1) 

Or in vector form: 

�(�) ≅ �(��, … , ��) + �� ����(��)… .   ���(��)�⎝⎜
⎜⎛
������� |���...������� |���⎠⎟

⎟⎞       (5-10-2) 

by � = � it is meant to replace ��  's with �� 's. 

5-2-6 Approximating the variance of a function of 
some independent random variables 

Let � = �(X�, … , ��) be a function of independent variables X�, … , �� having standard deviations��� ,… , ���then: 

��(�) ≅ ∑ ⎩⎪⎨
⎪⎧��� × ��(��,…,��)��� ⃒����������⋮�����⎭⎪⎬

⎪⎫�����           (5-11) 

Example 5.4(K&L page104)  
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   The load f acting on a bar in tension has a mean value �� = 

10,000 N and a standard deviation �� = 1,000 N. The mean 

value or the cross-section area A is �� =5.0 cm1, and the 

standard deviation of A is �� =  0.4 cm. Find the mean and 

standard deviation of the tensile stress S on the bar. 

Solution � = ��   =   �(�, �), 
According to Eq. 5-10-2: 

�(�) ≅ �(�� , ��) + 12 (  ���    ���)⎝⎜
⎛������ ⃒�������������� ⃒��������⎠⎟

⎞
 

���� = − ���     ,         �2���� = 2���  .        �2���� ⃒����������  ���� �  �     = 200005� = 160 

���� = 1�    , ������ = 0 .                 �(�� , ��) = 100005 ⟹ 

�(�) ≅ 100005 + 1(0.42    0) � 0160�2 ⟹  
 �(�) ≅ 2000   � ���� = 20000   ��� = 20��� 

According to Eq. 5-11: 
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���(�) ≅ �(����⃒����  )���� + �(����⃒����  )����= ��15� (1000)�� + ��−100005� � (0.4)�� 

⟹ ���(�) ≅ 65600     ⟹     �� ≅ 256.1   � ���� = 2561��� 

Therefore a stress with mean 20 MPa and standard deviation 
2.56  MPa  is acting on the bar. 

End of Example  

5-2-7Approximating the mean and variance of 
�� 

Let X and Y be 2 independent random variables with mean  �� و    �� and variance ��� and ���. The mean of  the quotient is 

approximately : 

X Y

Y Y

X
E

Y

 

 

   
     

     

2

1         (5-12-1) 

From  Eq. 5-12-1  it is concluded that: 

                (5-12-2)  

Furthermore the variance of  
�� is approximated by: 

  
X YY

Y X Y Y

xX
Var

Y

  

   

                                   

2 2 2 4
  (5-12-3) 
































2

1
11

Y

Y

YY
E






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Example 5.5   

 Repeat Example 5.4 using Eqs. 5-12-1 & 5-12-3. 

Solution 

E( �) = � ���� ≅ P A

A A

 

 

  
   
   

2

1 = �100005 � ∗ �1 + �0.45 ��� = 2012.8 2/N cm

⟹ E( �) = 20128���  
���(�) = P AP A

A P A

P
Var

A A

  

   

                                  

2 2 2 4

= �100005 �� ∗ �� 100010000�� + �0.45 �� − �0.45 ��� = 65436 

 �� ≅ 255.8   2/N cm = 2558���.     End of Example  

5.3  Statistical  Tolerance  

Since it is impossible to make everything to an exact size, the 

specification for design dimensions and variables is usually 

given  as a nominal value plus minus  a number. For example in  

2.500 0.003, 2.500 is the nominal value and  0.003 is the 

tolerance. Tolerance is the total amount a dimension may vary 
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and is the difference between the upper and lower (minimum) 

limits of the specification.  

It is worth mentioning that tolerance is sometimes written as 

a percent; e.g. 2.500 0.12%.  By this notation it is meant that 

tolerance is 0.12
100 2.500=  0.003. 

Next, after reminding the calculation of  tolerance of linearly 

and nonlinearly assembled parts, an example shows the 

calculation of reliability when tolerance is given.  Thought the 

chapter it is assumed that the tolerance of a component or 

assembly is ±�� where  � is the standard deviation of the 

component or the assembly. k is a constant which is usually 

equal 3. 

5-3-1 Relationship of assembly tolerance parts 
tolerance  

Consider a product composed of n similar parts. Let the 

dimension of each part be denoted by ��, i = 1,… , n with mean 

and variance part and 
2
part . The dimension of the assembled 

product is therefore X = �� + ،. . . +��. The mean and variance  

of  X denoted by sum  and 2
S u mσ equals: 

(5-13-1) �sum=n�part 
(5-13-2) 2 2

Sum Partn    
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(5-13-3) 2
sum

part n


  

Let us  denote the specification of each part by a t and that 

of the assembled part by b   and tolerance  limits by U and L. 

Assuming 
(���)����� = ������ , (���)���� = ����� i.e. the tolerance  

equals � × standrd deviation, then  substituting ���� = (���)�����   

and ����� = (���)������  in Eq. 5-13-3 results in: 

 
2

( ) .sum
part

U L
U L

n


   

(5-14) 

 

 

Let  ∆= (���)����  and  � = (���)�����  then: 

          � = ∆√�                                  (5-15-1) 

        ∆= �√�                                 (5-15-2) 

Then the tolerance specification of a product assembled from n 

similar parts with specification � ± t  would be � × � ± ∆. If the 

n parts have different specifications a� ± t�… a� ± t�… a� ± t� 

then if  (�−�)�2 = ��� , the specification of the assembled part 

would be ∑ a����� ± ∆′ where: 

∆′= �� ��2�
�=1   .                                               (5 − 16) 
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Example 5-6  

Suppose 10 similar parts with specification 2.000  ±  0.012 

are assembled in a series configuration.  What is the 

specification of the assembled product? 

Solution 

The specification of the assembled part is10 × 2.000 ± ∆ 

where ∆= �√� = 0.012√10=0.0379  or: 20.000  ±  0.0379. 

End of Example  

Example 5-7 

We would like to produce a product with specification 20.000 ± 0.0379  as an assembly of 10 similar parts.  What should be 

the tolerance of each part? 

 Solution 

The specification of each of the 10 parts must be 
��.����� ± � 

where � = ∆√� = �.���� √�� = 0.012 . End of Example  

Example 5-8 
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A part with specification 2.000  ±  0.012  is assembled with 

another part have the specification of 3.000  ±  0.016. What is 

the specification of the assembly? 

Solution 

The specification of the assembled  part is  2.000+3.000±∆′  
where ∆′  is given by Eq. 5-16 as follows: ∆′ = �∑ ������� = �(0.012)� + (0.015)�=0.020. Therefore the 
specification is: 3.000±0.020   End of Example  

5-3-2 Tolerance in complex systems 

In the previous section, tolerances for series configurations 

were considered.  In this section  an example illustrates how to 

calculate the tolerance of an assembly in which a nonlinear 

function of the components exists. This is usually accomplished 

by linearization of the function by Taylor�s  expansion up to the 

first order around the nominal dimensions.  

Example 5-9( Extracted from Bowker-Lieberman,1972 p94)  

In the electrical circuit shown below, find the tolerance of the 

output voltage �� = ����. The components have the following 

specifications: 
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1 1normal =
Distribution nominal Value ±

E E 40         0.5 40±0.5

N normal N = 1% ±0.01×

K normal K =3 2% 3±0.02×3

The mean of the

 

 

Solution 

Taylor series

as follows: 

For the linearization of  

Taylor series around the nominal values 

the above relationship as follows:

  , , , , , , ...f x y z f a b c x a y b z c f x y z       

ombinations of random variables  + tolerance         

*
1 1

*

*

normal =
Distribution nominal Value ±

E E 40         0.5 40±0.5
1 1 1N normal N = 1% ±0.01×2 2 2

K normal K =3 2% 3±0.02×3

 

The mean of the distributions are  equal to their nominal values. 

Taylor series of a 3-variable  function up to the first order is 

 

For the linearization of  �� = ����, �� is expanded into a 

Taylor series around the nominal values * * *, ,1E N K  with help of 

the above relationship as follows: 

        
1

, , , , , , ...
1! , ,

f x y z f a b c x a y b z c f x y z
x y z x a y b z c

   
        

      

         298 

1 1 1
2 2 2

 
equal to their nominal values.  

first order is 

 

(5-17) 

is expanded into a 

with help of 

, , , , , , ...
, ,x a y b z c

       
  
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This approximation is a linear combination of ��,�,�. Since random 

variables  ��,�,�  have the  means * * *, ,1E N K , therefore the 

distribution of �� has the  mean 
0E calculated from: 

 0

* * * * * * * * *2
1 1 1 1E E N K E E K N E N K N E K       

Since the mean of the distributions  of ��,�,� equal * * *, ,1E N K  

therefore the mean of �� is:  

 

or * * *
Eo  1=E N K    

The variance of �� ,denoted by
0

2
E , is calculated from the linear 

approximation of  indepenvent variables  ��, �,� i.e: 

* * * * * * * * *2
0 1 1 1 1

E N K E E K N E N K N E K      

     
0 1

* *
1 1

2 2 2
2 * * 2 * 2 * 2N K K NE E KN

E E                   (5-18) 

No notice that under the following  3 assumptions 

     
*

* * * * * * * * * * * *
0 1 1 1 1 1

* * * * * * * *
0 1 1 1 1

1

1!

2

E E N K E E N K N N E K K K E N

E N K E E K N E N K E N K

        


   

* *
1

0 1

* * * * * * * * * *
1 1 12E N

E E NN K E K E K N N K E     
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a)During production,  the dimension of each component can be 

centered at its nominal values  i.e. the magnitude of the variance 

of each component is such that the natural tolerance limits  

coincides with the specifications limits � ± b,  

b)The distributions are normally distributed with means equal to 

nominal values 

c)For each component all but 100α% of the values will fall 

within the corresponding  � ± b the largest value of the standard 

deviation of the dimension  denoted by σ�������  is given by(see 

K&L pages93-96):  

σ������� = ����                       (5-19) 

where z is the critical value related to normal distribution 

given in Table D or by a software such as MATLAB; e.g. for 

 =0.27%  ( )Z z   0.00135
2

norminv 1-0.000135 3  and 

therefore: 

E N k  
1
2 ×0.010.5 3×0.020.0017 =0.023 3 31

= , = = , =

Substituting numerical values in the right hand side of Eq. 5-18 

gives E  0.5120 .  1
2

* * * 40× ×3=60oE E N K 1  is the nominal value 

of the output voltage.  To write the specification of output 

voltage E0  as 60 ± Δ note that the distribution of  E0  can be 

approximated by a normal with mean equal to the nominal 

value(60); therefore for α = 0.27%  from Eq.5-19 : 
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0.512 = Δ��� = Δ��.����� = Δ�0.00135 = Δ3⟹ Δ = 1.536 

 ��  : 60 ± 1.536      or since  0E
1.536=2.56% 60±2.56%60 : . 

Therefore the output voltage E� is 60 volts±2.56%.  

    The folowing  example shows  how tolerance  affects  reliability.   

Example 5-10 (Based on K&L  page 165) 

 A circular bar is subjected to a tension load S, shown below. 

 

Due to the nature of manufacturing, the diameter d of  the bar is 

a random variable and due to various raw materials used the 

ultimate tensile strength of the rod is also a  random variable 

with mean 10000  psi and standard deviation 5000psi. 

The random variable  S  has  4000 lbS  and S 100 lb.  If 

the load and strength are normally distributed , the following 
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equation1 is used to calculate the reliability of  these kind of 

bars: 

Pr( ) ( )ZR S z                     (5-20) 
where  �  = ��� ���������������  �(�.���)�� ��������

    and  

Φ�(�)  is the CDF of normal standard distribution. 

The diameter of the  bar has a mean   of 0.12635 inchesr   and its 

specification is %r p  .  The load and the strength are normally 

distributed.  To know how the variations in the rod diameter  affect the 

rod reliability,  conduct  a sensitivity analysis  of  the rod reliability 

with respect to the rod radius.  

Solution 

The following table  shows the reliability of the rod computed 

using MATLAB  from Eq. 5-20 for seven values of p in %r p   

and 3 3 3100×10 , 5×10 , 4×10 , 100S Spsi psi lb lb        , 0.12635r 

. 

                                                           

1 For proof see K&L page 165 
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p  z  ( ) normcdf zZR z   

0 3.760      0.999915 

0.5 3.756               0.999914 

1.0 3.74 0.999908 

1.5 3.72 0.999900 

3.0 3.61 0.999847 

5.0 3.37 0.999624 

7.0 3.10 0.999032 

If for example the specification of the radius of the rod is 
0/12635±1.5% i.e. p=1.5, z  turns to be z=3.72 and the rod 
reliability would be 99.99% as calculated below: 
p=1.5;   
z=(10^5-
(4000/(pi*(0.12635)^2)))/sqrt(5000^2+((100^2+((4*(0.01*p)^2)
/9)*4000^2))/(pi^2*0.12635^4)) 
R= normcdf(z) 

End of  Example.   

Exercises1  

In the following problems assume all dimensions are normally distributed and the tolerance 

range is 6 sigma(±3σ)  

1.  The parts of a contact assembly for a relay are shown  in the 

following figure . The dimension x represents the amount of 

                                                           

1 Problems 1 through 7 are from Chap. 5 page 113 problems(1,3,5,7,9,11,13) 
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intentional overtravel (called "wipe") of the upper contact that 

would occur if the upper contact was clamped to the part at left. 

Find the nominal dimension x and its tolerance. 

 

2. A partially finished connecting rod is shown in the following 

figure. Each radius has a tolerance of ±0.002. The tolerance for 

the distance L between the centers of the holes is ±0.004. Find 

the tolerance for the dimension h. 
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3.A rectangular solid bar has the following dimensions:

: 2±0.002 , : 1±0.001 , : 4±0.008X m Y m Z m .  Find the 

specification of  V=XYZ. 

4.The head of a screw is shown in the following figure. The 

various dimensions are formed in such a manner that there is no 

association between them; that is, they are mutually 

independent. Determine the tolerance for H, the depth of the 

screw head. The dimensions 9, D, and d and their tolerances are: 

o:90 ±20' 0.800±0.002 0.400 ±0.001D in d in    
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5. Let random variable  � = �������, where � is a constant and the 

3 variables are independent and have the following properties. 

�� �� �� Variable 

1 2 4 mean 

0.1 0.2 0.4 stand.  devia  

Approximate the expected value and standard deviation of Y. 

6. An automotive component is subjected to a fluctuating stress  

with mean and the amplitude ����� = ���������� ,    ���� =���������� , as shown in the following figure.  The maximum 

value of the stress  ( smax  ) is a normally distributed random 

variable with mean= 600 kPa and standard deviation=40kPa. 

The minimum value of the stress( smin) is a gamma distributed 

random variable with parameters n= 17 and 20kPa



1
.  
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Determine the value which the random variable 

only 1.3% of the time.  Also determine the value which the 

random variable s

Hint: For largish n a

approximated with a normal distribution (

becaue it be consisidered the sum of n inpenendent exponential

distribution with parameter 

7. The analysis of the loading of a component revealed a load 

diagram as shown in the 

The four forces 

distributions of which are given in the following table
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Determine the value which the random variable smean will exceed 

of the time.  Also determine the value which the 

random variable samp will not exceed 90% of the time. 

For largish n a gamma distribution (n,�) could be 

approximated with a normal distribution (� = �� ,� = √�� )
be consisidered the sum of n inpenendent exponential

distribution with parameter (�),  

The analysis of the loading of a component revealed a load 

diagram as shown in the Following figure.. 

 

The four forces F1, F2, F3, and F4 are random variables, the 

distributions of which are given in the following table 

Reliabilty Engineering              

 

will exceed 

of the time.  Also determine the value which the 

) ; 

be consisidered the sum of n inpenendent exponential 

The analysis of the loading of a component revealed a load 

are random variables, the 
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Parameters Distribution Force 

2.6kN



1  Exponen. F1 

41.6 , 11.03kN kN    Normal F2 

37.5 , 3.9kN kN   Normal F3 

39 , 10.07kN kN   Normal F4 

Calculate the mean and the variance of the magnitude of the 

horizontal resultant load. 

Hint: The gamma distribution (n, �) may be approximated by a 

normal distribution with � = �� and � = √�� . 
8.(Example5-6 page 104K&L) 

An electrical circuit has two resistances R1, R2  in parallel as 

shown below. The value of s each resistance is a random 

variable. We know that 

1 1
100 , 10 ,

R R
        

2 2
200 , 15 ,

R R
      

Determine the  mean and standard deviation of RT. 
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Answer is given in K&L page 105.

9. A kind of beam has a rectangular

dimensions of the cross

variables with mean 

deviation
a



beam. The bending stress is a random variable with mean 

2000Nm and standard deviat

value for the maximum bending stress(S).  The dimensions are 

assumed independent.

Anyone pursuing his goals honestly 

and if he does, he can seek a way out
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Answer is given in K&L page 105. 

9. A kind of beam has a rectangular-shaped cross-section. The 

dimensions of the cross-section, denoted by a & b, are random 

variables with mean 20
a
  mm, 60

b
  mm and standard 

0.02
a

  mm, 0.1
b

   mm. A stress is applied to the 

beam. The bending stress is a random variable with mean 

2000Nm and standard deviation 10Nm.  Find an approximate 

for the maximum bending stress(S).  The dimensions are 

assumed independent.  

Anyone pursuing his goals honestly 

does not slip up  

and if he does, he can seek a way out

Reliabilty Engineering              

 

section. The 

section, denoted by a & b, are random 

mm and standard 

mm. A stress is applied to the 

beam. The bending stress is a random variable with mean 

ion 10Nm.  Find an approximate 

for the maximum bending stress(S).  The dimensions are 

Anyone pursuing his goals honestly  

and if he does, he can seek a way out
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6.1 Introduction  

The problem of estimation of the  lifetime and the reliability 

of products is a common problem in the control of products 

quality. When we have the lifetimes of a random sample of the 

product, one obvious way to estimate the mean lifetime is 

calculating the sample mean. Another way is performing special 

life tests on the sample and then calculating the mean.  A third 

way of life testing is called accelerated life testing which 

involves the acceleration of failures to quantify the life 

6 
Estimation of  Mean Lifetime &Reliability and 

Related Experiments &Tests  

Aims of the chapter 

This chapter deals with the estimation of 2 statistical 

measures related to a product i.e. reliability and expected value 

of products lifetime. Some standard experiments and statistical 

tests of hypothesis are also mentioned, and some acceptance 

sampling plans based on the lifetime are introduced.  The 

emphasis is on the products  whose lifetimes are exponentially 

distributed. 
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characteristics of the product at normal use conditions; in other 

words it involves  capturing product life data under accelerated 

stress. These 3 ways are pointed out in this chapter. The present 

chapter also mentions some statistical tests hypothesis and some 

acceptance sampling plans related to lifetime.   

6.2 Estimation of product mean life given a lifetime 

sample of size n   

Suppose a random sample is taken from a product and the 

products in the sample are tested until all of them fail and the 

lifetimes x� ،. . . ،x� is obtained.  The following equation gives an 

unbiased estimate for the mean lifetime (�)of the product: θ� = ∑ ��� = ��                  ( 6-1) 

This equation could be used for any product with any lifetime 

distribution. 

6.3 Tests for Estimating  Mean Life  

Consider a life testing where n items are simultaneously 

placed on test.  The purpose of the life tests here is to calculate a 

point estimate and sometimes interval estimates for the product 

mean life. It often occurs that we need to discontinue the life test 

before all the elements in the sample fail. In such cases, we say 

that the test has been �suspended,� �censored,� or �truncated� 

.Censoring schemes employed during the life test make the 

inspection as a cost effective one. Time censoring (Type I), 

failure censoring (Type II)  are 2 common types of the censoring 
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schemes employed in  life tests.  Each of these 2 types might be 

performed in 2 ways:  

i)Censoring schemes with replacement. 

Replacement during a life testing means that once observing 

a failure item, it is replaced by a new or repaired one. In other 

words, the total number of inspected items during the test 

remains constant n. 

ii)Censoring schemes without replacement 

6.3.1 Time censoring (Type-I) 

In a time censoring scheme, n items are simultaneously 

placed on the test and the test terminates at some  specified time.  

6.3.2 Failure censoring (Type-II) 

In a failure censoring scheme, n items are simultaneously 

placed on the test and the test continues until particular number 

of failures , say r ,occurs. 

To summarize the above discussion: it often occurs that we 

need to truncate our life test before all the elements in the 

sample experience the failure. Two common types of truncation 

or censoring are : 
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��������� ⎩⎪⎨
⎪⎧  ���� �:���� ���������  � ���ℎ ��������������ℎ��� ������������          
���� ��:������� ��������� � ���ℎ ��������������ℎ��� ������������               

�       
6.4 Estimation of mean life   

List of Symbols � Number of units of product placed on life test � Number  of  failures �∗ Predetermined amount of time for a life test � The total operation time of all test items �� Time to failure for product no. i   �(�) Time to failure for ith  failure �(�) Time to failure for failure no. r � Mean lifetime of the product �� Estimate of  � 

   The mean life (�) or MTBF of products is  estimated from the 

following general formula: 

θ� = ��                        (6-2) 

where  

 T = the total operation time of all items placed on test including 

those failed, 

  r = total number of failures occurred during the life test 
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Needless to say if the lifetime of a product is exponentially 

distributed with pdf �(�) = �� �� �� , Eq. 6.2 estimates the 

parameter of this diminution. 

Note that; 

 To verify  "that an exponential distribution fits the life data"  

a test of hypothesis such as Bartlett's test (see K&L page 239) or 

Q_Q plot with following MATLAB command could be used: 

X=[�.data]; pd=makedist('exponential', mean(X));qqplot(X,pd). 

Example 6-1(K&L page 251) 

A  truck was shaken on a simulator for a total time of'245 hours. 

During this life test 20 failures occurred. The time between 

failures can be well approximated by an exponential 

distribution(see page 240 K&L). Estimate the mean life 

parameter. 

Solution 

�M T B F = �� = ����� = 12.25 ℎ� End of Example  

Calculation of T for ���� =�  ����� =  �� = �� 
To calculate T for estimating , let us distinguish the following 

cases for discontinuing our tests: 

-Type I tests(time truncation) with replacement  



Chap 6 Estimation of  Lifetime &Reliability  Experiments &Tests           316 

 

 

- Type I tests(time truncation) without replacement 

-Type II tests(failure truncation) with replacement 

-Type II tests(failure truncation)  without replacement 

6-4-1  Type I censoring life test  

In type-I censoring at a predetermined time, say  �∗, the life 

test is terminated. The test  could be performed without or with 

replacement. 

6-4-1-1Type I censoring life test with replacement 

In time �truncated tests with replacement, in fact all n items 

work until the predetermined time   �∗ and the total operation 

time(T) of all items placed on test including those failed 

is: � = � ×   �∗; therefore: 

*
� T nt

r r
                (6-3) 

Where r ≥ 1 is the number of failures dung the test time �∗. 
An application of this equation is , for example, when we have  

where we have n test stands, and we cycle each 

test stand for   cycles. As items fail they are replaced. Where a 

truncation time is specified this is called Type I censoring. Here 

we have(K&L page 252) 
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r

n
 �                 (6-4)

  

Example 6-2(Example 10-12 K&L page 252 based on Example 10-3 page 241) 

Nine stands are used for testing the life of a kind of switch. 

As items fail they are replaced. Each stand was cycled 20,000 

times, and a counter recorded the cycle number at which failures 

occurred. The following table contains the  data. Estimate MTBF. 

Stand no. 1 2 3 4 5 6 7 8 9 

Cycles at 
which 
failure 

occurred 

6700 

4600 

4100, 18100, 18950 

5400 

3100, 8100 

2600 

N
o   failure 

4700 

N
o    failure 

Counters were not reset when a new switch was placed on 

test. Thus counts are continuous from zero. Total test is 20,000 

cycles per stand with replacement. 

Solution 

� = n = 9 × 20000 = 180000  ������  
Ten failures occurred during the test duration i.e. r=10, 

therefore : 
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�M T B F = θ� = � T

r
  = 18000010 = 18000 

This means that on the average, each switch could be 

cycled 20,000 times  before failure.  

Example 6-3(Lewis,1994 page240) 

A chemical plant has 24 process control circuits. During 5000 

hr of plant operation.  The circuits experience 14 failures. After 

each failure the unit is immediately replaced. What is the MTTF 

for the control circuits? 

Solution 

24×5000=120,000T    hr  

* 120000� =8571hr
14

T nt
MTTF

r r
   


.End of Example  

6-4-1-2Type I censoring life test without replacement 

In type I censoring the test is terminated at some 

predetermined time; in nonreplacement case the number of 

failures  1 r n    and MTTF is estimated from (Lewis, 1994page 

239,Mann,1974 page 173): 

*
( )

1

( )
�

r

i
i

n r t x
T

r r
 

 

 


                (6-5)
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where 

r number of items failed 

T total operational time for the n units tested  �∗ duration of life test 

n number of items placed on life test 

( )ix  time of the ith failure (1) (2) ( )... ...ix x x     

Example 6-4:   

20 units of a kind of gyroscope were placed on a 30-day life 

test without replacement.  9 units failed at the following 

times(indays) 14.4, 5.1, 27.7, 29.1, 23.6, 20.00, 10.5, 13.5, 27.4. 

Estimate MTTF  . 

 

Solution 

1 914.4 27.4 171.3ix x x = ,..., =
*

1

30 , ( ) (20-9)×30+171.3 501.3
r

i
l

days T n r t x T


     t*

501.3� =55.7 days
9

T
MTTF

r
 
 = .End of Example  
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6-4-2  Type -II censoring life test  
In Type II or failure censoring, the test is discontinued after 

occurring a predetermined number of failures ( r ). This type 

might be performed  with or without replacement.  

6-4-2-1Type II censoring life test without replacement 

In this kind of experiment  n units of a product are placed  

simultaneously on life test and failed units are not replaced. 

When the number of the failure reaches the predetermined 

number r (1≤ r ≤ n), the test is terminated. The estimate for 

MTTF is(K&L page252, Lewis,1994 page239): 

�� = �� = (���)�(�)�∑ �������                            (6-6)
  

xi

 
ith value in the sample containing failure times    �(�)

 
The time of the rth  failure 

T Total operation time of all items placed on life test 

( )
1 1

r r

i i
i i

x x
 

   
Total operation time of failed items 

(� − �)�(�) operation time of the functional items at the end of the test 

 References such as Mann(1974) page 164 provide some 

descriptions on the proof of  Eq. 6.6 . 

It is obvious that: 
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1. If the time of the life test is such that all n items fail then 

r=n and Eq. 6.1 i.e. θ� = ∑ �������  is obtained. 

2.  If  ( )rx coincides the test time   �∗ the equations of Sec 

6-4-1-2 &6-4-2-1give the same result. 

Example 6-5 

The director of a laboratory, place 20 units of a kind  of 

gyroscope on life test and decides to stop the test whenever the 

tenth failure occurs. At time41.2 the tenth failure occurs and the 

experiment terminates. The time of the other failures are:  

14.4  ٬5.1   ٬ 27.7  ٬29.1   ٬ 23.6   ٬ 20.0  ٬10.5   ٬ 13.5   ٬ 14.4. Find 

the MTTF of the gyroscope. 

Solution 

( ) (20-10)×41.2+27.4+...+14.4+41.2=624.( ) 5
r

r i
i

T n r x x


   
1

Then according to Eq. 6-6

 
624.5�� =62.45

10
days

T
MTBF

r
   . End of Example  

6-4-2-2Type II censoring life test with replacement 

In this kind of experiment  n units of a product are placed  

simultaneously on life test; when a unit  fails it is replaced. The 

test is terminated when the number of failures reaches a 
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predetermined number . in other words the test terminates at 

time x(r). The estimate for MTTF is(Lewis,1994 page239): 

( )rnx

r
 


                               (6-8) 

n The number of items placed initially on the life test 

x(r)  The time when the rth failure occurs 

Description of Eq. 6-8: 

The experiment ends at time ( )rx ; � ≥ 1 and r could be less 

or greater than n. during the experiment time totally r failures 

occurs for  all the n units, therefore each unit on the average 

fails 
��   times and the mean time to failure is ( )� rx

r
n

  . Hence we 

have the following estimate for MTBF: 

( )�� rT n
B

r
MT F

r

x
                 (6-9) 

Example 6-6(lewis,1994 page241) 

Six units of a new high-precision pressure monitor are placed 

on an industrial furnace. After each failure the monitor is 

immediately replaced. However, the eighth failure occurs after 

only 840 hours of service. It is decided that the high-temperature 
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environment is too severe for the instruments to function 

reliably, and the furnace is shut down to replace the pressure 

monitors with a more reliable, and expensive, design. Assuming 

that the failures are random, estimate the MTTF of the monitors. 

Solution � = ��(�)     � = 6     � = 8     �(�) = 840            � = 6 × 840 = 5040 hr     
5040�� 630

8

T
MTTF

r
    hr  

Tests Summary 
Table 6.1 summarizes the relationships related to the above life 
tests: 
Table  6.1    Equations for estimating MTTF or MTBF(= �) 
Type of 
Experiment 

Replacement 
Eq. 
No. 

*
� T nt

r r
    

Time-terminated 
(Type-I 
censoring) 

With 
Replacement 

6-3 *
( )

1

( )
�

r

i
i

n r t x
T

r r
 

 

 


 

Without 
Replacement 

6-5 �� = (� − �)�(�) + ∑ �������  

Failure-
terminated 
(Type-II 
censoring) 

Without 
Replacement 

6-6 
( )rnx

r
 


 

With 
Replacement 

6-8 *
� T nt

r r
    

 

6-5     On the   Accelerated Life Testing(ALT) 
At the end of the subject of experiments, it is worth 

mentioning  that there are some life tests called accelerated life 

tests for quick obtaining of lifetime data. 

Conventional way for preparing the lifetime data of a product 

is to place some units of it on life test under normal use 

conditions, until all fail. This procedure for obtaining TTFs is 
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difficult and sometimes impossible.  Some experiment methods 

called Accelerated Life Tests have been developed to expedite 

the test and save time and cost during the design and 

development validation phase in many industries.  ALT perform 

the life test at a high level of a parameter or a variable.  The 1 

results obtained at high levels of the accelerating variables are 

then extrapolated to provide information about the product life 

under normal use conditions. 

In accelerated life tests, place a sample of the product on life 

test under elevated working conditions (temperature, voltage, 

pressure, rate, vibration, humidity and so on...) in order to 

accelerate the failure mechanisms. The  results  are then used to 

extrapolate to usual operating conditions. 

Many references including  Cabarbaye(2019), Tobias& 

Trindade (2012) discuss ALT. Softwares  such as Minitab 

perform data analysis for ALT. 

6-6  Confidence interval for mean lifetime-

Exponential distribution case 

Whenever  a sample is taken from a population, different 

estimate for  a parameter of the population  is obtained. To 

modify this difficulty on could construct a confidence interval 

for the parameter. Suppose  ��, � ، �� is a random sample from a 

                                                           

1Pascual et al,2006 Accelerated Life Test Models and Data Analysis, In 
book: Springer Handbook of Engineering Statistics (pp.397-426) 
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distribution with unknown parameter θ, the interval [G1, G2] 

where G1, G2 are function of ��,… ، �� is called a 1- � confidence 

interval (CI) for θ  if : 
(6-10) 

1 2Pr (G <θ<G )=1-α  

Next the confidence interval for the mean of exponentially 

distributed lifetimes. To do this consider a life test of a sample 

taken from exponentially-distributed-life product ,terminated 

after time T during which  the number of failed items has 

reached r. assuming zero-minimum life, 1 − α confidence 

interval for the mean of an exponentially-distributed �life  

product is(K&L page 253): 
2 2

2 , 2 ,1
2 2

2 2

r r

T T

  


 
 
 
 
 

. 

This  confidence interval (CI)which could be written as: 

2 2

2 , 2 ,1
2 2

2 2
Pr 1

r r

T T

 

 
 



 
 

    
 
 

                   (6-11) 

Is based on the assumption the  lifetime of the product is 

exponentially distribute d with mean θ estimated from � T

r
  .   

The proof  relies on the fact that random variable  
2T


has a Chi-
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squared  distribution with 2r degrees of freedom(Appendix 10.D 

K&L page 281). 

This CI  for example, is suitable when we have n test stands 

where items  are replaced as they fail and the test is discontinue 

d at a predetermined time. Or when we might drive vehicles 

over e.g. a 40,000 km test schedule and elect to count failures 

rather than failure intervals(K&L page 254). 

Example  6.7 

8 leaf springs were tested to failure . The results, in cycles, 

follow: 

X  )1(  X  )2(  X  )3(  X  )4(  X  )5(  X  )6(  X  )7(  X  )8(  
8712 21915 39400 54613 79000 110200 151208 204312 

a)Estimate the mean lifetime � 

b) Suppose the lifetime is exponentially distributed, find a 

95% confidence interval for � 

c) find a 95% confidence interval for  the spring reliability if 

vibrated 4000 cycles. 

Solution 

a)The point estimate for the mean life(�) is :�� = �� 
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r 8

(r) i (8) i
i=1 i=1

8 8

i (i)
i=1 i=1

T=(n-r)x + x =(8-8)x + x

x = x =669320T





 

 

 

�� = ∑ �(�)����� = ��  =������� = 83665 

b)If  the lifetime of the spring is exponentially 

distributed, the  CI for   is given from Eq. 6-11: 

2 2
α α

2r, 2r,1-
2 2

2T 2T
θ

χ χ
  .  

8, =5%r n    . From Table E or MATLAB: 

2
16,0.975

2
16,0/025

χ chi2inv(.025,16) 6.91,

χ chi2inv(0.975,16) 28.85

 

 
 

2 2
α α

2r, 2r,1-
2 2

L U

2T 2T 2×669320 2×669320
θ θ

χ χ 28.85 6.91

θ =46400 θ 193725 cycles=θ

     

 

 

c)CI for reliability function , if the lifetime is 
exponentially distributed: 

t t

46419 193736( ) ( )UL

tt

e R t e or e R t e
  

     
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for t=4000 cycles, CI is: 

4000 4000
- -

46400 193725e R(4000) e    

0.9174=91.74% R(4000) 0.9796=97.96%   

Example  6.8:  

The elements of a random sample a of a kind of electronic 

circuit were placed on life test without replacement. The result 

was r=20 failures and mean of � 5000MTTF  


. Find a 95% CI 

for MTTF.  Assume the lifetime is exponentially distributed. 

Solution 

According to Eq. 6-11: 

1

2 2
α α

2r, 2r ,(1- )
2 2

2T 2T
Pr θ =1-α ,T= r×θ=20×5000, 1-α=0.9

χ χ

 
 

  
 
 


 

From Table E:      
2 2
40,0.05 40,0.95χ =55.76, χ =26.51

 

Substituting the numerical values  yields: 

Pr(1793.4 θ 3772.2)=0.9   therefore a 95% CI for the 

mean life is:     (1793.4 ,   3772.2).  End of Example  
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Example  6.91 for r=1:  

Suppose the life time of a kind of product is exponentially 

distributed .  Due the fact that the product is 

1) expensive and its life test is destructive    or 

2) expensive  and a small quantity of  it is available 

The failure on only one unit of  it for lie testing is affordable. 

n=5 units of  the product were placed simultaneously on life 

test and when the first failure occurred at 15. 5 hr  the test was 

terminated.  Find a 95% confidence interval for MTTF. 

Solution 

The test is of Type II without replacement, therefore: 

( ) (1)( ) , r =1,x =15.5
r

r i
i

T n r x x


  
1

,

r

(r) i (1) 1 (1) (1) (1)
i=1

T=(n-r)x + x =(n-1)x +x =(n-1)x +x =nx  

From Eq. 6-11: 

2 2 2 2
α α α α

2r, 2r

(1) (1

,1- 2, 2,1-
2 2 2 2

)nx2 nx22T 2T
θ θ

χ χ χ χ
      

                                                           

1 from ttps://web.cortland.edu/matresearch/CensorDatSTART.pdf 
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2
2,0.975

2
2,0/975

1-α=0.95 α=0.05,

MATLAB

χ =chi2inv(0.025,2)=0.0506,

χ = chi2inv(1-0.025,2)=7.3778





 

(1)n=5,x =15.5 
×5×15.5 ×5×2 2

θ 21 θ 3063
7.3778 0

15.5

.0506
      

End of Example  

 

6-6-1  Lower-bound confidence interval(CI)  for mean 

of exponential distribution 

After a life test, the lower-bound 1 − α CI   for  the mean of 

an exponentially distributed lifetime could be calculated from 

(K&L page257): � ≥ � = ����,���                                   (6-12) 

Where  T is total test schedule and   r  the number of  failures 

occurred during the test  

6-6-2 The confidence interval for the time during which 

fraction p of exponentially-distributed-life products fail  

Sometimes we would like construct a confidence interval for 

the time or the kilometer or the temperature or�denoted by �� 

up to which the fraction of the products fail. ��, in other words is 

such that �� ��� = 1− � where R(.) is the reliability function. 
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Suppose the lifetime distribution of the product is exponential 

with mean θ then ��   ��� = 1 − � or �� = � × ln � ����� and if the 

estimate for � is denoted by �� then we have the following 

estimate for ��:��� = ��× ln � ����� 

If we have a 1-� CI such as  �� < � < �� for the mean 

lifetime, then the  following interval would  be 1-� CI for ��: �� × ln � ����� < �� < �� × ln ( ����)                   (6-13-1) �� × ln(��) < �� < �� × ln (��)                            (6-13-2) 

where �� = �� is when (the time or the kilometer or the temperature 

or�) that fraction p of the working product fail or fraction R=1-p 

of them do not. 

Last part  of  problem 6 of  this chapter exercises uses Sec. 

6.6.2. 

6-7 Reliability Acceptance Sampling Plans 

During the past years several researches have been done on 

the subject of sampling from a lot of products to accept or reject 

it based on product lifetime.   Single, double and multiple 

sampling plans have been developed in this regard which are 

called Reliability Acceptance Sampling Plans (RASP) ,utilized 

to inspect the quality of a lot for acceptance. 
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Among the first researches for life testing based on samples 

taken from populations whose life follow exponential 

distribution is the reference H108  Handbook1  

This 88-page handbook is primarily concerned with three 

different types of life test sampling plans and includes a number 

of accompanying tables. These plans are  

1) test terminated upon the occurrence of pre-assigned 

number of failures,  

2) test terminated at a predesigned time, and  

3) sequential life testing plans.  

Also provided are a set of 90 operating characteristic (oc) curves  

applicable for the above three test plans.  Some descriptions of 

the sampling plans of this handbook is given in the author's 

quality control book2. 

Table 6-2 of this chapter is a sample of the handbook tables. 

This table helps to determine single sampling plans for 

inspecting lots. 

Here single sampling plans are schemes in which a decision 

to accept or reject an inspection lot is based on the inspection of 

a single sample. A single sampling plan consists of a single 

sample of size n placed on life test for a time T hours, with 

                                                           

1H108., Quality Control and Reliability Handbook (Interim) Sampling 
Procedures and Tables for Life and Reliability Testing (Based on Exponential 
Distribution),, in (Supply and Logistics)  
2 https://opentextbc.ca/oerdiscipline/chapter/industrial-engineering   or 
https://archive.org/details/statistical-methods-august-2020-bazargan or     
https://opentextbc.ca/oerdiscipline/chapter/statistics/      



333                                                                                Reliabilty Engineering              

associated acceptance and rejection number(r).  Note that during 

the test time failed items are replaced with new ones unless the 

number of items has exceeded r-1.  

6-7-1 Type I&II errors of Sampling plans 

The Inspection of  a lot for accepting or rejecting using 
sampling plans have  might encounter errors. These inspection 
errors are classified into two categories: Type I and Type II. 
Type I error results in the rejection of a conforming lot, while 
Type II error causes the inspector to accept a defective lot.  Here 
(in a single sampling with parameters n and c) The type I &II 
errors could be described as follows: 

When the lot posses a conforming reliability such as R1,and 

the plan rejects it  Type I error ( rejecting conforming lots) 

occurs with the following probability. 

� = 1 −� �����
��� (1 − ��)������         (6− 14) 

When the lot posses a nonconforming reliability such as R2, 

and the plan accepts it,  Type II error ( accepting nonconforming 

lots) occurs with the following probability: 

� = � �����
��� (1 − ��)������              (6− 15) 

 

6-7-2 Design of single plans using Table 6-2  

Given the test time T, type-I error probability(�) for the 
desired mean θ�and type-II error probability(�) for the 

undesired mean θ�,calculate 
���� & ���.  Read  the plan indices        

( sample size n and rejection number r ) from Table 6-2. 
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Example 6.10 

Design a plan whose test is of type "life tests terminated at 
pre-assigned time" in such a way the test time does not exceed 
T=500 hr . The plan is wanted to accept 90% the lots having 
mean life θ� =10000 hr (α = 0.10), and to reject 95% of the 
lots with mean life θ� = 2000hr  (β = 0.05). The life is 
assumed to be exponentially distributed. 

Solution  

  
���� = ��������� = ��,  ��� = �������� = ��� 
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Table 6-2 Acceptance Sampling Plans for some  �,�, ���& ���� with a test 

terminated at pre-assigned time with replacement  (Table 2C-4  in H108 Handbook) 
 

 

 

 

 

 

 

 13 15 
110 

120 13 15 110 
120 

n n n  n  n n n n  � = �و0.01 = 0.01 � = �و05 = 0.0.01 

2thirds 136 3 551 1103 220 9 23 397 795 1591 
1half 46 9 158 317 634 3 72 120 241 483 
1third 19 3 51 103 206 1 25 38 76 153 
1 fifth 9 1 17 35 70 7 9  16 32 65 
1tenth 5 4 6 12 25 4 4  6 13 27 

 α = βو0.01 = 0.05 α = βو0.05 = 0.05 
2thirds 101 2 395 790 158 6 16 270 541 1082 
1half 35 6 113 227 454 2 47 78 157 314 
1third 15 2 37 74 149 1 16 27 54 108 
1 fifth 8 8 14 29 58 5 6 10 19 39 
1tenth 4 3 4 8 16 3 3  4 8 16 

 � = �و0.01 = 0.1 � = �و0.05 = 0.1 
2thirds 83 1 316 632 126 5 13 216 433 867 
1half 30 5 93 187 374 1 37 62 124 248 
1third 13 1 30 60 121 8 11 19 39 79 
1 fifth 7 7 11 23 46 4 4  7 13 27 
1tenth 4 2 4 8 16 3 3  4 8 16 

 � = �و0.01 = 0.25 � = �و0.05 = 0.25 
2thirds 60 1 217 434 869 3 77 129 258 517 
1half 22 3 62 125 251 1 23 38 76 153 
1third 10 1 20 41 82 6 7 13 26 52 
1 fifth 5 4 7 13 25 3 3  4 8 16 
1tenth 3 2 2 4 8 2 1  2 3 7 

 � = �و0.1 = 0.01 � = �و0.25 = 0.01 
2thirds 77 1 329 659 131 5 14 234 469 939 
1half 26 5 98 197 394 1 42 70 140 281 
1third 11 2 35 70 140 7 15 25 50 101 
1 fifth 5 7 12 24 48 3 5 8 17 34 
1tenth 3 3 5 11 22 2 2  4 9 19 

 α = �و0.1 = 0.05 α = �و0.25 = 0.05 
2thirds 52 1 214 429 859 3 84 140 280 560 
1half 18 3 64 128 256 1 25 43 86 172 
1third 8 1 23 46 93 5 10 16 33 67 
1 fifth 4 5 8 17 34 2 3  5 10 19 
1tenth 2 2 3 5 10 2 2  4 9 19 

 α = �و0.1 = 0.1 α = �و0.25 = 0.1 
2thirds 41 9 165 330 660 2 58 98 196 392 
1half 15 3 51 102 205 8 17 29 59 119 
1third 6 9 15 31 63 4 7 12 25 50 
1 fifth 3 4 6 11 22 2 3  4 9 19 
1tenth 2 2 2 5 10 1 1  2 3 5 

 α = �و0.1 = 0.25 α = �و0.25 = 0.25 
2thirds 25 5 94 188 376 1 28 47 95 190 
1half 9 1 27 54 108 5 10 16 33 67 
1third 4 5 8 17 34 2 2 4 9 19 
1 fifth 3 3 5 11 22 1 1 2 3 6 
1tenth 2 1 2 5 10 1 1 1 2 5 

/
1 0
 

r

0/T 

r

0/T 
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Table 6-2  gives n=34 & r=4 from with ��� = ��� , ���� = �� ,α = 0.10 ,& β = 0.05.  That is a random sample of size 34 is taken from the 

lot and its items are put on life tested simultaneously; unless the 

number of failures before 500 hr is equal to r=4 if before the end 

of 500-hr test, a failure occurs it is replaced by  a new one, and 

the total  number of failures is updated. End of Example  

6-7-3 The operating characteristic (OC) curve of 

single sampling  plans  

Remember that in quality control the so called OC curves for 

an acceptance sampling plan plots the probability of accepting a 

lot MTBF or the reliability of the products.  An application of 

the OC curve which is plotted for single, double and multiple 

sampling plans  is providing easy comparison (��) versus  a 

parameter related to the lot such as MTTF or of plans. What 

follows next is plotting the OC curve for single sampling plans. 

6-7-3-1 Operating Characteristic curve for single sampling 

plans (Pa versus Reliability) 

In a single acceptance sampling plan, we take a sample of 

size n  from  our lot and place all the n products on life test for a 

period of time T as prescribed by the plan.  If the reliability of 

the products for the time T is R, the failure probability  is p=1-R. 

The probability that a large lot is accepted in a single sampling 

plan of size n and acceptance number c is calculated from: 
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This equation, which gives the probability of the failure of at 

most c  products during the test, could be used to  to plot OC 

curve (Pa versus R). 

Example 6-11(plotted versus R) OC curve:Pa  

A plan with n=10, acceptance number c=2 and T=100 is used 

to accept or reject  a large lot. 

a)Plot the OC curve of the plan in such a way that Pa be 

plotted versus the product Reliability. 

b) If the lifetime of the products are exponentially distributed 

with mean 950 hours. Find the probability of accepting a large 

lot of this product. 

Solution 

a)  The following table shows the values of  Pa  for 11 

values of R calculated using Eq. 6-16  or MATLAB 

command binocdf.  

R 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Pa 0 0 0.001 0.0016 0.012 0.055 0.17 0.39 0.68 0.93 1 

 

and the following  MATLAB commands plot the OC curve 

(see Fig. 6.1) R=0:0.1:1; Pa= binocdf(2,10,1-R); plot(R,Pa). 
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b)the lifetime is exponentially distributed then for T=100� = �������� =
6-7-3-2 Operating Characteristic curve for single sampling 

plans (Pa versus mean lifetime)

   The following example illustrates how t

an acceptance

meets a special criterion, t

 

Example 6
 (based on Grant&Leevenworth,1988 page 585)

  Consider the following acceptance sampling plan to be 

taken from a largish lot and plot its OC curves using various 

MTTF. The 
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Fig. 6.1 OC curve  for plan n=10, c=2 

time is exponentially distributed then for T=100= 0. From the curve or the table Pa=0.93. 

2 Operating Characteristic curve for single sampling 

plans (Pa versus mean lifetime) 

The following example illustrates how to plot the OC 

n acceptance sampling plan for inspecting a lot.  If the sample 

meets a special criterion, the lot will be accepted. 

Example 6-12 (OC curve:Pa plotted  versus mean lifetime) 
(based on Grant&Leevenworth,1988 page 585) 

Consider the following acceptance sampling plan to be 

taken from a largish lot and plot its OC curves using various 

The plan is as follows: 
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time is exponentially distributed then for T=100⟹
2 Operating Characteristic curve for single sampling 

OC curve 

the sample 

 

Consider the following acceptance sampling plan to be 

taken from a largish lot and plot its OC curves using various 
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Take a random sample of 22 units from the lot of product, 

and apply life test. Whenever an item fails, replace it with 

another item selected at random from the lot.  If the test 

continues for 500 hr with no more than 2 failures, accept the lot.  

If 3 failures [ or more] occur before 500 hr of testing. Terminate 

the test and reject the lot. 

Solution   

   We suppose simultaneous testing of 22 units for 500 hours 

or 110 units for 100 hours  or 11000 units for 1 hour give the 

same results. To plot the OC curve, note that totally we have 22× 

500=11000 item-hours with acceptance number c= 2. Assume 

the  failure probability is the same for all 11000 unit-hours.  

Define the problem as a single acceptance sampling plan with 

n=11000,and c=2,let: 

 X = number failures in 11000 unit-hours during 1 hour test, 

then given The probability of failure of one unit in an hour,  

or 

the failure rate of one unit per hour or the failure probability of one unit-hour 

 or 

the proportion of binomial distribution p') 

given mean of number of failures in a sample of 11000  

Here � has a value less than 1 and is interpreted as the 

probability of the failure of one unit  in an hour. 

The failure rate  � takes the place of  fraction nonconformities 

(Grant & Leavenworth,1988,page 586).  Then the probability 

2Pr(  XPa

Pr( 2 |X  )'11000 np 
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that a unit fails in an hour is �.   To plot the OC curve, the exact  

value of lot acceptance probability corresponding to a particular �� could be calculated from: Pa=binocdf(2,n=11000,p'=λ).   

In MATLAB, the approximate probability for various ���may 

be calculated from  Pa≅poisscdf(2,np'). 

As stated earlier, in chapter 10, Pa were plotted versus p'.  

But in this chapter the horizontal axis is either the product mean 

life ( θ = �
λ
  ) or the product reliability.  Table 6-3 shows the 

probabilities for some values of  θ.   Figure 6-2 shows the 

corresponding OC curve.    

Table 6-3 Acceptance probability  of in Example 14.15 for 
various mean lifetimes (Grant Leavenworth,1988,Page586) 

 Calculation of OC curve for acceptance sampling plan requiring 11,000 item 
hours of life testing with an acceptance number of 2. Calculation assumes 
that the failure rate is independent of the age of the item tested 

 
Failure rate 

per hour, λ = �� 
Mean life � = ��hours 

Expected average number of 

failures in 11,000 test hours 

( ) 

Probability of acceptance 

(probability of 2 or less 

failures) from Pois. Dist. �� = Pr(� ≤ 2) 0.00002        50000          0.22          0.999 
0.00005 20000                   0.55 0.982 
0.00006 16667 0.66 0.971 
0.00008 12500 0.88 0.939 
0.00010 10000 1.1 0.900 
0.000125 8000 1.375 0.839 
0.00015 6667 1.65 0.770 
0.00020 5000 2.2 0.623 
0.00025 4000 2.75 0.480 
0.00030 3333 3.3 0.360 
0.00040 2500 4.4 0.185 
0.00050 2000 5.5 0.088 
0.00060 1667 6.6 0.040 
0.00080 1250 8.8 0.007 

 



' 11000np 
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To know how Pa is calculated , suppose

n=11000 then 

Pa from Poisson CDF table :

The exact value of Pa is calculable from MATLAB  :�� = Pr(
The following MATLAB commands plots the OC curve. 

p=1/17000:.00001:1/1000;Pa=binocdf(2,11000,p);plot(1./p,Pa)

End of example

6-8 statistical hypothesis testing on mean and 

minimum lifetime

In life testing, situations frequently arise where it is important 

to determine if a

                                                                                Reliabilty Engineering             

To know how Pa is calculated , suppose ;  

n=11000 then .  The approximate value for 

Pa from Poisson CDF table :

The exact value of Pa is calculable from MATLAB  : (≤ 2) = binocdf(2,11000, 0.0003) = 0.3594
The following MATLAB commands plots the OC curve. 

p=1/17000:.00001:1/1000;Pa=binocdf(2,11000,p);plot(1./p,Pa)

Fig. 6-2 OC curve  for Example 14.15 

(acceptance probabilityversus mean life). 

End of example  

8 statistical hypothesis testing on mean and 

minimum lifetime 

In life testing, situations frequently arise where it is important 

to determine if a new system meets a design goal or an 

0.0003 

' 11000 3.3np  

Pr( 2) 0.359 0.360aP X   

Reliabilty Engineering              

;  since 

The approximate value for 

 .  

3594.  
The following MATLAB commands plots the OC curve.  

p=1/17000:.00001:1/1000;Pa=binocdf(2,11000,p);plot(1./p,Pa) 

 

8 statistical hypothesis testing on mean and 

In life testing, situations frequently arise where it is important 

new system meets a design goal or an 

Pr( 2) 0.359 0.360   
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established standard. This leads to the area of statistical 

inference called hypothesis testing(K&L page 263). Chapter 1  

introduced  Bartlett's goodness of fit test  for the assessment of 

the hypothesis that the distributional form was exponential. Here 

2 tests on  the mean and the minimum lifetime are presented.  

6-8-1 Test of hypothesis on minimum life of an 

exponentially distributed lifetime(K&L page263) 

To deal with the following hypotheses on minimum life( ) 

of an exponentially distributed lifetime, 0 1: 0 : 0H H    

given significance level(Type I error probability ) of �, 

Take a random sample of size n, and 

Place all of the n products simultaneously on life test, without 

replacement, 

Continue the test until the time that  rth failure occurs(� ≤ � is a 

predetermined number).  

Prepare an ordered sample of the failure times: x (1), x (2),�, x (r) . 

Calculate the mean lifetime from 

( ) (1) ( ) (1)
1

( )( ) ( )
� '

1

r

r i
i

n r x x x x

r
 

   





;calculate (1)

0 � '

n x
F




 , 

Using Table A at the end of the book or MATLAB command 

( , 2,2r-2)finv 1 , find ,2,2 2rF  , the critical value of F 

distribution for the given � . 
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Ho is rejected if     
(1)

0 ,2,2 2 (6 17)
� '

r

n x
F F





         

Note that if  Ho is rejected, the mean lifetime in this case is 

estimated  by � ' . The minimum life is estimated from

(1)

� '� x
n


   and the relabity is estimared from 

�

� '

t

e







(K&L page258-9). 

  Example 6-13 (K&L page 263) 

The data in the following  table represents cycles to failure 

for throttle return springs. Twenty springs were tested under 

conditions similar to those encountered in actual use. The test 

was truncated at the time of the tenth failure. Can we conclude 

with 95% confidence that the minimum life( ) is greater than 

zero? 

10 9 8 7 6 5 4 3 2 1 
failure 

no. (i) 

2099199 

1221393 

1055528 

1043307 

626300 

530100 

432298 

277761 

245593 

190437 

Cycles to 

failure 

x(i) 

Solution  

0

1

: 0

: 0

H

H









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10

(r) (1) (i) (1)
i=1

(1)
0

(15-10)(2099199-190437)

=1908762
(190437-190437)+(245595-190437)+....+( 2099199-190437+ )

10-1

(n-r)(x -x )+ (x -x )
θ = = +

r-1 10-1

θ =2767421

nx 15×190437
F = = =1.03

� 2767421θ'








 

The critical value of F is not in Table A, Using MATLAB: 

α,2,2r-2 0.05,2,18 0 0.05,2,18F =F =finv(0.95,2,18)=3.5546 F <F  

H0 is not rejected i.e. it is not concluded minimum life( ) is 

other than zero. End of example  
  

6-8-2 Test of hypothesis on mean lifetime and failure 

rate concerning exponential distribution(K&L page263) 

To test the following statistical test of hypothesis on mean 

lifetime(�) of an exponentially distributed product with 

significance level of � 

0 0

1 0

:

:

H

H

 

 




 

Perform the following steps: 
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1.Take a random sample of size n, and 

2.Place all of the n products simultaneously on life test, without 

replacement 

 3.Continue the test until the time that  rth failure occurs(� ≤ � is 

a predetermined number).  

4.Prepare the ordered sample of the failure times: x (1), x (2),�,x (r). 

5.Estimate the mean lifetime from ( ) ( )( ) r in r x x

r


 


  

6.Calculate 2
0

0

2r







, 

7.Using Table E at the end of the book or 

 MATLAB command chi2inv(α, 2r), find 2
1 ,2r  i.e. the critical 

value of chi-squared distribution for the given � . 

8. Reject Ho if  

                  2 2
0 ,2

0

2
r

r



 


 


                               (6-18              )  

The criteria of the above test is applicable  for performing the 

test on the failure rate( ) of exponentially distributed products 

i.e.     0 0 1 0: :H H     . 
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Example 6-14  

A random sample of certain exponentially-distributed-life 

product was placed on  a life test without replacement. The test 

was terminated when the tenth failure occurred. Other data are ; 

(i) (10)15, x =18217915,x 2099199n    . 

Perform the following test of hypothesis with %5  on the 

mean lifetime(�): 

6
0 0

1 0

H :θ θ =10 cycles

H :θ>θ


  

Solution  

2
0

0

2
10, 15, 5%

r
r n


 


   



 

The test is  of non-replacement failure-terminated type, therefore 

according to Eq. 6.6 

( ) 2
0 6

( ) (2)(10)(2871391)
2871391, 57

10
r in r x x

r
 

 
   


 

Table E or MATLAB command chi2inv(0.95,20)  yields:  

2
%5,20 31.41  . 2 2

0 %5,20   0: θH  0 is strongly rejected, & 

1 0H :θ>θ is not rejected  
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6-8-3 Comparison of two designs  

An engineer would like to compare 2 designs of a product. 

From Design 1 a random sample of size  n1 and from Design 2 a 

random sample of size  n2 is taken and placed on life test.  The 

tests are terminated when ���� failure occurs in the sample of 

Design 1 and ���� failure occurs in the sample of Design 2.  �� ≤ �� and�� ≤ �� are predetermined truncation points.    

Suppose the failure times are S� = ���(�), ��(�), … , ��(��)�,  S� = ���(�), ��(�), … , ��(��)�. For simplicity S� will be 

assigned such that��(�) ≤ ��(�).  If the lifetimes are 

exponentially distributed, to compare their mean lifetimes 

1 2,   i.e. performing the following test: 

0 1 2

1 2
1

1 2

:

:

H

H

 

 

 








 

The statistic under the null hypothesis is (K&L p265):  �� = ��������× �                                         )19 -6(  
where  

n1 Sample size taken from Design 1 

n2 Sample size taken from Design 2 

r1 Truncation point of the test of Sample 1�� ≤ �� 
Terminate the lifetest when ���� failure occurs 
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r2 Truncation point of the test of Sample 1�� ≤ �� 
Terminate the lifetest when ���� failure occurs 

2( )
2

x
r

 
,

1( )
1

x
r

  
Occurrence time of 1

thr & 2
thr failure in Design 1 & 2 respectively 

,
2(1)

x
1(1)

x
 

The occurrence time of first failure in  Design 1 & 2 respectively 

1( ) 2( ),j jx x  
Elements of the samples 

2 12
,2 2,2 2r r

F  
 α -significance-level

2
 critical value  of an F distributions 

with 2�� − 2, 2�� − 2 deg of free. 

Obtainable from Table A or MATLAB command 

 ����(1 − �� , 2�� − 2, 2�� − 2) 

C 2

2

1

1

2 2 2( ) 2(1) 2( ) 2(1)
1

1 1 1( ) 1(1) 1( ) 1(1)
1

( )( ) ( )

( )( ) ( )

r

r j
j

r

r j
i

n r x x x x

C

n r x x x x





   



   





 

                                  Rejection Criteria: 

Reject �0     if      ��  is outside 

α
2 1 2 12 2

1 ,2r -2,2r -2 ,2 2,2 2
F

r r
F  

 
   

For 1 1 2:H    

Reject �0       if   1 20 ,2r -2,2r -2F >F  For 1 1 2:H    

To test if the failure rates of the 2 designs are significantly 

different or not i.e. 
0 1 2

1 1 2

:

:

H

H

 

 




, the above test could be used. 

It is our duty to act in such a manner 
that can  be universalized i.e. 

we would want everyone else to act 
in a similar manner 

(Kant) 
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Exercises1 

In the problems, if the type of distribution is needed and not specified, 

exponential distribution is assumed 

1. The weather radar system on a commercial aircraft has 

an MTBF of 1,140 hours. Assume an exponential time to 

failure distribution and answer the following questions:  

(a) What is the probability of failure in a 4-hour flight? 

(b) What is the maximum length of flight such that the 

reliability will not be less than 0.99? (Assume that the 

system is in continuous operation during flight.) 

2. The MTBF of  a kind of tank is 810 kilometers. 

Assuming an exponential distribution:  

a) What is the maximum mission length such that there 

will be a 0.98 chance of the tank returning?  

b) What is the probability of the tank returning from a 

160 kilometer mission?  

c) How many tanks should be sent out 

on the 160 kilometer mission to obtain a probability of 

0.99 .that at least five tanks will arrive at the target area 

(assume 80 kilometers to target). 

3. Ten engines of a new design were each driven the 

equivalent of 50,000 kilometers. Odometer readings 

were recorded whenever an unscheduled maintenance 

                                                           

1 Exercises 1 through 8 are from Chap. 9  K&L page 269 problems  
1,2,3,4,6,8,9,10  
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action occurred. The odometer readings for each vehicle follow: 

Odometer readings 
Motor 

no. 
   27766 21397 11970 220 1 
     48836 45270 2 
  47459 32769 30980 25989 25695 3 

44094 36535 31964 29187 21831 14672 4200 4 
 45208 43601 37524 31613 29147 3900 5 
  40907 33348 23649 21183 1275 6 
    11840 6300 3730 7 
 47213 45784 31628 28301 22710 22565 8 
  44550 41108 19539 14548 12759 9 
  47996 42169 41854 18727 12212 10 

       

 a) Can the data be represented by the exponential distribution? ( 0.1)  

 b) If answer to part (a) is yes, estimate the MTBF. 

 

4. The following data represent kilometers to failure: 

 

12400 10600 27200 43000 

18200 200000 4100 27000 

14200 109000 40500 68000 

24500 2400 2600 46000 

 

 a) Assess the feasibility of using the exponential 

distribution to model this 

situation. Assuming that the exponential is applicable: 

b) estimate the MTBF; 

c) set a 90% lower confidence limit on the 10%failure 

kilometer. 

d) With 90% confidence, quote the 2,400 km reliability. 
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5. An automobile was driven over a 120,000 kilometer test 

course. The following represent odometer readings at 

which a particular type of failure 

63582 27720 4123 

66057 28496 4497 

100763 40887 10506 

 48323 12317 

Assuming an exponential distribution as representative, is there 

any evidence that the failure rate in the first 40,000 km is different 

than in the last 80,000 km? ( α=0.1 ). 

6. For a test vehicle, major electrical failures occurred at 

the following kilometers 

23128 17393 63 

24145 18707 114 

33832 19179 14820 

34345 22642 16105 

 

The vehicle was driven a total of 36,000 kilometers. 

 (a) Estimate the MTBF. 

 (b)Determine the 90% two-sided confidence interval for 

the MTBF.  

(c) Estimate the reliability function. 

 (d) Determine the 95% lower confidence limit for the 

1,200 kilometer reliability.  

(e) With 90% confidence estimate the kilometer at which 

10% of the population will fail.   

7. In 600,000 test kilometers accumulated on 6 vehicles, a 

total of 69 failure occurred. Assuming an exponential 

failure distribution:  
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a) Estimate the MTB  

       b) Find the 90% lower confidence limit on the MTBF.  

       c) Find the 90% lower confidence limit on the reliability function. 

8. A transmission valve operated for 9,276 cycles before 

the test was discontinued. The test was stopped because 

an oil pump failure caused the valve to  burn out.  

a) Set a 90% lower confidence limit on the MTBF. 

b) A second valve of a different design failed at 19,460 cycles. 

Management would like your recommendation as to which 

valve is best. What would be you answer? 

9.  (K&L  pp 239-240 ) A device was placed on 245-hr lifetest had 

20 failures occurred on the following times: 

Failure times  during 245-hr lifetest 
157.4 108.6 74.7 21.2 

164.7 112.9 76.8 49.9 

196.8 127.0 84.3 59.2 

214.4 143.9 91 62 

218.9 151.6 93.3 74.6 

 

Ignoring the repair times, could we say that Time Between 

Failure(TBF) follows an exponential distribution? 

Hint: At first compute the TBFs which are the following values 

Time between failures 

5.8 15.3 0.1 21.2 

7.3 4.3 2.1 47.9-21.2=26.7 

32.1 14.1 7.5 11.3 

17.6 16.9 6.7 2.8 

4.5 7.7 3.2 12.6 
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10. Plot1  the OC curve  (Pa versus MTBF) for the following 

sampling plan: 

Twenty units are randomly taken from a largish sample, and 

simultaneously placed on lifetest. Whenever an item fails, it 

is replaced  with another item selected at random from the 

lot.  If the test continues for 500 hr with not more than 2 

failures accept the lot. If 3 failures occur before the 500 hr of 

testing, reject the lot and terminate the test. 

_

                                                           

1 Solution on Page 586 Grant  &Leavnworth(1988) 
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7.1 Dynamic  Models in Reliability 
Dynamic models (time dependent) are important, realistic, 

and more appropriate than static models which were covered in 

chapter 2. Incorporating time into static models , this  chapter 

deals with series, weakest link, active parallel, standby 

parallel(perfect switching and imperfect switching).   

7-1-1 Series  Systems 

Series systems are those in which all components are 

required to be in a state of functioning for the system to be 

7 
Dynamic  Models+ Availability, Application of 

Markov Chain 

Aims of the chapter 

This chapter deals with time related reliability models or 

dynamic models.   Series systems and two  but  types of parallel 

redundancy, namely active redundancy and standby redundancy 

are introduced. Some system attributes  such as maintainability, 

serviceability as well as availability are defined.  The chapter 

also  points out the application of Markov chains to reliability 

analysis. 
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functioning. If a system is assembled of m components in series, 

its reliability(����) is: 

����(�) = ∏ ��(�)����                              (7-1) 

where ��(�), � = 1,… ,� are the reliabilities of the 
components. 

Proof No.1 

'-R (t)
h (t)=

R (t)
sys

sys
sys

      
1 1

( ) ( ) [1 ( )]
m m

sys i i
t t

R t R t F t
 

     

'

1 11 1

R (t)= ( ) ( ) ( ) ( )
m mm m

sys i j i j
i ij j

j i j i

f t R t f t R t
  

 

   
     
   
   
   

    

 
Therefore 

' 1 1

1

( ) ( )
R (t)

h (t)=  
R (t)

( )

mm

i j
i j

j isys
sys m

sys
i

t

f t R t

R t

 




 
 
 
 
 

  

 


 

1

1 11

( ) ( ) ( )
h (t)= +...+  = ( )

( ) ( ) ( )

m m
m i

sys i
i im i

f t f t f t
h t

R t R t R t 

   
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Proof No.2 

0

( )

0

1

( ) ( ) ... ( ) ( ) ln ( )1

ln ( ) ln ( ) ( )
1

( ) ( ) ln ( ) , ( ) ( )

( ) ln ( ) ( ) ( ) ( )

h d

m

sys sys i sys i
i

R t R t R t ln R t R tsys n sys i

d d
R t R tsys i

dt dt

m
hi t

i

d
R t e h d R t h t ln R t

dt

d
h t R t h t h t h t

dt

 

 







     

  



     


       



 

 

End of proof  
 

 Now Suppose the failure rate functions of m independent 

components  of  a system are: h�(t) = λ� + C�t� , i = 1,2, . . . ,m 

where      �� ٬�� و   k  constant values. 

 Then using Eq. 1-14-1 

��(�) = ��∫ ��(�)���� = ���������������  

And using  Eq. 7-1  

����(�) = exp �−�∑ ������ − ������� ∑ ������ �                     (7-2-1) 

Let �∗  = ∑ ������   ,   �∗  = ∑ ��  ����   , � = � ∑ ������ = �∗�  
then (K&L p39) ����(�) = e�(�∗� ��∗�∗× ����×(�∗� )����∗� )

. 
 

For large  m it could be shown that : lim�→∞ ����(�) = ��� = �� �∑ ������ = �� ��∗                   (7-2-2) 
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That is the time between failure of  a series system, with largish 
number of components with failure rate function 

 ℎ�(t) = �� + ���� , is exponentially distributed with parameter ∑ ������ . 

Note that if ℎ�(t) = �� Eq. 7-2-2 holds regardless of the value 

of m.  By substituting �� = 0  in Eq. 7-2-1 this fact could easily 

be verified.  

Example 7-1 

The failure rates of an n-component series system are 

constant values iλ , 1...i n  . The components are independent. 

Find the failure rate function, the reliability function and MTBF 

of the system. 

Solution  
The failure rates of the components are constant i.e. the 

lifetime distributions are exponential. The lifetime of a series 

configuration equals the lifetime of the component that has the 

minimum life among the components.  On the other hand the 

minimum if some exponentially distributed random variables 

has an exponential distribution.  Therefore the distribution of 

this system is exponential with the following functions: 

According to Eq. 7-2 ,the system failure rate function ( sysh ) is 

n n

sys i i
i=1 i=1

h (t)= h (t)= λ = constant   
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Then the reliability function is: 

                        sys

-t λ
iR (t)=e


                    (7-4-1) 

The mean lifetime of this series system is  

1
n

n n
i=1 i

i
i=1 i=1

1 1 1
1

λ
i

MTBF

MTBF




 
    

 


 
        (7-4-2) 

where i
i

1

λ
iMTBF   .  End of Example  

Mean lifetime  and reliability function of  a  series 
system of identical components with failure rate � 

Consider a series system having n independent components 
whose lifetimes are exponentially distributed   with mean 

1
partMTBF


  , then according to Eq. 7=4-1&2 mean time 

between failures of the system and the reliability function the 
system are: 

        sys
-R (t)=e n t

            (7-4-3) 

1 partMTBF
MTBF

n n
                         (7-4-4) 

7-1-2 Series  Chain   Model or Weakest Link Model 

A chain-model system works like a chain. A chain is not 

stronger than its weakest link.  
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The series chain model is a series system in that if anyone 

component fails the system will fail; however, the concept of 

how a component fails is different. As an example of this 

concept of failure, consider a circuit composed of n identical 

components, and this circuit is subjected to thermal stresses. Let 

us assume for simplicity that the thermal stresses are the main 

cause of failure. In this situation the one component having the 

least resistance to the thermal stresses will be the first to fail. 

Then, in this case, the system reliability will be(K&L page 214): 

 ���� = ���(�� ,1, … , �)                                     ( 7-5)         
where Rj is the reliability of the ith component and describes the 

component's resistance to failure from thermal stresses. 

Calculation of a component reliability (Rj) 

If the strength of a component and the stress applied to the 

system are random variables denoted by  ,S the chain will 

break if the applied stress exceeds the strength of anyone link. 

Hence to compute the component  reliability, their joint density 

function  should be integrated over s  (see Fig 7.1): 

  Pr( ) ( , )i sRو s f s d ds
s   


  

     ( 7-6) 

With the assumption that   and s are independent: 
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 
0

0

( ) ( ) ( ) 1 ( )i s s

s s

R f s f d ds f s F s ds 



 
 



 

 
   

 
       (7-7) 

 
                   Fig 7-1 The region where the strength is more than stress 

 

Let C  be the random variable representing the strength of the 

n-link chain. This will be: 

0
min

n

C i
i

 


  

where  i  is the strength of the ith link. 

According to Eq. 1-42  in Sec. 1-12 on the minimum  of  a 

random sample  of size n from a continuous distribution Fx(a), if 

(1)X  denotes the minimum we have: 

 (1) ( ) 1 1 ( )X X
nF y F y                (7-8) 
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In the above chain model if the cumulative distribution function 

(CDF) of the strength of each the  n links is ( )F y , then the CDF 

of the chain strength, ( )G y , equals: 

 (1)( ) ( ) 1 1 ( )
n

G y F y F y      

Where  

   

( )F y     is the CDF of each  link of the chain 

 (1)( )F y  is the CDF of the strength of the weakest link. 

On the other hand according to the concept of Eq. 7-7 i.e.

 
0

( ) 1 ( )i sR f s F s ds



  and the equation

  n

δ
1-F (y)=1- 1- 1-F (y)

C
 we could conclude that the reliability 

of the n-link chain  which equals  RC=Pr( >s) is obtainable from: 

 

 
0

( ) 1 ( )
n

C SR f s F s ds



                    (7-9) 

Where  

CR      The reliability of an n-link  chain 

( )F y  The  CDF of  the strength of an individual component. 

( )Sf s    The pdf  of the  stress acting on the system 

Note the similarity of Eq. 7-7 with Eq. 7-9 for n=1. 
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Example 7-2  

A system is exposed to heat stress whose value is 

exponentially distribute with mean   500 °C. The system is a 10-

link series chain. The strength of each link is exponentially 

distributed with  mean   600 °C. Find the reliability of the chain. 

Solution 

The probability density function(pdf) of the strength of each 

link: 

1 600 600( ) , ( ) 1 ,
600part part

t t
f t e F t e 

 

    

The pdf  of the stress applied to the system is 500

s
1

500
f e
s



  

According to Eq. 7-9: 

0
( ) 1 ( ) 10

n

sys partR f s F s ds n
s 



      

10

500 600

0

56

3000

0

1

500

1 1 3000 6

500 500 56 56

s s

sys

S

sys s

R e e ds

R e ds

 





 
  

 

   





 

End of Example  
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It is worth mentioning that in this chapter the subsystems 

(components ) of a system are assumed to be independent of 

each other unless specified  something else.   

7-1-3 Parallel systems 

A parallel system is one that will fail only if all of its  

subsystems fail. Three models  related to this kind is studied 

here: active parallel redundant, standby parallel redundant and 

shared load parallel.   

Definition of Redundancy  

In reliability engineering, redundancy  may be defined as the 

duplication of the components of a system with the intention of 

increasing reliability of the system and an alternative to failing 

condition. Two types of commonly applied redundancy are 

active redundancy and standby redundancy. 

Active((Hot) Redundancy Definition 

 Active redundancy does not require the external components 

or devices to perform the function of detection, decision and 

switching when an element or path in the redundant structure 

fails(Based on Li,2016). The redundant elements are always in 

operation to share the load of the system. This redundancy is 

also called hot redundancy(Shooma,2002 page 336)  

Standby Redundancy Definition 

Standby redundancy is defined as the redundancy that 

requires the external elements or devices to detect, make a 

decision and switch to another element or path as a replacement 
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for a failed element or path(Li,2016). In this type extra units  are 

not brought into use until the main unit fails. It is the primary 

consideration in determining whether cold, warm or hot  standby 

is to be used(Lewis, 1994, p263). 

Definition of cold & warm standby redundancy1: 

In cold standby the secondary unit is under no stress.  

In warm standby the secondary unit is under a stress less that 

of  the main unit and more than that of  cold standby.  

It is worth mentioning that if nothing is said about the 

coldness or warmness of the standby components in this book, 

they are assumed cold.  

7-1-3-1 Reliability in active redundancy 

In a parallel system with active redundant, all subsystems are 

working and if the components are independent, its reliability is 

derived from: 

     1 2( ) 1 1 ( ) 1 ( ) ... 1 ( )sys nR t R t R t R t                  (7-10)
 

Proof 

Let X� denote the lifetime of the system, and ��, i=1,..n 

denote the lifetime of the subsystems.  Then in an active 

redundant system: 

                                                           

1 From: , Lewis(1994) page 263, Grosh(1989 )page169,Li(2016)and 
https://www.weibull.com/hotwire/issue21/  
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��(�� ≤ �) = ��[���(��, … , ��) ≤ �] = ��(�� ≤ �,… , �� ≤ �) 
Assuming  ��, i=1,..n are independent: 

��(�� ≤ �,… , �� ≤ �) = ��(�� ≤ �)…�� (�� ≤ �)    ��(�� ≤ �) =  ��(�� ≤ �)…��(�� ≤ �) 
  ⇒   1 − ����(�) = [1 − ��(�)][1 − ��(�)] … [1 − ��(�)]   ⇒ 

 ����(�) = 1 − [1 − ��(�)][1 − ��(�)]… [1 − ��(�)] 
7-1-3-2  Reliability and MTBF in active system with exponentially-  

distributed-lifetime  components 

In an active parallel system whose components  failure rates 

, 1,...,i n
i
  are constant(or  the lifetimes are exponentially 

distributed), the reliability of each component is calculated from 

( ) , 0it
iR t e t

  , and the system reliability is calculated from  

1

( ) 1 (1 ) 0i

n
t

sys
i

R t e t



   


                  (7-11) 

The  Proof  is similar to that of Eq. 3-2.  

Note that Eq. 7.11 implicitly shows that the lifetime of active 

systems in not exponentially distributed.   

Two- component active parallel system 

For n=2 from Eq. 7-10 we could write: 
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1 2 1 2( ) ( ) ( ) ( ) ( )sysR t R t R t R t R t    

If  the failure rate of  the components are constants ,
1 2
  then from 

Eq. 7-11:  

����(�) = 1 − �1 − �� �����1 − �� ���� =
1 2 1 2( ) 0t t te e e t      
                       (7-12-1) 

If ,
1 2
   are equal 1 2(λ =λ )  then: 

- - -λt 2

sys
λt 2λtR (t)=2e -e =1-(1-e )                 (7-12-2) 

The system mean life is: 

0
1 2 1 2

1 1 1
( ) ( )sys sysMTBF R t dt

   



   
     (7-13) 

Three-component active parallel system 

   For n=3 from from Eq. 7-10 ����(�) = 1 − (1 − ��(�))(1 − ��(�))(1 − ��(�)) 
If  the failure rate of  the components are constants , ,

1 2 3
  

then 
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����(�) = 1 − �1 − �� �����1 − �� �����1 − �� ����    (7 − 14 − 1) 
and the system mean life is: 

1 2 3 1 2 1 3 2 3 1 2 3

( )

1 1 1 1 1 1 1
+ + - - - +

λ λ λ λ +λ λ +λ λ +λ λ +λ +λ

Sys sysMTBF R t dt


 0  (7 − 14 − 2) 
  Mean lifetime and reliability for active parallel systems 
having components with constant failure rate   

If  all n components of  an active parallel system are 

independent and their lifetimes are exponentially distributed 

with parameter   and mean lifetime   then(based on 

Garosh,1989 page135): 

    
1

1n

SysActive
k

MTBF
k




    (7-15) 

Table 7-1 gives the values of n
1

1
M

n

k k

 . 

Eq. 7-15 could be verified for n=2 from Eq. 7-13: 

sys

1 1 1 3 3
n=2 MTBF = + - = = θ

λ λ 2λ 2λ 2
  

and for n=3 from Eq. 7− 14 − 2: 

sys

3 1 1 11 11
n=3 MTBF = -3× + = = θ

λ 2λ 3λ 6λ 6
. 
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The reliability of the above n-components active parallel system 
is: 

-λ t nR (t)= 1 -(1 -e )s y s                 (7-16) 

 

 

 

 

 

 

 

 

 

 

 

 

It is seen from Table 7-1 that "for a system to have double the 

mean life of a single component, it must consist of 4 

components. To triple the mean life the system must have 11 

components.  Theoretically, there is no limit to how much the 

system mean life can be extended but the cost of extending life 

through mere redundancy is usually prohibitive. Redesign 

should be performed to excessive redundancy"(Grosh,1989 p 135). 

Given the reliability function of an active parallel system, 

( )activeR t , the failure rate function is obtained from: 

Table 7-1Values of   �� = ∑ ������   for 

n=1,...,32 (Grosh,1989 p136) M� n M� n 
3.4295 17 1 1 
3.4951 18 1.5 2 
3.5477 19 1.8333 3 
3.5877 20 2.0833 4 
3.6453 21 2.2833 5 
3.7343 22 2.4500 6 
3.7343 23 2.5928 7 
3.7759 24 2.7178 8 
3.8159 25 2.9289 9 
3.8544 26 2.9289 10 
3.8914 27 3.0198 11 
3.9271 28 3.1032 12 
3.9616 29 3.1801 13 
3.9950 30 3.2515 14 
4.0272 31 3.3182 15 
4.0585 32 3.3807 16 
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( )

( )
( )

active

active
active

d
R t

dth t
R t

            (7-17) 

7-1-3-3 Reliability of standby parallel system  

Consider the standby parallel system shown in Fig 7.2. In the 

n-unit system  only one unit works and when it fails the one of 

the n-1 standby units replaces it by the help of a switch.  Upon  

failure, this active unit is replaced with another standby unit. 

The process continues until no more standby redundant units is 

available. 

  

 

 

 

 

Fig. 7,2  A standby parallel system 

The switch could be an operator or a device such as a 

hydraulic valve or electric relay or a contractor.  Let the 

probability of successful operation of the switch for replacing 

the unit be denoted by Ps.  If Ps is 1 the case is called  perfect 

switching; if less than one, the case is called  imperfect 

switching. 

Case 1: Perfect switching 

Switch 

1 

2 

n 
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"Perfect switching means perfectness of a detection and 

switching mechanism used to detect failure of a component and 

to activate a redundant component"1. In other word 

Perfect switching  is a situation where the reliability of  the 

switch when needed to perform its function is 100% (Ps=1) i.e. 

no failure is assumed for the switch when needed to perform its 

task. Below the reliability of systems having one active unit and 

n-1 standby redundant (backup) units are analyzed. 

Perfect switch :Two-component parallel system 

with an active unit and a standby redundant unit 

Consider a system with one active subsystem(unit) and one 

standby (backup) unit which replaces the active upon failure by 

the help of a switch of 100% reliability (Ps=1). The reliability of 

this system is(K&L page 219): 

2 t

1 2 10tandby

t

1 2 10

d
(t)=R (t)- R (t-t ) R (t ) dt =

dt

=R (t)+ R (t-t )f (t )dt

s
R

 
  
  

  





          (7-18) 

Where   

2

tandby
(t)

s
R  

Reliability function of a system having one 

active unit and n-1 standby redundant units. 

                                                           

1 Pradip Kundu & Asok Nanda, Redundancy Allocation in a System: A Brief Review 
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1R (t)  Reliability function of the main unit 

2R (t) Reliability function of the redundant unit 

1f (t)  
Pdf  of the main unit 

For proof, interested readers could refer to Lewis(1994) page 

255 or K&L page 219. 

Example 7-3-1  

A system has one active unit with failure rate �� = ���  and 

one standby redundant unit  with failure rate �� = ���.  When the 

active unit fails a perfect switch replaces it with the other unit. 

Calculate the reliability of the system. 

Solution    

The constant failure implies that the life time is exponentially 

distributed ; then 1 2-λ t -λ t

1 2R (t)=e , R (t)=e  . According to Eq. 7-18: 

'
1 1

1 1 1 2 2 1

1 2 2 1

2 t

1 2 10tandby

t (t-t )2

0

t t(t-t ) ' ( ) '2
1 10 0

2
-λ t -λ t (λ -λ )t

1
tandby

2 1

d
(t)=R (t)- R (t-t ) R (t ) dt =

dt

d
e e e '

dt

=e e e ' e e e '

1
(t) = e + λ e (e -1)

λ -λ

s

t t

t t t t t

s

R

dt

dt dt

R

 

     




 

 

    

 
  
  

 
   

     





 
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1 1
1 225 10

2

tandby
(20)=exp(-20/10)+(1/10)*exp(-20/25)*(exp(20/(1/25-1/10))-1)/(1/25-1/10) 0.8842

s
R

 



 

 

End of Example  

Perfect  Switch : Two-component parallel system 
with identical active and standby units(failure rate= � ) 

Assume that the main and standby units are identical, each 

with a constant failure rate � and the switch is perfect. Then: 

           
2

( ) (1 ) 0t
SysR t e t t 

                      (7-19)  

Proof 
Since R1(t)= R2(t)= te    then according to Eq. 7-18: 

2 t

1 2 10tandby

t ( ') '

0

d
(t)=R (t)- R (t-t ) R (t ) dt =

dt

- dt = (1 )

s

t t t t t t t

R

e e e e te e t             

 
  
  

     





 

End of Proof .  

 Example 7-3-2 

  Calculate  and compare the reliability of two configurations 

of a two-unit system (active parallel and standby parallel). The 

failure rate of  the unit is 5%. 

Solution 



Chap 7  Dynamic  Models+Availability,  Markov Chain                            374 

 

 

Since the components failure rate is constant, the lifetime is 

exponentially distributed. The reliability for standby 

configuration is calculated from Eq.7-19. 

2

standby
( ) (1 ) 0tR t e t t     

The reliability for active configuration is calculated from 

Eq.7-19. 

2

1 2
1

( ) 1 (1 ) 0it
sys

i

R t e t   


     
  

Then for 5
10010 ,t    

2 2

standby active
91%, 84.5%R R   

for 
2 2

5
100

standby active
100 , , 4%, 1.3%t R R      

Perfect Switch: Three-unit standby system (1 active 

&2 standby) 

For the reliability of a three-unit standby system the 

following relationship holds (K&L p 220)

1
3 2 t t t

1 1 2 2 3 1 2 2 10 0tandby tandby

-
(t)= (t)+ f (t ) f (t )R (t-t -t )dt dt

s s
R R      (7-20) 

where  
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standby

3

R  The reliability of 3-unit standby system 

standby

2

R  The reliability of 2-unit standby system 

�� The density function of active unit  �� The density function of standby unit No. 1 R�(t) The density function of standby unit No. 2 

If the 3 units are identical and their lifetime is exponentially 

distributed with parameter  λ then: 

 
2

3

( ) 1 0
2

t

sys

t
R t e t t




 
    

  

       (7-21) 

Example  7-4 

The reliability of the water supply system of a city is a 

concern of the city council.  The council would like to ensure 

the inhabitants that the system will work for 20 years with a 

reliability of 95%.  At the time being the water is supplied by a 

reservoir and a river ( with mean lifetime of 25 and 10 years 

respectively) in parallel. The water is then disinfected in a 

building that has an active unit for disinfection and 2 standby 

backup units.  Each of the disinfection units is designed for a 

useful life of 25 years. After disinfection the water goes to 

distribution subsystem, which is 99% reliable.   The council is to 

decide whether to allow the municipality to add a deep well to 
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the water supply subsystem or not?  What do you suggest?. 

Assume all life times are exponentially distributed. 

Solution 

The RBD of the system of the Proble3m is as follows: 

 
Fig 7.3 The RBD of  the wateter supply system of  Example  7-4 

Data:  � = 20  , ����������    = ���    ,     λ������������   = ��� ������ = ���  ,            ����������������� = 0.99    
The reliability of the first subsystem (reservoir+ river) is 

calculated from Eq.7-10, assuming the reservoir and the river 

are both active: �(20) = 1 − (1 − 20

25e
 )(1 − 20

10e
 )= 1 − (1 − 0.4493)(1 − 0.13532) = 0.5238 

The 20-year reliability of the second subsystem 

(disinfection unit) is calculated from Eq. 7-21: 
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 
220

220 20

2

25
25 25( ) 1 (20) (1 ) 0.932

2 2
t t

R t e t R e 



 

       
  

The entire system reliability is currently: 

���� = 0.5238 ∗ .932 ∗ .99 = 0.4833 

Suppose the permission for a well of reliability of R' is issued by 

the council; then the system reliability would be: ���� =[1-(1-.4493)(1-0.13532)(1-R')]*0.932*.99 

It is evident the if even if R'  has its greatest value i.e. 1 the 

system will have a reliability of  [1-(0)] *0.932*.99= 0.9227. 

The council cannot issue the permission because is interested 

in 95% reliability. End of Example  

Perfect Switch: n-unit standby system (1active &n-1 standby) 
Consider an n-component system has 1 active unit and n-1 

standby units whose lifetimes are exponentially distributed with 

parameter  λ .  If the switch is 100% perfect then(O'Connor 2003 

page 167,K&L page 221):  

1

0

tandby

( )
( )

!

n
i

n
t i

s

t
R t e

i





 

 
 
 
 
  


                   (7-22) 

n

tandby

tandby n

tandby

- R '(t)
  h (t)=

R (t)

s

s

s

                          (7-23) 

 



Chap 7  Dynamic  Models+Availability,  Markov Chain                            378 

 

 

Comparison of  Two 2-component  parallel 
configurations (active and standby) 

Figure 7.4 shows "both the reliability and the failure rate for 

[2-component] active and standby parallel systems, along with 

the results for a system consisting of a single unit with the 

assumption that the lifetimes are exponentially distributed. At 

intermediate times the failure rate for the standby system is 

smaller than for the active parallel system. This is reflected in a 

larger reliability for the standby system(Lewis,1994 page 256). 

 

  Fig 7-4 Properties of two-unit parallel systems(Lewis, 1994 page 256):  
      a) instantaneous  failure rate                 b) Reliability function   

Failure rate and mean lifetime of active & standby 

parallel systems having similar components 

In this section active and standby configurations of a parallel 

system having similar subsystems are considered and their  

mean lifetime and reliability functions are mentioned. 
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2-&3-component active and perfect switch standby 

systems 

Failure rate function of 2-component systems: 

a)The instantaneous failure rate function of an active parallel 

whose two active components have exponentially-distributed 

life is given by: 

( )1
( )

( )
active

active
active

dR t
h t

R t dt
              

1
( )

1 0.5

t

active t

e
h t

e










 
  

 
          (7-24) 

b)The instantaneous failure rate function of a parallel system 

with 1 active and 1 standby component and a perfect switch 

whose 2 components have exponentially-distributed lifetime is:

standby stand
stand

1
( ) ( )

( )

d
h t R t

R t dt
                     

            standby ( )
1

t
h t

t






 
  

 
               (7-25)

 

Mean lifetime of 2-component system 

The mean time to failure(MTTF) of a system could be 
calculated from integrating its reliability function over(0 ∞):  
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( )M T T F R t dt


 0 .               (7-26) 

If the mean lifetime of a component( partM T T F ) is given.  

The mean lifetime of an active parallel 2-component  system is: 

3
2active partMTTF MTTF           (7-27-1) 

And that of  a standby parallel 2-component  system is: 

2stamdby partMTTF MTTF             (7-27-2) 

Mean lifetime of 3-component standby system 

Given the lifetime of each component , partM T T F ,  in a 3-

component standby system whose switch is perfect i.e. =1SP   

and has 1 active and 2 standby  independent components, the 

system mean lifetime is given by: 

3stamdby partMTTF MTTF         (7-27-3) 

Mean lifetime of n-component standby system-perfect switch 
Given the lifetime of each component , partM T T F ,  in an n-

component standby system whose switch is perfect i.e. =1SP   

and has 1 active and n-1 standby  independent exponential-

lifetime components, the system mean lifetime is given by: 

standbyMTBF = =n MTBFpart

n


        (7-27-4)
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Where  is the parameter of the exponential distribution of  the 

lifetime  of each component . 

Proof 

The lifetime(X) of  a system having 1 active unit,n-1 

redundant standby components and a perfect switch is the sum 

of the lifetimes(�� i=1,..,n) of its components: �������� = ∑ ������ ⟶
standby

1

( ) ( ) ( )
n

i i i
i

E X E X E X MTBF


       

 

standby
1

( ) ( ) ( )
n

i i i
i

E X E X E X MTBF


      

If  Xi is exponentially distributed with parameter i then: 

1
sys

i

MTBF


                                    (7-27-5) 

If  1 ... n     then 
standbyMTBF = =n MTBFpart

n


  and the 

proof  is complete.  

Example 7-5 

A system has 1  active unit , 1 cold standby unit and  a 

perfect switch. The failure rate of both units is 1 failures per 

1000 hours.  Calculate 100-hr reliability of the system. 

Solution  
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.t=100, λ=0 001, according to Eq. 7-19

-λt

standby

2
R (t)=e (1+λt) =0.99532  

Notice that if both units were active the according to Eq. 7-10:  

2
-λt 2

active
R (100)=1-(1-e ) = 0.9909 .  

Reliability function  and lifetime pdf  of n-

component standby system-Perfect switch 

This section deals with the probability density function of the 

life time and the reliability function of a system having 1 active 

unit and n-1 cold standby units. 

Life pdf & reliability for Perfect switch: 2-component 

standby system 

A single unit is put in service. A perfect switch replaces it by 

a cold backup unit as soon as a failure occurs.  The density 

function of the lifetime of this system is derived from the 

following convolution(Grosh, 1989 p164): 

1 20
( ) ( ) ( )

t

sys z
f t f z f t z dz


                        (7-28). 

where 
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sysf  The pdf of system lifetime(T) 

1f  The pdf of  the main device lifetime(T1) 

2f  The pdf of the backup lifetime(T2) 

Special case: Constant failure rate & perfect switch(�� = �) 

If both devices have constant failure rates 
 1 2λ ,λ  and �� = 1, the 

lifetime pdf of the system is as follows: 

����(�) = ��������� (����� − �����)             (7-29) 

Proof(Grosh, 1989, page166) 

1 20
( ) ( ) ( )

t

sys z
f t f z f t z dz


    

����(�) = � ���
� �����������(���)�� = ���������� ��(�����)(�)���

�  

=
�������������� �1 − ��(�����)��=  ��������� ����� + ��������� �����       ⟹ 

 ����(�) = ��������� (����� − �����)  

The reliability function in this case is(Grosh, 1989, p166): 

(t)
t t

sys

e e
R

  

   

 

 
 

2 1
1 2

1 2 2 1

                  (7-30) 
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Proof: 

According to Eq. 7-18: 

  1 2 1

2 1

t t ( ') '
1 2 1 10 0

1 2

1 2 2 1

(t)=R (t)+ R (t-t ) f (t ) dt = dt

(t)

t t t t
sys

t t

sys

R e e e

e e
R

  

 



 

   

   

 

      

 
 

 

Notice that for �� = �� = � use Eq. 7-19 i.e. ( ) (1 )sys
tR t e t 

   

Life pdf & reliability for Perfect switch: 3-component 

standby system 

A single unit is put in service. A perfect switch replaces it by 

a cold backup unit as soon as a failure occurs.  When the backup 

fails, it is replaced by the other back.  The density function of 

the lifetime of this system  is derived from (Grosh, 1989 p165): 

1 2 30 0
( ) ( ) ( ) ( )

t z

sys z w
f t f w f z w f t z dwdz

 
     

(7-31) 

The mean lifetime of this system and its reliability function is 

derived from : 

( ) ( )sys sysx t
R t f x dx




   

(7-32) 

0 0
( ) ( )sys sys sysx

MTTF xf x dx R t dt
 


    

(7-33) 

where    

sysf  The pdf of the system lifetime(T) 
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1f  The pdf of  the main device lifetime(T1) 

2f  The pdf of the 1st backup lifetime(T2) 

3f  The pdf of the  2nd backup lifetime(T2) 
In the above discussion it is assumed that the backup units 

are cold i.e. they are under no stress when they are in the 

standby mode. 

In this three-components system if all units have the same 

constant failure rate λ , the reliability function is calculated from 

Eq. 7-21 i.e.  
2

3
-λt

sys

λt
R (t)=e 1+λt+

2

 
 
  

. 

Reliability of n-component standby system :Perfect Switch 

Consider a case where 1 unit is active,  n-1 components are 

cold and in standby mode and the switch is 100% reliable. If the 

units have constant failure rates 1,..., n   , the reliability 

function of the system would be(Garosh,1989page169): 

1 1

( ) i

nnn
jt

sys
i j j i

j i

R t e 


 



 





                          (7-34) 

If 1 ... n     then(Grosh,1989 p167): 
1( )

( ) ....
( 1)!

n tn
t t

sys

t e
R t e te

n


  


  

      


         (7-35) 
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Remember as proved earlier 
1 1

1n n

sys i
i l i

MTTF MTTF
 

   gives 

the system's mean time to failure  and for 1 ... n           

sys

n
MTTF


 . 

In the above discussions it is assumed that the backup units 

are cold i.e. they are under no stress when they are in the 

standby mode. 

Case 2: Imperfect switching 

In this case the switch has a reliability of less than 1; i.e. 

failure of the detection and switching mechanism  is probable 

and therefore the standby unit cannot replace the failed unit.  Let 

Ps denotes the probability of failure of the detection and 

switching mechanism.  Ps could be estimated as follows 

(Billinton &Allan,1992) 

�
s

A
P

B
                                     (7-36) 

where 

A = the number of times the switch works when required 

B  = the total  number of times the switch is required to perform 

its function 
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Imperfect switch ,2-component standby system: 

Reliability function and life time pdf 

Let ( )
sys

n

R t  denote the reliability function of a system having 1 

active unit and n-1 redundant standby units with an imperfect 

switch(Ps<1).   
2

( )
sys

R t is obtained from(K&L page 221): 

2 t

1 s 1 20
(t)=R (t)+P f (t')R (t-t )dt

sys
R                     (7-37) 

where 
2

( )
sys
R t  Reliability  function of 2-component standby system 

1R (t)  Reliability  function of active unit  

2R (t)  Reliability  function of standby unit 

Notice that 
- Although it is probable the standby unit does not work when 

required to replace the active unit, this probability has not been 

taken into account.   

- Substituting P� = 1  into Eq. 7-37 yields Eq. 7-18. 

2-component standby , constant failure rate 
Imperfect switch with reliability ��  

Consider a system which has 1 active unit with constant 

failure rate λ�, 1 redundant standby unit with constant failure 

rate λ� and an imperfect switch having reliability P p
s
  1 1.   

2

( )
sys

R t is obtained from(Lewis,1994 page 340,341): 
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       1 1 2

2
1

2 1

(1 )
(t)=e (e e )t t t

sys

p
R   

 

  
 


                  (7-38) 

Let the units are similar i.e. 1 2     then: 

2

(t)=[1+(1-p) t]e e (1 t)t t
s

sys
R P            (7-39) 

where  

p               = the failure probability of the switch when required 

to perform its task 

1sP p    =Switch reliability 

2-component standby , constant failure rate 

Imperfect switch with reliability function ��(�)  
Consider a system which has 1 active unit with constant 

failure rate λ�, 1 redundant standby unit with constant failure 

rate λ� and an imperfect switch having reliability function 

R (t)S .   In this case 
2

( )
sys

R t is obtained from(K&L page222): 

2

1 1 20
2 ( ) ( ) ( ) ( ') ( )

t

s
sys

n R t R t f t R t R t t dt                (7-40) 

where  
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2

( )
sys
R t  Reliability  function of 2-component standby system 

1R (t)  Reliability  function of active unit  

2R (t)  Reliability  function of standby unit 

R (t)S  Reliability  function of switch 

f1 pdf  of main unit lifetime(T1) 

Special case: Constant failure rates 

Let failure rates of the active unit, the cold redundant standby 

unit and the switch is constant and equal 2 1,  &
s
 then: 

2
1 1

0
1 1 2 1 1 2 2

1
( )

( )( ) ( )

t

sys
sys

MTTF R t dt

s s s

 

         
   

    

 or 

(7-41) 
1

1 1 2 1 2

1 1 1
( )sysMTTF

s s



      


  

  
 

Furthermore if 1 2     then : 

sys-standby

1 1 1
( )

s s

MTTF


      


   

  

  

For a system with 1 active , 1 standby unit and imperfect switch 

        sys-standby

1 1

( )s

MTTF
s s



    
  


              (7-42) 

where  

   = the failure rate of both units 
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s
  =the failure rate of the switch 

Eq. 7-40 for this case yields(K&L p222): 

2

( ) 1 1 0
sys

tt sR t e e t
s





            

         (7-43) 

The mean time to failure of is calculated as follows: 

2

0 0

( ) 1 1t s
sys

sys
s

t
MTTF R t dt e e dt  



 


  

      
  

 
     

1 1

( )sysMTTF
s s s



    
  


 which is Eq.7-42. 

Using Eq. 7.39 for the reliability function of a 2-component system 

whose  active and standby units have the same mean time to failure 

1
partMTTF


 and the switch is imperfect with reliability sP : 

2
s

s

0

1+P
MTTF ( ) (1+P )syssys partR t dt M T T F





          (7-45) 

Notice: 
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-Substituting 

MTTFsys  for perfect switching 

-The reliability function of a two
active and standby units with the same failure rate 

Calculated from Eq. 7

sλ  as the switch failure rate

 Or is calculated from Eq. 7

reliability of the switch is given as a constant value 

Example 7

A system is composed of 1 active unit A, 1 redundant 

standby unit B and a switch S. The lifetime of the units is 

exponentially distributed with 1 failure/1000hr. The key has a 

constant rate of failure per 10000 hours. Find 500

of the system a

                                        

1 From Dr Eshargh's pamphlet, Faculty member of Sharif University of Tech 
, Tehran. Figure from K & L p 59.

                                                                                 Reliability Engineering

Substituting sP 1 in the above relationships yields 
2

( )
sys

R t

for perfect switching which we saw earlier. 

The reliability function of a two-component system having  similar 
active and standby units with the same failure rate λ is : 

Calculated from Eq. 7-43   i.e. 
2

( ) 1 1t s

sys
s

t
R t e e  




  

    
  

 

the switch failure rate 

Or is calculated from Eq. 7-39 i.e. 
2

( ) (1 )t
s

sys
R t e P t 

   if the 

reliability of the switch is given as a constant value sP . 

Example 7-61 

system is composed of 1 active unit A, 1 redundant 

standby unit B and a switch S. The lifetime of the units is 

exponentially distributed with 1 failure/1000hr. The key has a 

constant rate of failure per 10000 hours. Find 500-hr reliability 

of the system and its mean lifetime. 

 
                                                           

From Dr Eshargh's pamphlet, Faculty member of Sharif University of Tech 
, Tehran. Figure from K & L p 59. 

Reliability Engineering 

( )R t and 

component system having  similar 

  
  
  

 given 

if the 

system is composed of 1 active unit A, 1 redundant 

standby unit B and a switch S. The lifetime of the units is 

exponentially distributed with 1 failure/1000hr. The key has a 

hr reliability 

From Dr Eshargh's pamphlet, Faculty member of Sharif University of Tech 
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Solution: 

Eq. 7-43 gives the reliability function: 

3 1 1 4

2

( ) 1 1 90.2%

10 / 1 1000 , 1 10000 10 , 500s

tt sR t e e
sys s

failure hr t

 



    



   

     

  
  
  

 

Eq. 7-44 gives the reliability function: 

1 1
1909.9

( )sys
s s s

MTTF hr


    
   


End of Example  

Example 7-7 (Ebrahimi, 1992, p 267) 

The failure rate of a device is constant and equal to 500 

failures per 1 million hours ( 6500 10


  ). To enhance the 

reliability another unit is used as standby redundant which 

replaces the device upon failure by switch having 97% 

reliability. Find 1000-hr reliability of this system. Solve the 

problem again for a perfect switch. 

Solution: 

Eq. 7-39 gives the reliability function. For P� = 0.97: 

2Rsys(t) = e−λt (1 + PS × λt) 



393                                                                                 Reliability Engineering 2Rsys(1000) = e−0.5(1 + 0.97 × 500 × 10−6 × 1000)=0.9007 

For P� = 1    from Eq. 7-19: 

 2R���(1000) = e�λ� (1 + λt) = e��.�(1 + 0.5)=0..9098 

λt = 500 × 10�� × 1000 = 0.5 is the mean of the failures of 

each device per 1000 hours.  End of Example  
Comparison of  reliability function of active and 
standby systems-imperfect switching 

Eqs. 7-43 &7-45 give the following 2 apparent different 

relationships for 2-component standby system-imperfect switch:  

 

2

2

1) ( ) 1 1 0

2) ( ) 1 (1 ) (1 ) 0

t s

sys s

t t
s

sys

t
R t e e t

R t e p t e P t t



 

 



 



 

  
     

  

     

 

if the failure rate of the switch( s ) is given the former relationship is 

used, if the reliability of the switch( sP ) is given the latter  is used. 

Question:  Are these 2 relationship equivalent? 

Answer: Suppose they are equal i.e. 
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 1 1 1 (1 ) (1 )

1

t t ts
s

s

s

s
s

t
e e e p t e P t

t
e

P
t

   
 







    
         

  






 

This the switch average reliability. That is they would be 

equivalent if �� is calculated  as the average of its reliability 

function ( ste
 )of constant- failure- rate switch over period(0  t): 

switch average reliability 0 1

0

t

s

s

s

t
e dt t

e
Ps

t t










  




           (7-46) 

2-component standby system with similar units, 

imperfect switch and warm redundant unit 

Consider a system that has an active unit and a standby unit. 

both the main and the secondary units have the same failure rate  λ but the secondary unit  has   as failure rate while is standby 

mode. The switch is imperfect with the failure probability p=1-Ps.  

The expression for the  reliability function of this system is 

(Lewis,1994 p262):  

( ) 1 (1 )S
sys

t tR t e P e
 







 
     

 
  

     (7-47)         

 The system mean time to failures is calculated as follows:  
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0 0
( ) 1 (1 ) (1 )

t t t tMTTF R t dt e p e dtsys sys
 




 

    


 
 

 
 
 

           

1
1 1

1 1
s

sys

P p

MTTF
 
 

 

 


 

 
                              (7-48) 

Where  

p  Switch failure probability  

1sP p   Switch reliability 

  Failure rate of each unit while in active mode 

   Failure rate of secondary unit while in standby mode 

Example 7-8  

Consider a 2-component standby system in which the switch 

for replacing the units is imperfect and its lifetime is 

exponentially distributed The main unit and the secondary units 

when becomes active fail at the constant rate of  . We know 

that: 

Given the failure rate of the switch(��),the reliability of  the 

system is calculated from Eq. 7-43 i.e. (from: K&L p222): 

2

( ) 1 1 0t s

sys
s

t
R t e e t  




  

     
  
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 If the failure rate of the  secondary unit while in standby 

mode  is    then given the value �� for the reliability of the 

switch, the reliability of  the system is calculated from Eq. 7-47 

i.e. (from: Lewis p262): 

  
2

( ) 1 (1 )s
sys

t tR t e P e
 







 
    

 
  

. 

a)Specify a condition under which these two expressions 

identical if    . 

b)If  in Example 7-7 6500 10  
   under which condition do 

the 2 relationship give the same result? 

Answer :a) 

Substituting    in second relationship and equating the 2 

expression we would have the following result: 

1

1

s

s

s

t
e

P
te









 


 

We the Taylor expansion of f(x) about a is: 

           
21 1

...
1! 2!

f x f a x a f a x a f a         

Therefore  te  is expanded as follows: 
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There fore ���� ≅ 1 − ��   or 

1 te t 
                          (7-49) 

Therefore we must have  

01 1
t

ss s

s

s s

tt t e dte e
P

t t t

 


  

 
 

   
  

That is under the condition that the value given for the switch 

reliability( sP ) equals the mean of reliability function of 

exponential- distributed �lifetime switch over period(0  t) the 2 

expression give the same results. 

Answer: b) 

Since the specified    equals  in Example 7-7, therefore if  

1 s

s

s

t
e

P
t








 or 
1000

1
0.97

1000

s

s

e




 





  or λs ≅ 61 ∗ 10−6 the 2 relationship 

give the same result.  

End of Example  

Therefore the following expressions for the reliability of a two- 

component standby system  ( imperfect switch  warm standby ) 

2

( ) 1 (1 ) (1 )
sys

t tR t e p e
 







 
     

 
    
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2

1 1 0t s

sys
s

t
R e e t  




  

     
  

 

 
2

( ) 1 (1 ) (1 ) 0t t
s

sys
R t e p t e P t t          

Give the same results if  the failure rate of  the redundant unit 

while in standby mode equals the failure rate of the active unit   

(   ) and the given reliability value for the switch(Ps) equals 

the value obtained from Eq. 7-46. 

Example 7-9( Lewis,1994 page 262) 

An engineer designs a standby system with two identical 

units to have an idealized MTTF of 1000 days. To be 

conservative, she then assumes a switching failure probability of 

10%( Sp=0.10 or P =0.9 ) and the failure rate of the unit in 

standby of 10% of the unit in operation i.e. +
λ =0.10λ . 

Assuming constant failure rates, estimate the reduced MTTF of 

the system with switching and standby failures included. 

Solution 

The system has n=2 components (1 active 1 standby). Since 

the failure rate of each component is constant; therefore the 

distribution of the lifetime of the units are exponentially 

distributed . 

Let  = the comstant failure rate of each unit in operation i.e. when  is 

active. If  the standby unit  were cold, according to Eq. 7-27-4 for the 

idealized case: 
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MTTFsys=2 1


  ⟹ 0.00211000 2 per day


   . 

In imperfect switching  according to Eq. 7-48 with 0.1p  & 

+
λ = 0 .1 0λ : 

  

1 1 0.11 1
1 1 0.1 909

0.002

p

MTTF dayssys








  
     

End of Example  

The relationships for 3-component standby systems could be 

studied in K&L pages 221-222.  The interested readers in the 

reliability function and the MTTF of the general case n=n, could 

refer to Niaki & Yaghoubi(2020). 

7-1-4  Shared load parallel configuration1   

Up to now when analyzing redundancy, independence was 

assumed among the units within system. In other words, it was 

assumed that the failure of a unit does not affect the failure rates. 

In this section , the load-sharing systems are considered, where 

the assumption of independence is no longer valid. When units 

in a system fail one by one, the total load of the system is 

redistributed among the surviving units, resulting in an increased 

load shared by each surviving unit. For an example of load 

sharing consider a  section of a machine which has several 

                                                           

1 K&L page 222,    Lewis(11996)page  260&chapter11 
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screws When a screw break, the total load is redistributed 

among the surviving screws. 

Here analysis will be limited to the case of two units. In this 

load sharing case the reliability function of the system is(K&L 

p224): 

(7-50) 
2

1 1 1 10
( ) ( ) 2 ( ) ( ) ( )

t

sys g g fR t R t g t R t R t t dt       

Where 

 

g(t) The pdf for TTF under half load 
f(t) The pdf for TTF under full load 

( )gR t  
( )g dt  


  

( )fR t  ( )f dt  


   

For the proof   refer to K&L page223. 

For many probability density functions, calculation of Eq. 7-

50 is difficult. As an easy example constant-rate-failure is 

considered. 

Special case: 

 2-component shared loading: constant failure rates  

Consider a load sharing system that has 2 identical 
components.  The failure rate of each is constant gλ when both 

units work. The failure rate increases to another constant fλ  

when one unit fails.  substituting g
g

-λ t
g(t)=λ e , g-λ t

R (t)=eg  and 

-λ t
R (t)=e f

f  in Eq. 7-50  gives the system reliability function 

for this case as follows(K&L page 224) 
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-λ t
R (t)=e f

f

2 22
( ) ( )

2
g gf
t tg t

sys
g f

R t e e e
 



 

 
  


       (7-51)

 

Where ��
 

Half load failure load ��
 

Full load failure load 

Example 7-10 

Consider a 2- component load sharing parallel configuration 

in which the failure rate is 1× 10�� per hour  under partial load( 

half load here) and 4× 10�� under full load.  Calculate 1000-hr 

reliability of the system. 

Solution  

λ� = 0.001 ��� ℎ���   , λ� = 4 × 10�� ��� ℎ��� 

According to Eq.7-51: 

2 22
( ) ( )

2
g gf
t tg t

sys
g f

R t e e e
 



 

 
  


 R���(1000) = e��×�.���×���� + 2 × 0.0012 × 0.001 − 0.004 (e��.���×���� − e��×�.���×����) 

Using MATLAB =exp(-2*0.001*1000)+2*0.001*(exp(-0.004*1000)-exp(-2*0.001*1000))/(2*.001-0.004) ⇒ R���(1000) = 25.24%           End of Example         
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7-2 System  Effectiveness Measures 

 Reliability is not the only index used to characterize the  

performance of an engineering system. Some other features are 

serviceability, maintainability, operational  readiness and 

availability described below.  

Serviceability 

Serviceability is the measure of  the features that support the 

ease and speed of which corrective maintenance and preventive 

maintenance can be conducted on a system.  In a simple 

statement we could say serviceability is used to present the 

degree of the difficulty with which  equipment can be repaired. 

When it is said equipment 1 is more serviceable than equipment 

2 , it is meant that the better Serviceability the shorter the active 

repair time.   

 

This index is difficult to measure on a ratio scale; however it 

can easily be measured on an is usually expressed as ranking. 

Serviceability is difficult to measure on a ratio scale; 

however, it can easily be measured m ordinal scale by a 

specifically developed rating and/or ranking procedure, which 

requires that systems be compared and ranked according to the 

ease of serviceability (Handbook of industrial Eng�g edited by Gavriel Salvendy ). 
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Maintainability 

In MIL-STD-721C, maintainability is defined as follows: 

The measure of the ability of an item to be retained in or 

restored to specified condition when maintenance is performed 

by personnel having specified skill levels, using prescribed 

procedures and resources, at each prescribed level of 

maintenance and repair(Ireson, et al, 1996 page 15-3) 

While the reliability engineer is concerned with many 

physical characteristics that affect system components, such as 

temperature, humidity, shock, and vibration, the maintainability 

engineer will be concerned with the physical partitioning of a 

system into repairable items; the accessibility, weight, and 

volume of these items; the skills and training of maintenance 

crew; and the availability of the appropriate tools and equipment 

for conducting maintenance activities(Ireson, et al, 1996 page 15-3). 

The maintainability index of a machine is the probability that 
it restores to working status within a specified period. Notice by 
the term "down time" used sometimes here it is meant all the 
time period the machine is out  of service. This time period 
includes the time necessary to detect the failure, the repair time, 
administrative and logistic times.  

Maintainability  function 

Maintainability  function for a device, denoted by M(t), is the 

probability that the maintenance task considered will be 

successfully completed before a specified time t: 
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( ) Pr( )repairM t T t                      (7-52-1)  
where random variable �������  is ������� =  The  time required for completing the service, 

maintenance, replacing new units� 

If m(t) denotes the probability density function of  ������� then : 

0
( ) ( )

t
M t m x dx               (7-52-2) 

Therefore the maintainability  function for a device, 

represents the probability that the device restores( gets  out of 

down state) successfully within a specified time.   It is worth 

noting that exponential, log-normal distribution Weibull are  3 

distributions frequently used for service times.  

Example 7-11 

The total service and maintenance time of a dive has 
the pdf  - γ tm ( t ) = γ e , find the maintainability function 
of the device. 

Solution 

( ) 1 1
t

tM t e e 


      End of Example        

It is worth mentioning the term dependability has been 

introduced to cover all important aspects of a device to function 

satisfactorily including reliability, availability, maintainability, 

quality and safety. Interested readers could refer to references 
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such as Standards IEC 60050-192 & IEC 60300  , Eusgeld et al 2008) 

and Martha et al (2022) 

Mean time to repair(MTTR) 

A widely used maintainability parameter is MTTR . For an n-

component system it is calculated from(Ireson, et al. 1996 page 

15-6): 

1

1

( )
( )

n

i i n
i i

i
ii i

MTTR
MTTR MTTR




 




 
    

 




 
                   (7-53 )       

      
where 

i  Failure rate of the ith repairable component 

iMTTR  Mean time to repair ith repairable unit 

n number components in the system 

i

i




 A fraction of failures per unit time related to 

ith unit 

   It might be  useful for some readers to know that some 

references  such as  the manual of MIL-HDBK-472 standard 

deal with MTTR in details. This manual is  comprehensive 

design tool for maintainability prediction analysis including 

calculating MTTR. 

Operational  readiness(OR) 

 

"The term operational readiness(O.R.) is defined as the 

probability that either a system is operating or can operate 
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satisfactorily when the system is used under stated conditions. 

Operational readiness is more encompassing than the term 

availability" (K&L page 225). 

3 time periods are used in the calculation of OR(K&L p 226): 

operating  time idle time
O.R.

operating  time idle time down time




 
           (7-54) 

Example 7-12(K&L p226) 

The following figure shows the status of  a machine over a 

time horizon  graphically.  Suppose the total operating time of 

the machine is  8 time units, the idle time and the downtime is 6 

time units each. Calculate the operational readiness of the 

machine 

 
Fig 7-5 A Machine status over a time horizon(K&L p226) 

Solution 

operating  time idle time 8+6
OR 0.70

operating  time idle time down time 8+6+6


  

 
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This mean that the machine is ready to perform its function 70% 

of the time. End of Example        

7-3 Availability 

Availability as a measure   of system effectiveness  is defined 

"as the probability that an item will be available when required, 

or the proportion of total time the item is available for use" 

(O'connor,2003 page 300).  At first availability is studied  for 

the case where different times(operating, down..) are fixed and 

not variable. Here availability is denoted by  A .   Availability  

which excludes free(idle) time would be estimated from(K&L 

page 227) 

operating  time

operating  time down time
A 


     (7-54-1) 

7-3-1 Intrinsic Availability 

Intrinsic availability index(��) of a machine  does not include 

administrative time  and logistic time in the down time of the 

machine. In other words , it ignores administrative delays( such 

as  the time it takes to find a repairman, spare components, 

tools�) and uses only operating time and  actual repair time . 

Therefore �� is computed from(K&L page 227): 

               (7-55) operating      time  operating    time + a. r. t ��= 

 where a.r.t. is the actual repair time  shown in Fig 7-5. 
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Example 7-12: 
The down time in one complete cycle of a machine is 6 time 

units  and its operating time is 8 units(See Fig 7-5).  Find the 
machine availability (A).  
Solution 

operating  time 8
=0.57 57%

operating  time down time 6+8
A A   


 

End of Example    

Example 7-14   In Example 7-13 if the administrative time is 

one time unit , and the logistic time is also one  time unit. Find 

the intrinsic availability.   

Solution  
 A� = ���������      ����  ���������    ���� ��.�.� 
a.r.t.= total down time- administrative& logistic times=6-2=4. A� = 88 + 4 = 0.69 = 66% 

Examples 7-13&14 show that  by eliminating the administrative 

and logistics time in the repair cycle, the current availability of 

0.57 can be increased in the limit to the intrinsic  availability of 

0.66.  There is a potential for a 9% improvement in availability. 

End of Example    

7-3-2 Availability function 

The availability , like the reliability  ,is time dependent. The 

above relationships for availability give fixed values 

independent of time.  
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The reliability function for repairable systems ,A(t), is 

defined as the probability that the system operates at time t 

irrespective of its past history of breakdown and repair(Grosh, 

1989 page 268). 

Assuming specific models for both the failure and downtime 

(repair  time)distributions, the maintainability and availability 

functions could be derived.  Considering the simplest possible 

case (using the exponential distribution with parameters � and � 

respectively for time to failure and repair time) yields a 

differential equation for availability function  of this simple case 

(K&L page228): 
( )

( ) ( )
dA t

A t
dt

        

The availability function for repairable systems �time to 

failure (TTF)and repair  time :exponential 

The following solution of the above differential equation  is 

the availability function for a system with exponentially 

distributed TTF and downtime (repair time) having parameters �&� respectively(Grosh, 1989 p 270 , K&L 280) 

( )( ) tA t e
   

   

 
 

 
                      (7-56) 
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7-3-3 availability function for nonrepairable systems: 

exponential lifetime 

For a system which is not repairable 0  . If the lifetime of 

the system is exponentially distributed, from Eq. 7-56 it is 

concluded that its availability equals its reliability at time t: 

nonrepairable system  A(t)=R(t) (7-57) 

7-3-4 Steady state availability 

A fraction of the total time that the device is ready to perform 

its duty  in the long range is called steady state availability 

dented by A,  If the operating time (TTF) of the machine  is 

exponentially  distributed with mean 1
MTTF=

λ
 and  the down 

time has the mean 1
MTTR=


 as an index of maintainability, 

then(K&L page 228): 

                      � = lim�→� �(�) = μ μ�  �          (7-58-1) 

or                           � = �
λ �

μ
�  �
λ

                  (7-58-2) 

Needles to say that A has a value between 0 and 1.Notice 
that: 
-If only the life time is in exponential form and the down time is 

not exponentially  distributed, the relationship for the steady 

state availability is the same as Eq.7.58. and more generally 



411                                                                                 Reliability Engineering 

according to Ross(985) page 402 : If the on & off distributions 

are arbitrary continuous distributions with respective mean     ��  & �μ   then it follows from the theory of alternating renewal 

process (see page 287  of Ross,1985) that A(t) in the long range 

approaches to � = �� �μ�  �� . 
Therefore we could say if the operating time and the repair 

time have continuous probability distributions with mean MTBF 

and MTTR, the steady-state availability would be: 

MTBF
A=

MTBF+MTTR
                           (7-59-1)  

Fig.6.7 shows a nomogram (abaque) for this  relationship 

between availability and MTBF(a measure of reliability) and 

MTTR(a measure of maintainability).  That is draw a line which  

connects the given MTBF on the MTBF scale and the given 

MTTR on the MTTR scale. The   intersection of this line and A 

scale is  value equal to what is resulted from Eq. 7-59.1.  

It is reminded  that 

- if the life time and the repair time are not random variables  

use Eq. 7-54&55 for calculating availability.   

-A device can have low availability, high reliability and vice 

versa.   

- Index A  could be used for comparing two types of a device 

that have the same reliability. 
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Fig. 7.6  a nomogram form of Eq. 7-59-1 (Ebrahimi,1992 p331) 

Example 7-15 

It is desired that a machine which has an exponentially 

distributed lifetime with mean 3000 hours to possess a steady-
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state availability of 99.95%.  What should  be the mean time to 

repair(MTTR)?   

Solution 

Using Eq. 7-59-1: 

 

3000
0.9995 1.6

3000+MTTR

MTBF
A MTTR hr

MTBF MTTR
    


 

Using the nomograph of Fig 7-6 

The line connecting 3000 on the MTBF scale to b0.995 on 

Scale A , gives MTTR=.6 on MTTR scale. 

7-3-5 Intrinsic availability in long rage 

The intrinsic availability in  steady state can be calculated 

from (K&L page 228,Stapl, 2009 p 344): 

( ) . . . .I steady

MTBF
A

MTBF m a r t



                               (7-59-2)     

   
Where m.a.r.t is the  mean of actual repair time. 

Notice that 

-Actual repair time does not include logistic and administrative 

times as has been shown in Fig 7.5 for a deterministic case. 

-The nomogram of Fig. 7-6 could be used for this relationship. 
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Example 7-16 

A  series system has 2 subsystems.  One the is a compressor 

with  80.37 failures per 10� working hours. The average of its 

actual repair time is 89.3 hr.  The other subsystem failure rate is 

4.78 failures per 10� working hours  and the actual  repair time 

on the average is 890.3.  Calculate 26280-hr reliability of the 

each subsystem , their steady state intrinsic availability 

Solution  

Constant failure rate λ  implies that the life time distribution 

is exponential with mean θ = 1λ  and reliability function   ���� . 

therefore 

For compressor: 

λ�=80.37 × 10−6⟹ 

θ�   ��MTBF1=1/80.37*10^-6=12442.4 ��(�)=exp(-(t/��)) ��(26280)=exp (-26280*80.37*(10^-6))=0.1210 �� = ������������.�.�.�� = �����.������.����.�= 0.9929 

For other subsystem �� = 4.78 × 10�� 

θ�   �� MTBF2 =1/4.78*10^-6= 209205 hr   ��(26280)= exp(-26280*4.78*(10^-6))= 0.8819 �� = ����2����2+�.�.�.�2= 209205   209205 +890.3=0.9958  
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7-3-6 Mission Availability 

The average of reliability function, A(t), over time period T 

in some references is denoted by *A (T)  and named mission 

availability or interval availability. Given the availability 

function over  a period (0  T), *A (T)  is calculated as follows: 

*

0

1
( ) ( )

T
A T A t dt

T
                   (7-60) 

 
Fig 7.7  The average of  a typical availability function 

 

Figure 7-7 shows  this integration graphically. 

Since for a non repairable system its availability equals its 

reliability at time t :A(t)=R(t) therefore(Lewis,1994 p301): 

*

0

1
( ) ( )

T
A T R t dt

T
           (7-61) 

That  is the mission availability and the average of the reliability 

function  related to  the same time period  are equal.  
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Example 7-17 

The lifetime of  an non-repairable switch with known MTTF 

is exponentially distributed with parameter λ�.  
a)Calculate the parametric average of the reliability function of 

the switch. 

b)(Lewis ,1994 p301)   

The system mission availability must be 0.95. Find the 

maximum design life that can be tolerated in terms of the 

MTTF. 

Solution 

     a)For this switch which is non-repairable, *A i.e. the mission 

availability equals  the average of the reliability function(Ps) . 

*

0

0

1
( ) ( ) ~ exp( ) ( )

1 1

s

s

s

T t

T
T t

s

Ps A T R t dt TTF R t e
T

e
Ps e dt

T T















   


 





  

Since the Taylor expansion of  f(x) about a is; 

           
21 1

...
1! 2!

f x f a x a f a x a f a        

Then  the  expansion of 
Te 

 about a=0 : 

s s s

2-
-λ (0) -λ T -λ T

s T=0 s s T=0

- 2 3
s s s

T-0 (T-0)
e =e + (-λ )e | + [-λ (-λ )e ]| +...

1! 2!
1 1

e 1-λ T+ (λ T) + (λ T) +....
2 6

s

T

T

s








 

Then  for 1sT  , approximately 
-λ T

2
s s

1se 1-λ T+ (λ T)
2

  and: 
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s

2
-λ T s s

*
s

s s

1
1-1+λ T- (λ T)1-e 12= 1- λ T ( )

λ T λ T 2
sP A T    

b) �∗(�) = 0.95 then 

s

1
0.95 1- λ T 0.1

2 10
T T MTTF

s


     
1

 

End of Example  

7-3-7  System Availability in terms of components' 

Availability 

As stated earlier according to Ross(985) page 402 :  

"If the on & off distributions for component i are arbitrary 

continuous distributions with respective mean     ���  & �μ�   � =1,2, … , � then it follows from the theory of alternating renewal 

process (see page 287  of Ross,1985) that ��(�)in the long 

range approaches to ��(�)⟶ �� = 1λi   1λi+1μi "                                  (7-62) 

Where 
��� is the mean lifetime of component I and 

�μ� is the 

mean of its downtime. 

Consider a system composes of n independent components 

with reliabilities ��, � ,�� . Let denoted the system 

reliability function. The  steady state availability of the system 

,A, is calculated from( according to examples on page 402 Ross1985):: 

),...,( 1 nRRf
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(7-63)                    � = �(��, … , ��)       

where  

            f The reliability function of n-component system 

such as  Eq. 2-1 or Eq.2-3. 

A� = 1λ�1λ� +  1μ�  
The steady-state availability of component i  which 

replaces ��  in �(��, … , ��) 
             1λ� The average lifetime  of component i  

             1μ� The average downtime of component i  

Example 7-18 

  The lifetime and downtimes of  n independent components, 

on the average, are  
���   and 

���,i=1,..,n and their reliability are ��,… ,��. Calculate the parametric  expression for the steady 

state availability of the system in both series and parallel 

configuration. 

Solution  

For series configuration:  ���� = ��(��, … , ��) = �� ×…× ��  

Therefore according to Eq. 7-63 the steady-state availability 

of  the series configuration of the n components is: 

������� = ��(��, … , ��)= �������  ��� ×. . .× �������  ���  

For parallel configuration: 
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���� = �2(�1, … , ��) = 1 − (1 − �1) ×. . .× (1 − ��) 
� = �(��, … , ��)=1 − (1 − �������  ���). . . (1 − �������  ���)  

Example 7-19 

A  2-unit system fails when either of its units fail. The units 

have the steady state availability of   0.9958 and 0.9929. 

Calculate the   steady state availability of the system. 

Solution 

The configuration is series. 

���� = �(�1, �2) = �1 × �2               
� = �(��, ��) = �� × ��                  A=0.9929*0.9958=0.9887  

7-3-8  The steady-state availability in Preventive  

Maintenance 

From O'connor (2003 )page 402:  

   "Maintainability affects availability directly. The time taken 

to repair failures and to carry out routine preventive 

maintenance removes the system from the available state. There 

is thus a close relationship between reliability and 

maintainability, one affecting the other and both affecting 
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availability and costs. In the steady state, i.e. after any transient 

behavior has settled down and assuming that maintenance 

actions occur at a constant rate" (O'connor,2003 page 402): 

(7-64 ) 
�������� +���� × CC + T � = 

where 

C= Preventive maintenance cycle [ e.g. every 1000 hr]  

T=Total time required to perform preventive maintenance tasks 

7-3-9 Definition of Unavailability Function 

The unavailability is the event that at a point of time a system 

or a device does not perform its duty under specific conditions.  

If the value of steady state availability is A the unavailability in 

steady state would be 1-A. 

Unavailability Function: Lifetime Exponential  

In a special case where the lifetime and downtime are 

exponentially distributed, the Instantaneous  unavailability 

function would be (O'Connor, 2003 page168): 

U(t) ( ) ( )1 (1 )t te e     

     

   
    

  
     (7-65) 
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7-4Application of Markov Chains to System 

Reliability Analysis 
 

In this section we would like to have a glance at the 

application of Markov chains to the reliability analysis of  

repairable or nonrepairble systems whose lifetime follow 

exponential distribution. For other distributions Monte Carlo 

simulation is applicable.  See references such as Chap. 8 of  

Smith(1993). 

If each component has approximately an exponential failure 

law, the complete system can be described approximately by a 

Markov process and to predict the future state of the system,  

knowledge of the history of such systems contains no predictive 

value( extracted from Barlow & Proschan,1996 page119).  

Figure 7-8 shows the state space of a 2-unit critical system. In 

this system two identical computers A & B are connected   in 

parallel in such a way that both are operating although only one 

is in actual service. At a time of a computer failure, repair is 

done readily. Preventive maintenance for a specified computer is 

scheduled after 0t hours if one computer is active  and the other 

is on an operating  standby basis.  If the first computer fails and 

the second fails during the downtime the first one the 

consequences could be catastrophic(Barlow & Proschan,1996 p120). 
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Fig 7-8 shows a diagram of the state space of the critical 

system.  The possible states are 

(Computer A is active) , 

 

Fig 7

 

The state space has 9 states 

state o indicates that computer A is used actively while 

computer B is operating and standby. If no failures occur in a 

time interval of length 

system enter State 0,

computer A and State 1 begins. If no failure occurs, the state 
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8 shows a diagram of the state space of the critical 

.  The possible states are denoted by symbols such as 

(Computer A is active) , �� (Computer B is in standby mode)

Fig 7-8   The 9  possible  states of  a two-unit system
(Barlow and Proschan , 1996p120) 

The state space has 9 states labeled 0 through 8.  For example 

state o indicates that computer A is used actively while 

computer B is operating and standby. If no failures occur in a 

time interval of length 0t , measured from the moment the 

system enter State 0, preventive maintenance is performed on 

computer A and State 1 begins. If no failure occurs, the state 

                           422 

8 shows a diagram of the state space of the critical 

by symbols such as �� 

(Computer B is in standby mode) 

 
unit system 

0 through 8.  For example 

state o indicates that computer A is used actively while 

computer B is operating and standby. If no failures occur in a 

, measured from the moment the 

ce is performed on 

computer A and State 1 begins. If no failure occurs, the state 
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passes  around the perimeter  of the square�. States 4,6 & 8 are 

unfavorable. (Barlow and Proschan , 1996page121). 

The user of this system may be interested in such information 

as the mean system down time during a specified time interval, 

the probability that the system  is down more than x minutes at 

any one time.  Under certain reasonable assumptions on time to 

failure(TTF) , the time to perform repair(TTR), etc. The 

operation of the system can be described by a semi-Markov 

process to get the desired information.   Chapter 5 of Barlow& 

Proschan(1996) deal with this system in detail. 

As another example consider a  system having 3 components 

or units a, b, c.  To use a Markov chain the states of this system 

are defined as combinations of operating and failed components. 

As the following table shows the system, depending on the 

operation or failure of the components(o=operating   X= failed), 

has 8 states(Lewis,1994page 326): 

State unit 
8 7 6 5 4 3 2 1 
X o X X o o X o a 

X X o X o X o o b 

X X X o X o o o c 

o=operating                           X= failed 

 

Chapter 11 of Lewis(1994) deals with Markov analysts  of  3 

configurations related to this case and it is worth mentioning 

that many references deal with the application of Markov 
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process to reliability theory; e.g. Dhillion(2006) pages 49-54. 

Barlow & Proschan(1996) page 120 and pages 192-197. 

Exercises   

1. A system composing 20 independent components, each 
having failure rate 0.0001 + 0.0005� , fails when one its 
components fail. Calculate the system failure rate and its 
reliability for t=10. 

             Hint: Use Eq. 7-2 for calculating the failure rate. 
2. A standby parallel system has identical active unit and 

redundant standby unit with constant failure rate λ. Show 
that the instantaneous failure rate function for the system 

is: 
2

tandby ( )
1s

t
h t

t







, 

3.Derive Eq. 7-51 by the help of  7-50 i.e. prove that in a 
two-component load sharing parallel system with pdf 

g
g

-λ t
g(t)=λ e under shared load and pdf f

f

-λ t
f(t)=λ e under full 

load, . ( ) ( )g gf
t tg t

sys
g f

R t e e e
 



 

 
  



2 22
2

 would be the 

system reliability. 

 

Helping one person might not change 
the whole world,but it could change 

the world for one person
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8-1 Enhancement(Improvement) of system 

reliability 

There are two conventional approaches to improve the 

reliability of a system(based on Shooman,2002 page 335):  

1)Enhancing the reliability of the system components 

2)Active(or hot) redundancy and standby redundancy 

These two approaches  are described below.  

8-1-1 Improving Component reliability 

 An approach for enhancing the reliability of a system is 

improving  the reliability of the basic elements, Ri, by allocating 

some or all of the cost budget to fund redesign for higher 

8 
Enhancement, Optimization  & Allocation of 

Reliability 

 

Aims of the chapter 

     Due to the importance of  the design phase in setting the 

reliability of products,  this chapter deals with how to enhance , 

optimize  reliability and to allocate reliability to each component 

in the system to have a more reliable design. 
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reliability.( Shooman,2002 page 335)   Figure 3-3 and 305 could 

help to clarify this approach.   

Example 8.1 

The series system shown in Fig. 8.1 is composed of k=3 
identical components with a reliability of 0.80 each. 

 
Fig. 8-1  A k-component  series system. 

a) Calculate  the current reliability of the 
system. 

b) What do you suggest for the reliability of 
each component in order to enhance the 
system reliability to 0.95? 

Solution 

a)     R=0.8�=0.512. 

b)    The enhancement requires that each component has the 
reliability of √0.95�

 .  End of Example  

8-1-2  Active(Hot) and standby redundancy  

Another approach to enhance systems reliability is  to place 

redundant components in parallel with the operating components 

either in active(hot) or standby status. 
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8-1-2  Active  redundancy  

In this way of enhancement components are placed in parallel 

with the subsystems that operate continuously (see Fig. 8.2) This 

is ordinary parallel redundancy(hot redundancy). 

 

Fig. 8-2  The k-component system with active redundancy. 
(Shooman,2002 p336) 

8-1-2  Standby  redundancy 

 This form of redundancy places components in standby 

parallel with k subsystems and switch them in when an on-line 

failure is detected(Shooman,2002 page336). Figure 8.3 shows 

this case. The redundant components of the system shown in the 

figure are cold.   On the figure � denotes the failure rate of the 

operating unit and ����  dentoes the failure rate of the redundant 

unite in the standby mode. 
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Fig. 8.3 A standby redundant parallel system  

A combination of active and standby redundancy is shown in Fig. 8-4  

 

           Fig 8-4 Combination of active and standby redundancy1. 

                                                           

1 https://reliabilityanalyticstoolkit.appspot.com/standby_redundancy_integrate 
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8-2 Reliability Optimization  

Optimization play a distinguished role in system design,  Its 

objective in reliability subject is to help developing a more 

effective and safe design  that works within existing constraints. 

 
Two conventional reliability optimization problems are: 

maximizing system reliability with cost constraints or 

minimizing system cost subject to the constraint that the 

reliability be greater than a given minimum. As an application 

you know that adding redundant components in parallel  to a 

system improves the system reliability. However this approach 

enhances the cost, weight and volume of the system.  Therefore 

an optimization problem has to be presented and solved in such 

a way that the optimum design considers the constraints as well 

as maximizing the reliability.  

To write a general model, let x= (x1,�, xk) be the decision 

variables; the model could be written as follows: 

��� / Max  �(�)      
     �. �.  ��(�) ≤ 0      � = 1,2,… ,�            ℎ�(�) = 0     � = 1,2, … , �  
           � ≥ 0 

� could be a cost function, the reliability function in  the system 

(series, parallel, structural load-strength systems�) or the 

average lifetime. 
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 As an illustration consider the following 
system shown in Fig 8

   Fig.

Total number of components in the system is 

suppose the components in  Subsystem 
having reliability 

The reliability if 1

The reliability if 1

The reliability of the entire system is:

where 
k  number of subsystems
Ri The reliability of each component in Subsystem i
ni Number of components in Subsystem i
Now let 
k = Maximum  budget available
Ci  = The cost of each component in Subsystem i
Then : 

                                                                                 Reliability Engineering

an illustration consider the following  series-
system shown in Fig 8-5. 

Fig.8-5  A series-parallel system(Faghih,1996 p102) 

Total number of components in the system is 
1

k

i
i

n


 . If 

suppose the components in  Subsystem �  are identical, each 
having reliability iR , then 

The reliability if 1st subsystem= 1
11 (1 )nR  , 

reliability if 1st Subsystem 1
11 (1 )ni R   . 

The reliability of the entire system is: 

1

1 (1 ) i

k
n

sys i
i

R R


                      (8-1) 

number of subsystems 
The reliability of each component in Subsystem i 
Number of components in Subsystem i 

Maximum  budget available 
The cost of each component in Subsystem i 

Reliability Engineering 

-parallel 

 

 

in . If  we 

are identical, each 
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1

k

i i
i

n C C


  ;                (8-2) 

And given specified  values of Ri, i=1,2,�,k, the problem 

would be determine ni, i=1,2,�,k in such a way that the 

reliability of the system is maximized and the constraints be 

satisfied. The model could be written as: 

1
1

1

( , ..., ) 1 (1 )

. .

0 1 1,...,

0 =Integer

i

k
n

sys k i
i

k

i i
i

i

i

M ax R f n n R

s t

n C C

R i k

n n
i





     



  





  

Another sample model could be the following: 

1

.

1

1 (1 )

.

1, 2, ..., 1, 2,..,

0 1

0 =Integer

k
i

i

k

ij i j
i

i

i

n
M ax R R

i

s t

a n b i k j

R

n n
i





 
  

  

  

 





 m  

where 

aij Amount of jth material used for components of ith 
subsystem 

jb  Amount of  jth material available 

k Number of subsystems 
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in  Number of components in ith subsystem 

Cost function  and MTTF or  MTBF could be the objective 

function .The following model which determines the optimum 

values of   , 1,...,in i n  such that the cost is minimized and 

ensures that the   system reliability will not be less than 0R : 

1

k

i i
i

Min Z n C


  

s.t. 

0
1

1 (1 )

0 1 1,...,

0

=

i

k
n

sys i
i

i

R R R

R i k

n
i

n Integer
i



     

  





 

To maximize   the system  mean lifetime of the system in Fig 

8.5 and ensuring that the system reliability exceeds ��, the 

following model could be used: 
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i

MaxZ MTTF Min MTTF i k

s t

n
R R

i

R
i

n
i

n Integer
i



  

 
  

  




 

Remember that if an active parallel configuration has in

exponentially-distributed-lifetime components with  identical 

parameters    �� = ⋯ = θ�� = θ , then according to Eq. 7-15 

1

1

i

i h
h

n
MTTF 



  . 

To know more about reliability optimization, the reader could 
read references such as Chap 6 of Barlow&Proschan(1996).  

8-2-1 Methods for the solution of The above problems 

There are several methods and softwares for solving 

reliability optimization problems including(Yi-Chic,2002): 

1.Exact methods (such as Brach and bound algorithm, 

dynamic programming, Cutting plane algorithm, Surrogate 

constraint method). This methods are time consuming for large-

scale problems. Kuo and Prasad (2000)  provides a good 

overview of the methods that have been developed since 1977 

for solving various reliability optimization problems. 
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2.Heuristic methods, Artificial intelligence(Genetic algorithms, 

Simulated annealing, Artificial neural networks , Tabu search,..) 

and other methods such as Lagrange multiplier technique, 

geometric programming, Random search; some of these 

methods give approximate solution. 

Notice that: 
-For application of  optimization to structural reliability  see 

references such as K&L page 423and  Xie, Zhai(2021)  

-If we have simultaneous objective functions such as (f�،… ،f���،f�) which are to be maximized and (f′�، � ،f′���،f′�) 

subject which are to be minimized subject to constraints (g�،… g�) ≥,≤,= 0; multi-criteria decision  making (MCDM) 

techniques could be used. A mathematical model of an MCDM 

problem could be written as follows: 

 Max{f�(�), f�(�),    . . . , f�(x)} 
 Min{f��(�), f��(�),    . . . , f��(�)} 
  s.t. 
  g�(�){≤,=,≥}0      i = 1,2, . . . ,m 
  where x is a vector including the decision variables 

8-3  Reliability   Allocation 1 

In the subject of reliability there is a problem called 

reliability allocation in which it is discussed how much   the 

reliabilities of all or some of the components or subsystems 

                                                           

1 The refrence of this chapter is mainly K&L, Chap 14. 
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(��,��,…) of a given system should be to achieve a specified 

overall system reliability (��).  This process requires solving the  

following inequality(K&L page 404): �(��,��, … . . , ��) ≥ ��                  (8-3) 

Where �� The unknown reliability of component i �� The required reliability for the system 
f The functional relationship between the components and 

the system 
 
Time and cost could be included in the problem , i.e. ��′� be 

time-dependent and total cost be minimized.  

The solution procedure is not difficult for series, parallel and 

k-out- n  configuration; however the solution for complex 

configuration is not mathematically easy. 

   

Most of the basic reliability allocation models are based on 

the assumption that component failures are independent, the 

failure of any component results in system failure (i.e., the 

system is composed of units in series), and that the failure rates 

of  the components are constant. The independence  assumption  

leads to the following equation  

 �(��,��, … , ��) = ��(�) … . . ��(�) ≥ ��(�)  (8-3-1) 
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Let ��= constant failure rate of the ith component. The system 

has a series configuration. Therefore the lifetime of the system is 

the minimum of the component lifetimes which are of 

exponential form;  therefore the lifetime of the system is 

exponentially distributed.   As a special case of Eq. 8-3-1, if the 

goal value of the failure rate of the system is �� ,then Eq. 8-3-1 

becomes (K&L p 407): 

 ����� � . . e���� ≥ �����          (8-4) 

or �� + λ�+. . . . +λ� ≤ ��           (8-5) 

Theoretically, the above equation has an infinite number of 

solutions, assuming no restrictions on the allocation. The 

problem is to establish a procedure that yields a unique or 

limited number of solutions by which consistent and reasonable 

reliabilities may be allocated1. Some of these procedures are: 

1. Equal Apportionment Technique 

2. ARINC Apportionment Technique 

3. AGREE Apportionment Technique 

4. Feasibility of Objective apportionment 

5. Repairable System Apportionment   

6. Minimum Effort Algorithm 

7. Growth apportionment 

                                                           

1 From: http://reliabilityanalytics.com/blog/2011/10/09/reliability-allocation/ 
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8. Dynamic Programming 

The first 3 methods are described below 

8-3-1 Equal Apportionment Technique(ETA) 

This technique allocates equal reliability to the n components 

of the system to achieve the system reliability requirement. 

When no information on the system is available, other than the 

fact that n components  are to be used in series or parallel , equal 

apportionment(�) to each subsystem would seem reasonable.  

Furthermore allocation of the same reliability(�) to all 

components of a k-out-of-n system is usual. 

For series configuration,  nth root of the system reliability 

requirement(��) would be apportioned to each subsystem: 

�� = �� × �� × …× �� ⟹ �� = �� 

�� = � = ����      i = 1,… , �                 (8-5-1) 

For active parallel configuration, according to Eq. (2 − 3− 1):  
��= 1-(1-R1) (1-R2) �..(1-Rn)  

�� = R         i = 1,… ,n⟹ 

�� = 1 − (1 − R)�  = 1-�� ⟹1-R=�(1 − ��)� ⟹ 

� = 1 − �(1 − ��)�
                   (8-5-2) 
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And for k-out-of-n configuration, according to Eq. 2-5 (Chap 2): 

R� = � �nx� (1 − R)�(R)������
���  

GivenR�, k and n, R has to be determined in such a way that  

 (∑ ����(1 − R)�(R)��������� − R�)=0. This could be done using a software. 
Example 8-2  

The reliability requirement for a 3-component series system 

is �� = 0.8573.  Find the reliability of each component using 

equal apportionment technique. 

Solution 

According to Eq. 8-5-1: � = ����         � = 3             �� = 0.8573 

The reliability of each component is;  

�  =  √0.8573� = 0.95                       

Example 8-3   

The reliability of a  3-component active parallel system is 

required to be �� = 0.8573. Use ETA to determine the 

reliability of each component. 
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Solution 

According to Eq. 8-5-2: 

� = 1 − �(1 − ��)�                   n=3          �� = 0.8573 ⟹ 

� = 1 − �(1 − 0.8573)� =  0.4774  

Example 8-4  

The reliability of a 3-out-of -5 configuration is required to 

have the reliability of �� = 0.99144.  Calculate R, the reliability 

of each of the five components. 

 Solution 

According to Eq,2-5 in Chap. 2, R is derived from: 

�� = � ���� (1 − �)�(�)������
���  

then:  
� �5�� (1 − �)�(�)������
��� −  0.99144 = 0 

The following MATAB commands yields � = 0.9. 

f=inline ('binocdf(5-3,5,1-R)-0.99144');R=fzero ( f,0.5).   
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8-3-2 The ARINC apportionment technique for series system 

with independent subsystems having  exponential lifetimes 

The ARINC allocation method was developed by a research 

center associated with Aeronautical Radio Incorporation. This 

method is applicable to a series system whose subsystems  have 

constant failure rate(��) and their  mission times equal the 

system mission time. Let ��∗ The allocated failure rate to the ��� subsystem �� The desired failure rate given for the entire system 

 

The ARINC method  tries to choose  ��∗such that(K&L p 407): 

��∗+. . . .+��∗ ≤ �0 

Steps of ARINC apportionment technique are(K&L page408): 

I. Determine the subsystem failure rates (��, i = 1,2, …) from 

the past data, observed or estimated. 

 

II. Assign a weighting factor (��) to each subsystem 

according to the failure  rates determined in step I, where �� is 

given by �� = ��
1

n

i
i






           (8-6) 

III. Allocate new subsystem failure rates (λ�∗ ′�) calculated from 

the following relationship( assuming λ�∗+. . . . +λ�∗ = λ�); 
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��∗ = �� ��              (8-7) 

where λ� is the desired failure rate for the entire system. 

Example 8-5(based on Example 14.2 K&L page408) 

Consider a series system composed of three subsystems with 

constant failure rates. The mean lifetimes are 200, 333, and 1000 

hours respectively. The system has a mission time of t=20 hours. 

A system reliability of 0.95 is required(�� = 0.95). Use ARINC 

method to find the reliability requirements for the subsystems. 

Solution 

Since the failure rates of the subsystems are constant, their 

lifetimes are exponentially distributed and the lifetime 

distribution of this series system is also exponential.  Therefore 

the ARINC method could be used: �� = 1�� = 1200 = 0.005,      �� =  0.003   , �� = 0.001 

��∗ = �� ��      , 
1

/
n

i i i
i

w  


   

�� =  0.0050.005 + 0.003 + 0.001 = 0.555,    w� = 0.333 ,       w� = 0.111 

To find the required failure rate() for this exponentially- 

distributed-lifetime system  we could write: 

��(20) = e����� ⟹ 0.95 = e����� ⟹ ��  = 0.00256 ��� ℎ���   
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The required failure rate for each subsystem is calculated 

from Eq. 8-7 i.e. ��∗ = ���� as follows: 

��∗ = (0.555)(0.00256) =  0.00142 

��∗ = (0.333)(0.00256) = 0.000582 

��∗ = (0.111)(0.00256) = 0.000284 

Since the lifetime  of each subsystem is exponentially 

distributed, the allocated reliability for them to ensure a 20-hour 

operation of the system are: 

��∗(20) = e�����∗ = e���(�.�����) = 0.97            

��∗(20) = e�����∗ = 0.98 ,    R�∗ (20) = 0.99     

8-3-3  The AGREE allocation method for pseudo-series 

system with independent exponential-lifetime subsystems 

A method of apportionment  is outlined by the Advisory 

Group on the Reliability of Electronic Equipment  (AGREE) 

takes into consideration both the complexity and importance of 

each subsystem.  In this method for each subsystem a factor 

called importace index is introduced to express the degree of  

impotance between the system failure and the subsystem. It is 

assumed that the subsystems have constant failure rates.   

The method applies to any unit that can be decoposed  into a 

series ofindependent subsystems(Grosh,1989 p149); some of 
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which are taken out of the system before the end of the mission 

time considered for the system. Notice that the total system 

under consideration is not truly a series system unless  all of the 

importance indices (wi's)  equal unity and the mission time of all 

subsystems ((ti's)  are equal(Grosh,1989 p150). 

To reach a target MTBF for the system, this method uses 

Equation 8-8 which calculates an approximate value for the 

MTBF of each subsystem(Grosh,1989 p150). MTBF� = (�)(��)(��)��[�����(�)]                � = 1,2, …             (8-8) 

This is equivalent to  

the following failure rate  for the subsystem(K&L p409): �� = ��[����∗(�)]�����              � = 1,2, …                   (8-9-1) 

or 

    the following reliability for the subsystem ��∗(��) = ������                                           (8-9-2) 

where �� Number of  components of in the ith subsystem 

N Total number of  components in the system: N= ∑ �� �� failure rate of ith subsystem ��(�) The required system reliability for a mission time t  ��∗ The reliability allocated to ith subsystem � System mission time   �� The mission time for ith subsystem; the time period 

required for the ith subsystem to operate from the 
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beginning of the operation of the system  and the 

subsystem is not needed any more(0 < �� ≤ �) �� Importance index for the ith subsystem; probability that 

the system mission fails if  ith subsystem fails. ��  is the following quotient(Grosh, 1989 p149) �� = ������ �� ������� �������� �����  �� ��� subsystem fails   number of ��� subsystem failure    �� = 1 states that for the successful operation of  the 

system, the ith subsystem must work successfully. 

The more wi's closer to 1 the better the results. Small 

wi's causes poor results by the AGREE formula . 

The reliability allocated to the ith subsystem is calculated from: 

             ��∗ = ������                        (8-10-1) 

or 

               ��∗ = 1 − ��[��(�)]�����            (8-10-2) 

Example 8-6(K&L page 410) 

A system consisting of four subsystems is required to 

demonstrate a reliability level of 0.95 for 10 hours of continuous 

operation. Subsystems I and 3 are essential for the  successful 

operation of the system. Subsystem 2 has to function for only 9 

hours for the operation of the system, and its importance factor 

is 0.95. Subsystem 4 has an importance factor of 0.90 and must 

function for 8 hours for the system to function. Solve the 
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reliability allocation problem by AGREE method using the data 

Given below: �� �� t� � 
15 1 10 1 
25 0.95 9 2 
100 1 10 3 
70 0.9 8 4 

N=210 sum 

Solution 

Data: t=10    N = ∑��= 210 , �� (10)= 0.95 

According to Eq. 8.8 the required mean lifetime for each 

subsystem is: 

����� = �������[−����(�)] 
The equivalent failure rate is�� = ������ . 
����� = 210 ∗ 1 ∗ 10(15)(−��0.95) = 2729.4       
  �� = 1����� = 12729.4  = 0.00036638 = 36638 × 10�� 
����� = 210 ∗ 0.95 ∗ 9(25)(−��0.95) = 1400.2     �� = 0.0007142 

����� = 210 ∗ 1 ∗ 10100(−��0.95) = 409.41         �� = 0.002442 
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����� = 210 ∗ 0.9 ∗ 8(70)(−��0.95) = 421.1          �� = 0.002374 

Eq. 8-10-1&2  allocates the required reliability to each subsystem: 

��∗ = 1 − 1 − [��(�)]�����  

��∗ = 1 − 1 − (0.95) �����1 = 0.99634 

or  ��∗ = e���∗ �� = e�(�.�������)(�) = 0.99634 

similarly 

��∗ = 1− 1 − (0.95) �����0.95 = 0.99359 

or      ��∗ =   e���∗ �� = e�(�.��������)(��) = 0.99359   ��∗(t) = 0.975870,     ��∗(t) = 0.98116  

These four reliabilities result in a reliability of  

��∗ × ��∗ × ��∗ × ��∗= 0.94788=94.79 %  for the system which is 

slightly less than the system reliability requirement 0.95.  This is 

a result of the approximate nature of the AGREE  formula and 

that �� and ��are less than unity.End of Example  

   The readers interested in AGREE method for parallel 

configurations could refer to references such as Grosh (1989). 
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Exercises 

1. We would like to design an active parallel system of n 

identical subsystems.  The lifetime of each subsystem is 

exponentially distributed with average  lifetime of 100 hours. 

Prepare a mathematical model to determine n  in such a way that 

the system reliability is greater than 0.95 and the average system 

life time in maximized. For calculating the reliabilities of 

subsystems use mission time of 100 hours.  

2. The monthly failure rates of the subsystems of a series system 

are constant and their estimates are 150 × 10��, 18 × 10��, 2.3 ×10��, 5.6 × 10�� failure per month.  Use ARINC technique to 

assign reliabilities to the subsystems such that the system 

reliability would be 0.98 for 36- month mission time.  

 3. (From K&L page433) A system consists of five subsystems 

in series. The system reliability goal is 0.990 for 10 hours of 

operation. The necessary information for the subsystem is given below 

Operating 
time 

 Number of 
subsystems Subsystem  No.(�) 

ti wi ni 
10 1.00 25 1 
9 0.97 80 2 
10 1.00 45 3 
7 0.93 60 4 
10 1.00 70 5 
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4. (K&L page 436) Consider the design reliability problem 

when both the stress(s) and the strength (�) are normally 

distributed. The reliability goal for the component is 0.99.  The 

cost functions and the constrains for the 4 parameters are: 

Constraints(units in MPa) The terms of the cost function parameter 30000 ≤ μ� ≤ 75000 0.0002 × (μ�)�.��� μ� 1000 ≤ σ� ≤ 10000 800 × (σ�)��.��� σ�  10000 ≤ �� ≤ 68000 8997 × (��)��.��� �� 500 ≤ �� ≤ 7500 366 × (��)��.��� �� 
Formulate the model of this problem to determine the values 

of و�� ��, �� , �� in such a way that the sum of the terms in 

second column is minimized and the constraints given in the 
table are satisfied.  

5. Solve Example 8-1 of this chapter assuming k=3 active 
parallel components. 

6. A system consists of four subsystems having constant failure 

rates. The system will fail if a subsystem fails. The current 

lifetimes of the subsystems are estimated to be 

250, 142.75, 12 and 20 hours.  Assign required reliability to 

ensure the system will have a reliability of 0.99 for a mission 

time of 50 hours. 

You can never satisfy people by your 
property. So, you can attract 

their satisfaction by your behaviour 
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T  A  B  L  E  S 
 

 



Table A         Crtical values of F distribution   Fm,n (  Mood et al,1974 ) Example ��.�,�,� = ��.�                                 

  
1 2 3 4 5 6 7 8 9 10 12 15 20 30 60 120  

.10 

 
 
1 

39.9 49.5 53.6 55.8 57.2 58.2 58.9 59.4 59.9 60.2 60.7 61.2 61.7 62.3 62.8 63.1 63.3 
.05 161 200 216 225 230 234 237 239 241 242 244 246 248 250 252 253 254 
.02 5 648 800 864 900 922 937 948 957 963 969 977 985 993 1000 1010 1010 1020 
.01 4050 5000 5400 5620 5760 5860 5930 5980 6020 6060 6110 6160 6210 6260 6310 6340 6370 
.00 5 16200 20000 21600 22500 23100 23400 23700 23900 24100 24200 24400 24600 24800 25000 25200 25400 25500 
.10 

 
2 

8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 9.44 9.46 9.47 9.48 9.49 
.05 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5 
.02 5 38.5 39.0 39.2 39.2 39.3 39.3 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.5 39.5 39.5 39.5 
.01 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5 99.5 
.00 5 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 

.10 

 
3 

5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.20 5.18 5.17 5.15 5.14 5.13 
.05 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.62 8.57 8.55 8.53 
.02 5 17.4 16.0 15.4 15.1 14.9 14.7 14.6 14.5 14.5 14.4 14.3 14.3 14.2 14.1 14.0 13.9 13.9 
.01 34 .1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1 26.9 26.7 26.5 26.3 26.2 26.1 
.00 5 55.6 49.8 47.5 46.2 45.4 44.8 44.4 44.1 43.9 43.7 43.4 43.1 42.8 42.5 42.1 42.0 41.8 

.10 

 
4 

4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.93 3.92 3.90 3.87 3.84 3.82 3.79 3.78 3.76 

.05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.75 5.69 5.66 5.63 

.02 5 12.2 10.6 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.75 8.66 8.56 8.46 8.3& 8.31 8.26 

.01 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.4 14.2 14.0 13.8 13.7 13.6 13.5 

.00 5 31.3 26.3 24.3 23.2 22.5 22.0 21.6 21.4 21.1 21.0 20.7 20.4 20.2 19.9 19.6 19.5 19.3 

 
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Table A  -continued         

 
 
.10 

 
5 

4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.24 3.21 3.17 3.14 3.12 3.11 
.05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.50 4.43 4.40 4.37 
.02 5 10.0 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.52 6.43 6.33 6.23 6.12 6.07 6.02 
.01 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.89 9.72 9.55 9.38 9.20 9.11 9.02 
.00 5 22.8 18.3 16.5 15.6 14.9 14.5 14.2 14.0 13.8 13.6 13.4 13.1 12.9 12.7 12.4 12.3 12.1 

.10 

 
6 

3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.90 2.87 2.84 2.80 2.76 2.74 2.72 
.05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.81 3.74 3.70 3.67 
.02 5 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.37 5.27 5.17 5.07 4.96 4.90 4.85 
.01 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.23 7.06 6.97 6.88 
.00 5 18.6 14.5 12.9 12.0 11.5 11.1 10.8 10.6 10.4 10.2 10.0 9.81 9.59 9.36 9.12 9.00 8.88 

.10 

 
 
7 

3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.67 2 . 63 2.59 2.56 2.51 2.49 2.47 
.05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.38 3.30 3.27 3.23 
.02 5 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.67 4.57 4.47 4.36 4.25 4.20 4.14 
.01 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 5.99 5.82 5.74 5.65 
.00 5 16.2 12.4 10.9 10.1 9.52 9.16 8.89 8.68 8.51 8.38 8.18 7.97 7.75 7.53 7.31 7.19 7.08 

.10 

 
8 

3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.50 2.46 2.42 2.38 2.34 2.31 2.29 
.05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.08 3.01 2.97 2.93 
.02 5 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.20 4.10 4.00 3.89 3.78 3.73 3.67 
.01 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.20 5.03 4.95 4.86 

.00 5 14.7 11.0 9.60 8.81 8.30 7.95 7.69 7.50 7.34 7.21 7.01 6.81 6.61 6.40 6.18 6.06 5.95 
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Table A  -continued         Fm,n      e.g.    :��.���,�,�� = 7.13 

  1 2 3 4 5 6 7 8 9 10 12 15 20 30 60 120 ∞ 
.10 

 
9 

3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.38 2.34 2.30 2.25 2.21 2.18 2.16 

.05 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.86 2.79 2.75 2.71 

.02 5 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.87 3.77 3.67 3.56 3.45 3.39 3.33 

.01 10 .6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.65 4.48 4.4O 4.31 

.005 13.6 10.1 8.72 7.96 7.47 7.13 6.88 6.69 6.54 6.42 6.23 6.03 5.83 5.62 5.41 5.30 5.19 
.10 

 
10 

3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.28 2.24 2.20 2.15 2.11 2.08 2.06 

.05 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.84 2.77 2.70 2.62 2.58 2.54 

.025 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.62 3.52 3.42 3.31 3.20 3.14 3.08 

.01 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.25 4.08 4.00 3.91 

.005 12.8 9.43 8.08 7.34 6.87 6.54 6.30 6.12 5.97 5.85 5.66 5.47 5.27 5.07 4.86 4.75 4.64 

.10 
 
12 

3.18 2 81 2.61 2.48 2 39 2.33 2.28 2.24 2.21 2.19 2.15 2.10 2.06 2 .01 1.96 1.93 1.90 

.05 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.47 2.38 2.34 2.30 

.025 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.28 3.18 3.07 2.96 2.85 2.79 2.72 

.01 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.70 3.54 3.45 3.36 

.005 11.8 8.51 7.23 6.52 6.07 5.76 5.52 5.35 5.20 5.09 4.91 4.72 4.53 4.33 4.12 4.01 3.90 

.10 

 
15 

3.07 2.70 2.49 2.36 2.27 2.21 2:16 2.12 2.09 2.06 2.02 1.97 1.92 1.87 1.82 1.79 1.76 

.05 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.25 2.16 2.11 2.07 

.025 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.96 2.86 2.76 2.64 2.52 2.46 2.40 

.01 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.21 3.05 2.96 2.87 

.005 10.8 7.70 6.48 5.80 5.37 5.07 4.85 4.67 4.54 4.42 4.25 4.07 3.88 3.69 3.48 3.37 3.26 


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Table A  -continued          

.10 
 
20 

2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.89 1.84 1.79 1.74 1.68 1.64 1.61 

.05 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.04 1.95 1.90 1.84 

.025 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.68 2.57 2.46 2.35 2.22 2.16 2.09 

.01 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.78 2.61 2.52 2.42 

.005 9.94 6.99 5.82 5.17 4.76 4.47 4.26 4.09 3.96 3.85 3.68 3.50 3.32 3.12 2.92 2.81 2.69 

.10 
 
30 

2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.77 1.72 1.67 1.61 1.54 1.50 1.46 

.05 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.84 1.74 1.68 1.62 

.025 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.41 2.31 2.20 2.07 1.94 1.87 1.79 

.01 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.39 2.21 2.11 2.01 

.005 9.18 6.35 5.24 4.62 4.23 3.95 3.74 3.58 3.45 3.34 3.18 3.01 2.82 2.63 2.42 2.30 2.18 

.10 
 
60 

2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.66 1.60 1.54 1.48 1.40 1.35 1.29 

.05 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.65 1.53 1.47 1.39 

.025 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.17 2.06 1.94 1.82 1.67 1.58 1.48 

.01 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.03 1.84 1.73 1.60 

.005 8.49 5.80 4.73 4.14 3.76 3.49 3.29 3.13 3.01 2.90 2.74 2.57 2.39 2.19 1.96 1.83 1.69 

.10 
 
120 

2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.60 1.54 1.48 1.41 1.32 1.26 1.19 

.05 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.55 1.43 1.35 1.25 

.025 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16 2.05 1.94 1.82 1.69 1.63 1.43 1.31 

.01 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.86 1.66 1.53 1.38 

.005 8.18 5.54 4.50 3.92 3.55 3.28 3.09 2.93 2.81 2.71 2.54 2.37 2.19 1.98 1.75 1.61 1.43 

.10 

 
 

2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.55 1.49 1.42 1.34 1.24 1.17 1.00 

.05 3.84 3.00 2. 60 2.37 2. 21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.46 1.32 1.22 1.00 

.025 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.94 1.83 1.71 1.57 1.39 1.27 1.00 

.01 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.70 1.47 1.32 1.00 

.005 7.88 5.30 4.28 3.72 3.35 3.09 2.90 2.74 2.62 2.52 2.36 2.19 2.00 1.79 1.53 1.36 1.00 


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λ 
or 
np 

Table  B     Some values of CDF of Poisson Distribution Pr )(X k  

k 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0.01 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

                

0.10 0.905 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

                 

0.20 0.819 0.982 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

                

0.30 0.741 0.963 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.40 0.670 0.938 0.992 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.80 0.449 0.809 0.953 0.991 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

1.00 0.368 0.736 0.920 0.981 0.996 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

                 

2.00 0.135 0.406 0.677 0.857 0.947 0.983 0.995 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

                 

3.00 0.050 0.199 0.423 0.647 0.815 0.916 0.966 0.988 0.996 0.999 1.000 1.000 1.000 1.000 1.000 

                 

4.00 0.018 0.092 0.238 0.433 0.629 0.785 0.889 0.949 0.979 0.992 0.997 0.999 1.000 1.000 1.000 

  
5.00 0.007 0.040 0.125 0.265 0.440 0.616 0.762 0.867 0.932 0.968 0.990 0.995 0.998 0.999 1.000 

                

6.00 0.002 0.017 0.062 0.151 0.285 0.446 0.606 0.744 0.847 0.916 0.960 0.980 0.991 0.996 0.999 

                

6.20 0.002 0.015 0.054 0.134 0.259 0.414 0.574 0.716 0.826 0.902 0.950 0.975 0.989 0.995 0.998 

6.40 0.002 0.012 0.046 0.119 0.235 0.384 0.542 0.687 0.803 0.886 0.940 0.969 0.986 0.994 0.997 
6.60 0.001 0.010 0.040 0.105 0.213 0.355 0.511 0.658 0.780 0.869 0.930 0.963 0.982 0.992 0.997 
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λ 
or 
np 

Table  B     Some values of CDF of Poisson Distribution Pr )(X k  

k 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

7.00 0.001 0.007 0.030 0.082 0.173 0.301 0.450 0.599 0.729 0.830 0.900 0.947 0.973 0.987 0.994 

                

8.00 0.000 0.003 0.014 0.042 0.100 0.191 0.313 0.453 0.593 0.717 0.820 0.888 0.936 0.966 0.983 

                

9.00 0.000 0.001 0.006 0.021 0.055 0.116 0.207 0.324 0.456 0.587 0.710 0.803 0.876 0.926 0.959 

                

10.00 0.000 0.000 0.003 0.010 0.029 0.067 0.130 0.220 0.333 0.458 0.580 0.697 0.792 0.864 0.917 

                

11.00 0.000 0.000 0.001 0.005 0.015 0.038 0.079 0.143 0.232 0.341 0.460 0.579 0.689 0.781 0.854 

12.00 0.000 0.000 0.001 0.002 0.008 0.020 0.046 0.090 0.155 0.242 0.350 0.462 0.576 0.682 0.772 

12.50 0.000 0.000 0.000 0.002 0.005 0.015 0.035 0.070 0.125 0.201 0.300 0.406 0.519 0.628 0.725 

13.00 0.000 0.000 0.000 0.001 0.004 0.011 0.026 0.054 0.100 0.166 0.250 0.353 0.463 0.573 0.675 

13.50 0.000 0.000 0.000 0.001 0.003 0.008 0.019 0.041 0.079 0.135 0.210 0.304 0.409 0.518 0.623 

14.00 0.000 0.000 0.000 0.000 0.002 0.006 0.014 0.032 0.062 0.109 0.180 0.260 0.358 0.464 0.570 

14.50 0.000 0.000 0.000 0.000 0.001 0.004 0.010 0.024 0.048 0.088 0.140 0.220 0.311 0.413 0.518 

15.00 0.000 0.000 0.000 0.000 0.001 0.003 0.008 0.018 0.037 0.070 0.120 0.185 0.268 0.363 0.466 

15.50 0.000 0.000 0.000 0.000 0.001 0.002 0.006 0.013 0.029 0.055 0.100 0.154 0.228 0.317 0.415 

16.00 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.010 0.022 0.043 0.080 0.127 0.193 0.275 0.368 

16.50 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.007 0.017 0.034 0.060 0.104 0.162 0.236 0.323 

17.00 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.005 0.013 0.026 0.050 0.085 0.135 0.201 0.281 

17.50 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.009 0.020 0.040 0.068 0.112 0.170 0.243 

                 

18.00 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.007 0.015 0.030 0.055 0.092 0.143 0.208 
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λ 
or 
np 

Table  B     Some values of CDF of Poisson Distribution Pr )(X k  

k 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

18.50 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.005 0.012 0.020 0.044 0.075 0.119 0.177 

19.00 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.004 0.009 0.020 0.035 0.061 0.098 0.150 
19.50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.007 0.010 0.027 0.049 0.081 0.126 
20.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.005 0.010 0.021 0.039 0.066 0.105 
                 
20.50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.004 0.010 0.017 0.031 0.054 0.087 
21.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.010 0.013 0.025 0.043 0.072 
21.50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.005 0.010 0.019 0.035 0.059 
22.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.004 0.008 0.015 0.028 0.048 
22.50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.006 0.012 0.022 0.039 
                 
23.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.004 0.009 0.017 0.031 
23.50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.007 0.014 0.025 
24.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.005 0.011 0.020 
24.50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.004 0.008 0.016 
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Table  C  Area under standard normal curve(Pr(Z < �)) e.g.   Pr(� < −3.00) = 0.0013    

 

 
0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 

-3.5 0.00017 0.00017 0.00018 0.00019 0.00019 0.0002 0.00021 0.00022 0.00022 0.00023 
-3.4 0.00024 0.00025 0.00026 0.00027 0.00028 0.00029 0.0003 0.00031 0.00032 0.00034 

-3.3 0.00035 0.00036 0.00038 0.00039 0.0004 0.00042 0.00043 0.00045 0.00047 0.00048 

-3.2 0.0005 0.00052 0.00054 0.00056 0.00058 0.0006 0.00062 0.00064 0.00066 0.00069 

-3.1 0.00071 0.00074 0.00076 0.00079 0.00082 0.00084 0.00087 0.0009 0.00094 0.00097 

-3 0.001 0.00104 0.00107 0.00111 0.00114 0.00118 0.00122 0.00126 0.00131 0.00135 

-2.9 0.00139 0.00144 0.00149 0.00154 0.00159 0.00164 0.00169 0.00175 0.00181 0.00187 

-2.8 0.00193 0.00199 0.00205 0.00212 0.00219 0.00226 0.00233 0.0024 0.00248 0.00256 

-2.7 0.00264 0.00272 0.0028 0.00289 0.00298 0.00307 0.00317 0.00326 0.00336 0.00347 

-2.6 0.00357 0.00368 0.00379 0.00391 0.00402 0.00415 0.00427 0.0044 0.00453 0.00466 

-2.5 0.0048 0.00494 0.00508 0.00523 0.00539 0.00554 0.0057 0.00587 0.00604 0.00621 

-2.4 0.00639 0.00657 0.00676 0.00695 0.00714 0.00734 0.00755 0.00776 0.00798 0.0082 

-2.3 0.00842 0.00866 0.00889 0.00914 0.00939 0.00964 0.0099 0.01017 0.01044 0.01072 
-2.2 0.01101 0.01130 0.0116 0.01191 0.01222 0.01255 0.01287 0.01321 0.01355 0.01390 

-2.1 0.01426 0.01463 0.015 0.01539 0.01578 0.01618 0.01659 0.01700 0.01743 0.01786 

-2 0.01831 0.01876 0.01923 0.0197 0.02018 0.02068 0.02118 0.02169 0.02222 0.02275 

-1.9 0.0233 0.02385 0.02442 0.025 0.02559 0.02619 0.0268 0.02743 0.02807 0.02872 

-1.8 0.02938 0.03005 0.03074 0.03144 0.03216 0.03288 0.03362 0.03438 0.03515 0.03593 

-1.7 0.03673 0.03754 0.03836 0.0392 0.04006 0.04093 0.04182 0.04272 0.04363 0.04457 

x
z







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 Table  C  continued   e.g.  :Pr(Z < −1.56) = 0.05938       
Z 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 
-1.6 0.04551 0.04648 0.04746 0.04846 0.04947 0.0505 0.05155 0.05262 0.0537 0.0548 

-1.5 0.05592 0.05705 0.05821 0.05938 0.06057 0.06178 0.06301 0.06426 0.06552 0.06681 

-1.4 0.06811 0.06944 0.07078 0.07215 0.07353 0.07493 0.07636 0.0778 0.07927 0.08076 

-1.3 0.08226 0.08379 0.08534 0.08691 0.08851 0.09012 0.09176 0.09342 0.0951 0.0968 

-1.2 0.09853 0.10027 0.10204 0.10383 0.10565 0.10749 0.10935 0.11123 0.11314 0.11507 

-1.1 0.11702 0.119 0.121 0.12302 0.12507 0.12714 0.12924 0.13136 0.1335 0.13567 

-1 0.13786 0.14007 0.14231 0.14457 0.14686 0.14917 0.15151 0.15386 0.15625 0.15866 

-0.9 0.16109 0.16354 0.16602 0.16853 0.17106 0.17361 0.17619 0.17879 0.18141 0.18406 

-0.8 0.18673 0.18943 0.19215 0.19489 0.19766 0.20045 0.20327 0.20611 0.20897 0.21186 

-0.7 0.21476 0.2177 0.22065 0.22363 0.22663 0.22965 0.2327 0.23576 0.23885 0.24196 

-0.6 0.2451 0.24825 0.25143 0.25463 0.25785 0.26109 0.26435 0.26763 0.27093 0.27425 

-0.5 0.2776 0.28096 0.28434 0.28774 0.29116 0.2946 0.29806 0.30153 0.30503 0.30854 

-0.4 0.31207 0.31561 0.31918 0.32276 0.32636 0.32997 0.3336 0.33724 0.3409 0.34458 

-0.3 0.34827 0.35197 0.35569 0.35942 0.36317 0.36693 0.3707 0.37448 0.37828 0.38209 

-0.2 0.38591 0.38974 0.39358 0.39743 0.40129 0.40517 0.40905 0.41294 0.41683 0.42074 

-0.1 0.42465 0.42858 0.43251 0.43644 0.44038 0.44433 0.44828 0.45224 0.4562 0.46017 

0 0.46414 0.46812 0.4721 0.47608 0.48006 0.48405 0.48803 0.49202 0.49601 0.5 



Reliability    Engineering   465 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table  C  continued             e.g.   Pr(� < 1.04) = 0.14917 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0 0.5 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.5279 0.53188 0.53586 

0.1 0.53983 0.5438 0.54776 0.55172 0.55567 0.55962 0.56356 0.56749 0.57142 0.57535 

0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409 

0.3 0.61791 0.62172 0.62552 0.6293 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173 

0.4 0.65542 0.6591 0.66276 0.6664 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793 

0.5 0.69146 0.69497 0.69847 0.70194 0.7054 0.70884 0.71226 0.71566 0.71904 0.7224 

0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.7549 

0.7 0.75804 0.76115 0.76424 0.7673 0.77035 0.77337 0.77637 0.77935 0.7823 0.78524 

0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327 

0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891 

1 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214 

1.1 0.86433 0.8665 0.86864 0.87076 0.87286 0.87493 0.87698 0.879 0.881 0.88298 

1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147 

1.3 0.9032 0.9049 0.90658 0.90824 0.90988 0.91149 0.91309 0.91466 0.91621 0.91774 

1.4 0.91924 0.92073 0.9222 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189 

1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408 

1.6 0.9452 0.9463 0.94738 0.94845 0.9495 0.95053 0.95154 0.95254 0.95352 0.95449 

1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.9608 0.96164 0.96246 0.96327 

1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062 
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 Table  C  continued                    e.g.           Pr(Z < 3.44) = 0.99971 
 

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

1.9 0.97128 0.97193 0.97257 0.9732 0.97381 0.97441 0.975 0.97558 0.97615 0.9767 

2 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.9803 0.98077 0.98124 0.98169 

2.1 0.98214 0.98257 0.983 0.98341 0.98382 0.98422 0.98461 0.985 0.98537 0.98574 

2.2 0.9861 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.9884 0.9887 0.98899 

2.3 0.98928 0.98956 0.98983 0.9901 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158 

2.4 0.9918 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361 

2.5 0.99379 0.99396 0.99413 0.9943 0.99446 0.99461 0.99477 0.99492 0.99506 0.9952 

2.6 0.99534 0.99547 0.9956 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643 

2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.9972 0.99728 0.99736 

2.8 0.99744 0.99752 0.9976 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807 

2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861 

3 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99896 0.999 

3.1 0.99903 0.99906 0.9991 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929 

3.2 0.99931 0.99934 0.99936 0.99938 0.9994 0.99942 0.99944 0.99946 0.99948 0.9995 

3.3 0.99952 0.99953 0.99955 0.99957 0.99958 0.9996 0.99961 0.99962 0.99964 0.99965 

3.4 0.99966 0.99968 0.99969 0.9997 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976 

3.5 0.99977 0.99978 0.99978 0.99979 0.9998 0.99981 0.99981 0.99982 0.99983 0.99983 
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 Table  D    Critical values of standard normal (��)                     e.g. ��.�� = 1.64 

 
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0 0.5 0.49601 0.49202 0.48803 0.48405 0.48006 0.47608 0.4721 0.46812 0.46414 

0.1 0.46017 0.4562 0.45224 0.44828 0.44433 0.44038 0.43644 0.43251 0.42858 0.42465 

0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.39743 0.39358 0.38974 0.38591 

0.3 0.38209 0.37828 0.37448 0.3707 0.36693 0.36317 0.35942 0.35569 0.35197 0.34827 

0.4 0.34458 0.3409 0.33724 0.3336 0.32997 0.32636 0.32276 0.31918 0.31561 0.31207 

0.5 0.30854 0.30503 0.30153 0.29806 0.2946 0.29116 0.28774 0.28434 0.28096 0.2776 

0.6 0.27425 0.27093 0.26763 0.26435 0.26109 0.25785 0.25463 0.25143 0.24825 0.2451 
0.7 0.24196 0.23885 0.23576 0.2327 0.22965 0.22663 0.22363 0.22065 0.2177 0.21476 

0.8 0.21186 0.20897 0.20611 0.20327 0.20045 0.19766 0.19489 0.19215 0.18943 0.18673 

0.9 0.18406 0.18141 0.17879 0.17619 0.17361 0.17106 0.16853 0.16602 0.16354 0.16109 

1 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 0.14457 0.14231 0.14007 0.13786 

1.1 0.13567 0.1335 0.13136 0.12924 0.12714 0.12507 0.12302 0.121 0.119 0.11702 

1.2 0.11507 0.11314 0.11123 0.10935 0.10749 0.10565 0.10383 0.10204 0.10027 0.09853 

1.3 0.0968 0.0951 0.09342 0.09176 0.09012 0.08851 0.08691 0.08534 0.08379 0.08226 

1.4 0.08076 0.07927 0.0778 0.07636 0.07493 0.07353 0.07215 0.07078 0.06944 0.06811 

1.5 0.06681 0.06552 0.06426 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592 

1.6 0.0548 0.0537 0.05262 0.05155 0.0505 0.04947 0.04846 0.04746 0.04648 0.04551 
 
 

 

Z 
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Table  D    Crtical values of standard normal  continued            e.g for � = 0.05 ��� = ��.��� = 1.96           

 
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

1.8 0.03593 0.03515 0.03438 0.03362 0.03288 0.03216 0.03144 0.03074 0.03005 0.02938 

1.9 0.02872 0.02807 0.02743 0.0268 0.02619 0.02559 0.025 0.02442 0.02385 0.0233 

2 0.02275 0.02222 0.02169 0.02118 0.02068 0.02018 0.0197 0.01923 0.01876 0.01831 

2.1 0.01786 0.01743 0.017 0.01659 0.01618 0.01578 0.01539 0.015 0.01463 0.01426 

2.2 0.0139 0.01355 0.01321 0.01287 0.01255 0.01222 0.01191 0.0116 0.0113 0.01101 

2.3 0.01072 0.01044 0.01017 0.0099 0.00964 0.00939 0.00914 0.00889 0.00866 0.00842 

2.4 0.0082 0.00798 0.00776 0.00755 0.00734 0.00714 0.00695 0.00676 0.00657 0.00639 

2.5 0.00621 0.00604 0.00587 0.0057 0.00554 0.00539 0.00523 0.00508 0.00494 0.0048 

2.6 0.00466 0.00453 0.0044 0.00427 0.00415 0.00402 0.00391 0.00379 0.00368 0.00357 

2.7 0.00347 0.00336 0.00326 0.00317 0.00307 0.00298 0.00289 0.0028 0.00272 0.00264 

2.8 0.00256 0.00248 0.0024 0.00233 0.00226 0.00219 0.00212 0.00205 0.00199 0.00193 

2.9 0.00187 0.00181 0.00175 0.00169 0.00164 0.00159 0.00154 0.00149 0.00144 0.00139 
3 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00104 0.001 

Z 
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Table  E Critical values  of Chi�    Distribution(��,�� )      
 

         

 .999 .995 .990 .975 .950 .900 .100 .050 .025 .010 .005 .001 
0.00 0.00 0.00 0.00 0.00 0.02 2.71 3.84 5.02 6.63 7.88 1.83 1 
0.00 0.01 0.02 0.05 0.10 0.21 4.61 5.99 7.38 9.21 10.60 13.82 2 
0.02 0.07 0.11 0.22 0.35 0.58 6.25 7.81 9.35 11.34 12.84 16.27 3 
0.09 0.21 0.30 0.48 0.71 1.06 7.78 9.49 11.14 13.28 14.86 18.47 4 
0.21 0.41 0.55 0.83 1.15 1.61 9.24 11.07 12.83 15.09 16.75 20.52 5 
0.38 0.68 0.87 1.24 1.64 2.20 10.64 12.59 14.45 16.81 18.55 22.46 6 
0.60 0.99 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48 20.28 24.32 7 
0.86 1.34 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09 21.95 26.13 8 
1.15 1.73 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67 23.59 27.88 9 
1.48 2.16 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21 25.19 29.59 10 
1.83 2.60 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.72 26.76 31.26 11 
2.21 3.07 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22 28.30 32.91 12 
2.62 3.57 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 29.82 34.53 13 
3.04 4.07 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14 31.32 36.12 14 
3.48 4.60 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58 32.80 37.70 15 
3.94 5.14 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00 34.27 39.25 16 



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Table  E continud 

.999 .995 .990 .975 .950 .900 .100 .050 .025 .010 .005 .001     α 
 

4.42 5.70 6.41 7.56 8.67 10.09 24.77 27.59 30.19 33.41 35.72 4.79 17 
4.91 6.26 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81 37.16 42.31 18 
5.41 6.84 7.63 8.91 10.12 11.65 27.20 30.14 32.85 36.19 38.58 43.82 19 
5.92 7.43 8.26 9.59 10.85 2.44 28.41 31.41 34.17 37.57 40.00 45.32 20 
6.45 8.03 8.90 10.28 11.59 13.24 29.62 32.67 35.48 38.93 41.40 46.80 21 
6.98 8.64 9.54 10.98 12.34 14.04 30.81 33.92 36.78 40.29 42.80 48.27 22 
7.53 9.26 10.20 11.69 13.09 14.85 32.01 35.17 38.08 41.64 44.18 49.73 23 
8.09 9.89 1.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98 45.56 51.18 24 
8.65 10.52 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31 46.93 52.62 25 
9.22 11.16 12.20 13.84 15.38 17.29 35.56 38.89 41.92 45.64 48.29 54.05 26 
9.80 11.81 12.88 14.57 16.15 18.11 36.74 40.11 43.19 46.96 49.64 55.47 27 
10.39 12.46 13.56 15.31 16.93 18.94 37.92 41.34 44.46 48.28 50.99 56.89 28 
10.99 13.12 14.26 16.05 17.71 19.77 39.09 42.56 45.72 49.59 52.34 58.30 29 
11.59 13.79 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 53.67 59.70 30 
17.92 20.71 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 66.77 73.40 40 
24.67 27.99 29.71 32.36 34.76 37.69 63.17 67.50 71.42 76.15 79.49 86.67 50 
31.74 35.53 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38 91.95 99.61 60 
39.04 43.28 45.44 48.76 51.74 55.33 85.53 90.53 95.02 100.43 104.21 112.32 70 
46.52 51.17 53.54 57.15 60.39 64.28 96.58 101.88 106.63 112.33 116.32 124.84 80 
54.16 59.20 61.75 65.65 69.13 73.29 107.57 113.15 118.14 124.12 128.30 137.20 90 
61.92 67.33 70.06 74.22 77.93 82.36 118.50 124.34 129.56 135.81 140.17 149.45 100 


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Table  F     Chracteristic of some continuous distributions   
Variance Mean MGF pdf  
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Table  F     Chracteristic of some continuous distributions  continued   
A= location parameter    B=  scale parameter    C=  shape parameter 

 pdf CDF mean Variance 
Weibull 
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 A Weibull distribution with A= 0 & C=1 is an exponential distribution. A Weibull distribution with A= 0 & C=2 is Rayleigh distribution 
A GPD distribution with A= 0 & C=0 is an exponential distribution 
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Table  G     Chracteristic of some discrete distributions   

Variance mean Z-transform MGF Probability function p(x)  
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Table  H   MATLAB1 Commands related to Distributions 

  
Density/probabality 

function  CDF(F(x)) Inverse of CDF Random numbers Parameter 
estimator 

  
Distribution 

betapdf(x,A,B) betacdf(x,A,B) betainv(P,A,B) betarnd(A,B,m,n,o,...) betafit(X) Beta 
poisspdf(x, λ) poisscdf(x, λ) poissinv(P, λ) poissrnd(λ,m,n) poissfit(X) Poisson 
binopdf(x,N,P) binocdf(x,N,P) binoinv(Y,N,P) binornd(N,P,m,n) binofit(X,nBinomial 
nbinpdf(x,R,P) nbincdf(x,R,P) nbininv(Y,R,P) nbinrnd(R,P,m,n) nbinfit(X) Neg Bino. 
hygepdf(x,M,K,Nhygecdf(x,M,K,N) hygeinv(P,M,K,N) hygernd(M,K,N,m,n)  Hyp. Geo. 
gampdf(x,n, λ) gamcdf(x, n, λ) gaminv(P, n, λ) gamrnd(n, λ,m,n) gamfit(X) Gamma 
lognpdf(x,μ, σ) logncdf(x,μ, σ) logninv(P,μ, σ) lognrnd(μ, σ,m,n) lognfit(X) Lognormal 
chi2pdf(x,V) chi2cdf(x,V) chi2inv(P,V) chi2rnd(V,m,n)  Chi-Squa.. 
normpdf(x, μ, σ) normcdf(x μ, σ) norminv(P,μ, σ) normrnd(μ, σ,m,n) normfit(X) Normal 
exppdf(x, mu) expcdf(x, mu) expinv(P,mu) exprnd(mu,m,n) expfit(X) Exponential 
geopdf(x,P) geocdf(x,P) geoinv(Y,P) geornd(P,m,n)  Geometry 
wblpdf(x-A, B,C) wblcdf(x, B,C) wblinv(P, B,C) wblrnd(B,C,m,n) wblfit(X) Weibull 
unifpdf(x,A,B) unifcdf(x,A,B) unifinv(P,A,B) unifrnd(A,B,m,n) unifit(X) Uniform 
fpdf(x, V1,V2) fcdf(x, V1,V2) finv(P, V1,V2) frnd(V1,V2,m,n)  F 
gevpdf(C,B,A) gevcdf(x,C,B,A) gevinv (P,C,B,A) gevrnd(C,B,A) gevfit(X) GEV 
gppdf gpcdf gpinv  gprnd gpfit GPD 
raylpdf(x,B) raylcdf(x,B) raylinv(P,B) raylrnd(B,m,n) raylfit(X) Rayleigh 
tpdf(x,V) tcdf(x,V) tinv(P,V) trnd(V,m,n)  t 



ABOUT   THE   AUTHOR 

The author received  his B.S. in Industrial Engineering (IE) from  a 
University of Technology in Tehran, in 1976 and his MS degree 
in IE from University of Pittsburgh(Pitt) ,PA in 1978.  He was 
employed as a faculty member in Kerman, Iran  in 1979.   He 
started to continue his studies for PhD at Pitt in 1985; after 2 
semesters he left USA for home; however he received PhD 
from Brunel University of London in July 2006.  He has taught 
some courses for over 30 years  

The author has published some textbooks in Persian; some articles in 
conferences and journals and supervised several graduate 
theses. He was retired in 2015 from his job as a faculty 
member at a university in his hometown Kerman, Iran.  
Chairman of IE and ME departments are among his 
responsibilities at the College of Engineering of Shahid  
Bahonar University of Kerman , Iran. 

 

If youth but knew, If old age but could, 
Si jeunesse savait, Si vieillesse pouvait 

(French Proverb)



                                      


