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FOREWORD

This book, whose Persian version written by the same author
is published by our univerisity, is the outcome of teaching a
course on reliability for several years to graduate students
using many books especially the book written by Dr Kapur and
Lamberson (abbreviated by K&L throughout the book) . The
main prerequisite for understanding the materials of the book is
probability. As evident from the chapter titles, the book
introduces readers with reliability and availability of products. |
would like to the students who helped the author in some phases
of editing.

At the end of this foreword a software and a symposium are
introduced.

Software

ReliaSoft's reliability software tools facilitate a set of
reliability engineering modeling and analysis techniques.
(downloable from http://www.reliasoft.com)

A symposium: RAMS associated to IEEE

Reliability and Maintainability www.rams.org
The proceedings are available from

http://ieeexplore.iece.org/xpl/mostRecent! ssue.j sp?punumber=6516162

It is suggested to the readers, especially those working in
industry, to read books on design for reliability after reading this
book.

Thanks God for making me successful to present this work
which | hope to be useful in both academic and industria
environments.

The author would be pleased if the readers write him about
any kind of deficienciesin the book.

Hamid Bazargan

Jan 2023

College of Engineering,

Shahid Bahonar University of Kerman, Iran
bazargan@uk.ac.ir

Thewiseisonewho puts everything
in itsright place
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Nomenclature
Symbols Description
AB,C
A 1)steady-state
availability

2)Location parameter
of Weibull distribution

A Intrinsic Availability
art actual repair time
B 1)a parameter of some
distributions (Weibull
GEV,
GPD) 2) Bartlet's test
C 1)A parameter of some
distributions (Weibull ,
GEV,
~DN\
CDF Cumulative
distribution
function
F« CDF of random
variahle X
Fy CDF of random
variable Y o
foys pdf of system's lifetime
fx pdf of random variable
X
F CDF of strength
)
pdf of stress(load)
f4(s)
CDF of strength
F;(s)
f 5 pdf of strength
+(0)
Fxu) pdf of sample min.
Fx * Fy convolution of Fy,Fy
F critical value of F
a,mn distribution for n &m
degrees of freedom at

givensig. lev. a
E critical value of F
21272212 igribution for
2r, -28&2r -2
deg. of f. atlev. a/2

H,L,N,O

h(t) Instantaneous failure rate
function
L Lower Specification Level

Si

n;

N(t)

OR

pdf

«n 0

a0

P(t)

O

Q;

R*(¢)

Ro
R{

R (1)

sys

standby

PN

active

Rs(t)
Rsys(t)

Nomenclature

1)sample size 2)the number
of components in a series or
parallel configuration

Average safety factor

Number of componentsin
i subsvstem
Initial size of the sample

The number of survivor
components (or the number
still working adequately)at
time t

Operational readiness

P.Q

Failure probability of a
device

Probability density function

The probability that a
switch operates well

The probability of
accepting alot by a
sampling plan

The probability that the
systemisin statei at timet

Fraction defectiveina
pobulation

Failure (unreliability)
probability of adevice

Failure probability of it"
component

R

The optimum reliability of
the system at time t

The required reliability of
the svstem

The reliability allocated to
i™ unit

The given reliability for it"

unit
The reliability of n-
component system(a active)

The reliability of 2-
component system

( 1 active 1 standby)

The reliability of 2-
component system( both
active)

The reliability function of

the switch
System reliability function
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Nomenclature Nomenclature
R; ®) The reliability function of Aq The failure rate of
i unit component a
Ap The failure rate of
component b
S T 1 In load sharing:the failure
]
L rate for the component
S Stress, Load under half load
Sh Maximum of stress(load), In load sharing: The failure
ax upper extreme value of S Ag rate for the component
under full load
Sm Average stress value
ean . 1 The failurerate of the
Sm' Minimum of stress(load), s switch
In lower extreme value of S
The failure rate of the
t* ) . At standby component
Duration of experiment while in standby mode
T Total operating time of all _
items under the lifetest U The mean of a population
U V W X Us Averace |oad
T ! HUs Average stenath
U The upper specification o The standard devaition of
level of adimention of a apopulation
product Standard devation of load
(U—L)part  Thedifferenceof UalL Is Sistribution
par inapart o standard devation of
par 1) strenath distribution
Smin lower bound of strength
(U = L)sum The differenceof Ua L in
the assembled unit o the standard devaition of a
v, Coefficient of variation of part measurement in a part
safety factor(SF)
w In AGREE Method: the standard devaition of a
! The importance factor o measurement
of the ith subsystem sum in the assembly
X, The minimum of asample
O the CDF of standard
X Theith value of an ordered 0z normal distribution
® sample
X; Theith value of asample; .
t The occurrence time of the ;Ezgfg; gegerating
i" Failure; the i failure Px

time of the device

Note: 3" X, =X,
i=1 i=1

a, B, ...

The probability of Typel
error

The probability of Type Il
error

The strength of the i"" link
(component)

of randdom varaible X
The critival value of chi-
squared distribution wth
degre. free=n and sig .
level = a

composition operator
acting over afunction
(in UGF Technique)

End of Eexample

End of theorem ; End of
proof
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1

Introduction and Basic Concepts

Aims of the chapter

This chapter is concerned with definitions and basic concepts
needed in a reliability course such as MTTFMTTR, reliability
function, hazard function and their estimation. Bathtub curve,
cumulative distribution function of extreme values of samples
are also discussed and a goodness of test for exponential
distribution is explained.

1.1 Introduction

In general, the reason one is concerned with the reliability of
components of electrical and mechanical systems is to ensure
that the systems will be reasonably free from failure(Grant
& Leavenworth, 1988 page 606). Failure of products could
incur a great loss or lead to personal injury, or severe physical
or environmental damage and even lead to death, This proves
the importance of product reliability in various fields including
air-space. According to Bazovsky(2004) "reliability has added a
new dimension to quality control work without subtracting
anything from traditional quality control work and methods."
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Here the quality characteristic is life. Gathering of lifetime data
is often expensive and its statistical analysis isan important
topic in reliability engineering. It is reminded that control
charts such as X chart and p-chart could be constructed using
lifetime data but these charts, despite their effectiveness, do not
answer such questions as what percent of the products live more
than 1000 hours with 90% of probability. Before defining the

term reliability let us define the term failure.
1-2 Failure

American National Standard defines faillure as "The
termination of the ability of any item to perform its required

function (I1E Terminology page 8-9).
1-3 Reliability

In general reliability is the ability of a device, a system or a
unit to perform a function or some required functions without
any failure under some conditions for a stated amount of
operation. The amount of operation could be expressed in time,
kilometers, working cycles, number of timesit operates....

When defining this characteristic by such terms as "assessed
reliability” and "predicted reliability" the following is useful
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[1E terminology defines this term as ™ the probability that an
item will perform a required function under stated conditions

for astated period of time" (I1E Terminology page 8-22).
Thereliability is sometimes expressed as a success rétio.
The objectives of Reliability Engineering
The Reliability Engineer must*

e Apply engineering knowledge and techniques to reduce
the occurrence of failures

o Determine the cause of each failure and make necessary
adjustments to correct the issue or completely address
the root cause

o ldentify different ways to address failures should the root
cause prove uncorrectable

o Do reliability estimations for new designs and

continually analyze reliability data

Moreover reliability engineers check new installations to
ensure they adhere to functional specifications. They guide users
to ensure the reliability and maintainability of equipment,
processes, Uutilities, facilities, controls, and safety/security

1 From (https://www.techsl ang.com/definition/what-is-reliability-engineeri ng/)
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systems. That includes helping them come up with asset

maintenance and risk management plans.

Reliability engineers develop solutions to repetitive failures
and al other problems that adversely affect the users’
operations. They work with production teams to analyze assets’

performance.

Overdl, reliability engineering can minimize failures,
enhance effectiveness, reduce repair times, streamline
maintenance processes, and offer protection against injuries and

death. ( End of quotation from https://www.techslang.comvdefinitioniwhat-is-reliability-engineering))
Also reliability engineers must
o Beableto enhance and optimize systems reliability

Reliability Importance: The Reasons

Some of the reasons why product reliability isimportant are:

-Greater safety for industries such a space industry

-Greater product reliability causes more reputation

-Customers' request and consent

-Although greater reliability incur a higher cost, but the

overal cost including that of maintenance and repair is less.
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It is worth mentioning that reliability theory has application

to many fields including air-space industry, home appliances,

transportation, buildings, and electronic industry.

1-3-1 abbreviations

TTF
TTR
TBF
MTTF
MTTR
MTBM

MTFF
MTBF

Time To Failure,

Time To Repair, repair time

time between 2 successive failures( for repairable devices)
Mean Time to failure

Mean Time to Repair

Mean time between maintenance, The average length
of time between one mai ntenance action and another

for acomponent

Mean timeto first failure

Mean time between failures( for repairable devices)

Note that TBF isequal tothesumof TTRand TTF (Fig.1.1).

TBF=TTR+TTF (1-1-1)

R VP TR
=

Ehi*urc

7

Wilure L BP =LIR+ITH

Fig. 1.1 Graphical representation of Eq. 1.1.
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Taking the average of both sides of Eq. 1-1-1 yields:
MTBF=MTTR+MTTF (1-1-2)

If the probability distribution function or the cumulative distribution
function of the time between failures is not known, mean time

between failuresqM TBF)could be estimated from (Tersine, 1985,
p202):

MTBF = % (1-2)

Where N is the number of failures during the time WT.

Mean time to failure (MTTF) and mean time to repair(MTTR)

could be estimated in a similar manner.

In the continuation of this section, some terms used for
measuring reliability such asreliability function, mean life time,
hazard function or failure rate function are described. It is worth
remembering that since we accept that in a population of a
product, the products fail in different times, even if they work
under the same conditions, it is concluded that the failure
phenomena has to be treated statistically. That is why the
definition of reliability basics concepts is based on Profanity
theory.
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1-4 System reliability function: R(t)

Reliability function for devices with continuous lifetime
distribution is defined as:

R() =Pr(X>t) =Pr(X=0) = [[f(x)dx — 1 - F(x) (1-3)
where

f (x) isthe probability density function(pdf) of time to failure
(X=TTF),

F (x) isthe cumulative distribution function of lifetime(X),

Reliability function for devices with discrete lifetime
distribution is defined as:

R(k) =Pr(X>k) k = 1,2,.... (1-4-1)
R(k) = X5k Px(D), (1-4-2)

Where Py (j) isthe failure probability at timej.

For example if the failure probability at any time is p and the

distribution is geometric, then the reliability of timej is:
R(k)=(1—-p)**, k =1,2,.... (2-5)

If kislargishand pissmall, then:
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R(k) = e~k-Dp (1-6)
1-5 Calculation of average lifetime

If the lifetime is a continuous random number with
probability density function f(x) of cumulative distribution F(x),
its average is calculated from:

E(X) = f_ooooxf(x) dx. (1-7)
It is proved that for a continuous distribution:
E(X) = [7[1 - Fe()ldx — [° Fe(x)dx (1-8)

And since lifetime(X) does not accept negative values, then
lifetime average could be calculated from:

E(X) = [[1 - Fx(x)] dx (1-9)
or from:
E(T) = [ R(t)dL. (1-10)

It worth noting that 2 systems with equal lifetime average
might have different reliability.
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Example 1-1

If X with normal distribution X~N(u = MTBF,c) and Y

with  exponentid  distribution  Y~exp (/1 =2= MTlBF)

represent the lifetimes of 2 products, find the average lifetime
and the reliability of each product for a mission time equa to
t = MTBF.

Solution

X isnormally distributed; then

E(X) = = MTBF , R(t = MTBF) = Pr(X > ) =~

Y isexponentially distributed, then:

4
E(Y) =6 = MTBF, R(MTBF)=e6=037A
Example 1-2

The life time of a criticd component is exponentialy

distributed with parameter A. If the component fails or if its
lifetime reaches T it is replace with a ne one. How much time
on the average is needed to replace the component?
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Solution
Let

X=thelife time of the component and

Y = the replacement time.

Y = Min(X, T) = E(Y) = E[Min(X, T)]
Min (X, T)+Max(X,T)=X+T=
E[Min (X,T)] =E(X+T)-E[ Max(X,T)]

EX+T)=EX)+T

E{Max(X, T)} = E(Max(X, T)|X > T)Pr(X > T)
+EMax(X, T)|X < T)Pr(X < T)

EMax(X, T)|X >T) = EX|X>T),
X isexponentially distributed and therefore is memoryless; then:
EXX>T)=T +% and EMax(X, T)|X < T) = E(T) = T.
then

E{Max(X, T)}=(T +3) x e 7T+ T(1-e?T) =T+7e7T



Chap 1 Introduction and Basic Concepts 26

E(Y) = E(Min(X, T)} = E(X + T) — E[ Max(X, T)]
= +T—(T+;e7 M) > EW) =-(1—-e?T) A

1-6 Failurerate

The probability of failure of asystemin agiveninterval [ty, t,]
iIS(K&L page 12):

Prt, < X <t,) = Fy(t,) — Fx(t) = R(t;) — R(ty).

conditioning on the event the item isworking at time t,

Fx(t;)—Fx(t1) — R(t1)—R(t2)
R(t1) R(t1)

Pr(t; < X <t,|X > t))=

If this conditional probability is averaged over |[t;,t,] an
average rate of failure is obtained from the following (Ravindran,
2016 p17-12)

R(t;) — R(t,)
Pr(t; < X <t,|X >t;) _ R(t)) _ R(t;) — R(ty)

th— 1t tr —t4 (t; — t)R(t1)

Thisis called the failure rate during interval [t,,t,] (K&L p12).

1-6-1 Instantaneousrate function (hazard function)
for continuouslifetimedistributions

In the above expression, let [t;,t,] = [t,t + At] then the

average rate of failure would be

R(t) — R(t + At)
At X R(t)
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When At approaches zero( At — 0) in the above fraction, a
function called instantaneous rate function or hazard function is
obtained:

h(t) = limyo—— ——=—— at 1~ R’

R()-R(t+At) 1 _dR(t) _f@® )
(At)XR(t) R(t) [ (l 11)

Then for devices with continuous lifetime having pdf f(t) and
reliability(survivor) function R(t), the hazard function is defined
as theratio of the probability density function to the survivor

function.

_ [ _ -R® i
h(t) = PO (1-12)
Theratioisafunction of t. Inpractice, t could betime,

number of cycles or revolutions ,km, events,....

h(t) represents the conditional probability density that an item of
aget will fail(Ross, 1985 page 194). However, we can see from the
definition the hazard function is the ‘chance’ of failure (though
it isanormalized probability, not a probability) at timet, given

that the individua has survived until time (nttps://web.stat.tamu.edu/~

suhasini/teaching613/chapter6.pdf).
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It is worth mentioning that it is probable as much as h(t) X dt
that a component with lifetime t will fail during the small

interval dt, since

ffﬂitf (Ddx  f()dt

R(t) ~ R

Prt<X<t+dt]X=1t)= = h(t)dt

The importance of the hazard function is that it indicates the
change in the failure rate over the life of a population of
devices. For example, two designs may provide the same
reliability at a specific time; however the failure rates up to this

point in time can differ(K&L pagel?).,

The hazard function of a device is not necessarily the same

in different lifetime intervals.
1-6-2Necessary condition for being a hazard function

All hazard functions must satisfy two conditions(Ravindran,

2016 pagel7-12). They cannot be negative
h(t) =0 forall t=0 (1-13-1)

and it could be proved that if a function h(t) is a hazard

function then:

J," h(x)dx = . (1-13-2)
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1-6-3Hazard function and reliability function for

discretelifetimedistributions

If aproduct life time(X) has a discrete distribution and Py (k)
Is the probability that the product fails at time k, according to
Egs. 1-4 the reliability would be:

R(K) = Pr(X=K) = X2 Pr(X = ) =X Px (),

The function h(k) given below, is known as the rate

function of "item with discrete lifetime distribution" (xie et a,2002):
h(k) = Pr(X = k|K = k) = PrX = k)/Pr(X = k) =

R Pe(k)

b =5 @~ R

(14-1)

For example if the lifetime of an item has a Poisson

distribution with parameter A, then:

_Px(0 _ Px() Ak
h(k)= RK) I Px() ki Z?:k%(.
in MATLAB: h(k): poisspdf(k, landa)

1-poisscdf(k-1, landa)’
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1-6-4 Calculation of h(t), R(t), F(t), f(t) given any of

them

If any of the four functions h(t),R(t),F(t),f(t) are
known, the other three are uniquely obtainable from it as
described bel ow(Grosh,1989 pagel6):

h(t) isknown:

h(t)=% = %(tt))dt:h(t)dt = j;%dx:- j; h(x)dx

Assuming R(0) = 1, integrating yields ,then

R(t) = e~ Joh(®ar (1-14-1)
f() = h(®)R(t) (1-14-2)
F(t) =1-— R(t) (1-14-3)

f(t) isknown:

t ()
F(t) = f_i(t)dt: R =1-F©) k(0=

(1-15-1) (1-15-2) (1-15-3)
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F(t) isknown:

f@®) = %F(t) R(t) =1-F(t) he) =19

R(t)
(1-16-1) (1-16-2) (1-16-3)
R(t) known
_-R({® _ _1_
h(t)—w f@®) = h(®R®) F(t) =1-R()
(1-17-1) (1-17-2) (1-17-3)

1-7 The pdf of a part of adistribution

If f (X), the probability density function of arandom

variable is known, the density function of part (a b) of the

random variable is;

S xf () (1-18)

fan(X)= b
Lf (x)dx
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1-8 Some continuous distributionsused in
reliability theory*

Below some useful probability distributions related to
lifetime and reliability subject are reminded.

1-8-1 Exponential distribution

Exponential distribution is a distribution whose density functionis

t
f)=-e 9, t=00>00r =de~* 1>0 (1-19-1)

D+

The reliability function related to this distribution is as follows:

w1l X _t
R()=Pr(X>t) = [(-eodx=eTs t2=0 (1-19-2)

The hazard function is:

o _1_ _19-
h(t)_R(t) =4 (1-19-3)

Itisclear that the rate function of an exponential distribution

is constant and independent of time. Conversely if we know the

! some softwares such as ARENA could determine the best distributions that
fit adataset(e.gin ARENA tools-input analyzer- new-file data file- use
existing- fit al)
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failure rate of arandom variable is time independent (constant),

it s exponentially distributed.

It is worth mentioning that

-A gammadistribution with parameters (¢ = 1, ) isan

exponential distribution

-A Weibull distribution with parameters (A = 0,B,C = 1) isan

exponential distribution

-The minimum of n independent exponential distributions
with parameters 4, ..., 4, follows an exponentia
distribution with parameters }: A;.

-According to Eq.1-18, the density function of a section of

an exponential random variable say section (0 D) is:

/'le—lx
1—-e~AD

1-8-2 Normal(Gaussian) distribution

The pdf of anormal distribution which is sometimes called

0<x<D.

Gaussian distribution is

_(x=u)?
f(x)= 1 25° , —00< X <00 (1-20-1)
o2

Therate function is:

h(t)=$ exp{— %} [1— o, (I‘Tf“‘ﬂ_l (1-20-2)
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where

@, isthe cumulative distribution function(CDF) of standard normal.

> t=TTF
Fig. 1.1 shows the rate function of 2 normal distributions.

It isworth mentioning that normal distribution has the
additive property i.e. if nindependent normal distributions
N(uq,01),..., N(up, 0,) are added to give another random
variableY, Y aso follows anormal distribution,

Example 1.3

Suppose thetimeto failure of adevice is normally distributed
with mean of 20000 cycles and standard deviation of 2000
cycles. Find the value of reliability(survivor) function and
hazard function at 19000 cycles.

Solution Using Table D at the end of the book

19000 — 20000) _

R(19000) = Pr(X > 19000) = Pr (z > oo

Pr(Z>0.5)=1-Pr(Z<-0.5)=0.69146=69.15%
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_(t-20000)°

e 2% — £(19000)=0.000176

1

0= 2000721

f(19000) _ 0.000176
R(19000)  0.69146

h(19000)= =0.000245 failures/cycle

i.e. 245 failures per 1 million cycles. A
1-8-3 Truncated normal distribution(p,s;0,0)

If we truncate the values of a norma distribution from

below zero, the density function of the remaining values within

theinterval [Q; oo] would be derived from Eq. 1-18 as follows:

1 _1(t—_u)2
f(t)=am_nez s/, t=20,0>0.<pu<ox (1-21-1)

where

© 1 _Ltmwy? - -

azf eZ(d)dszr(Z>—'u)=1—(DZ(—'u)
0o oV2m o o

Note that

-The probabilities of this distribution is not calculated in the

same manner which isdonein classical normal distributions.

- The mean and variance of this distribution does not equal

1 and o®. Themeanis
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E(X)=u +§e' 2t (1-21-2)

This truncated distribution has an increasing rate function.
Figure 1-2 shows the function for typical one plotted with the
following MATLAB commands:
mu=3;sigma=0.1;t=0:.01:10;f=(normpdf (t,mu,sigma))/(normcdf (mu/si
gma))./(1-normedf (t,mu,sigma));plot(t,f);

120
100 mp=3  sigma=0.1
80 ¢
B0}
)
40 ¢

201

|:| 1 1 1 1 1 1
0 1 2 3 % 4 ] B 7
Fig. 1-2 Instantaneous rate function of atruncated

withu=3 and 6 =01 X=0

1-8-4 Log- normal distribution(u,o)
The probahility density function of alog-normal distribution is:

_l(lnt—p.)z
e 2\ o t=>0, 0>0 —oo<u<owo (1-22-1)

f®) =—7=

The mean, variance and median of the distribution is as follows:

0.2
E(T) =et*z (1-22-2)
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Var(T) = (ez‘”az)(e"2 -1) (1223

median=e (1-22-4)
Figure 1.3 shows the pdf of 2 sample lognormal
distributions.

Lognonn al
07 ognonn 2

0.6

0.5t

0.4r

fit)

0.3

0.2 .
mb=05 sigma=1
0.1
|:| E 1 1 1 1 1 t
0 1 2 3 4 = G

Fig. 1.3 The pdf of 2 lognormal distribution

1-8-4-1 Calculation of the parameters(u,s) of lognormal

distribution from the mean and variance

Given E(T) and Var(T) as the mean and variance of a
lognormal random variable, the parameters of the distribution

is calculated from:

2 Var(T)
o? =In|*5 ot 1) (1-22-5)
0-2
p =IET) - Z (1-22-6)

1-8-4-2 Therédationship between lognormal (4,6) and normal
(u,0) distributions
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If T isdistributed log-normally :T~lognormal(y, o), then

X=In(T)isanormal random variable: INT~N(y, o).

If X is distributed normally :X~N(y, o), then T=eX is a

lognormal random variable: eX~logN(y, o).

Fig. 1-4 compares the 2 distributions:

.7

06 Lagnorm m%l\l:l zigma=-1

05t

04r

=3
03r
Logronn =

nz2r nornall 0 A =05 sigma=1 1

04t 1
0 : : : , !
& 4 2 0 2 4 2

Fig 1.4 Normal and lognormal distributions
To calculate the probabilities in this distribution proceed as
follows:
Ft)=P( <t)=

Int —u)

Pr(IRT <Int) =0T —# N4y o
(o2 (o2

Int—
Then  Fr(t)=p,(—*

) (1-22-7)

where ¢, isthe CDF of standard normal.

The reliability function or survivor function is given by :
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R =Pr(z>"H)=1-¢,(7) (@1-229)

The command lognormalcdf from Table H at the end of the
book might be used to calculate Fr(t) andR(T):

Fr(t) = lognormalcdf(t, p, 0)
R(t) = 1 — lognormalcdf(t, u, o)

The instantaneous failure rate functionis:
1 @(p{_ (In;;é‘)z
h(t) = 29
o xt\2r [1- ®, ('”‘JH (1-22-9)

[ex

In MATLAB, h(t) could be calculated by dividing commands

lognormal pdf to 1-lognormalcdf :e.g.:
y=(lognpdf(x,1,2.5))./(1-logncdf(x,1,2.5));plot(x,y)

Fig 1-5 shows the rate functions for 4 lognormal distributions.
This distribution seems to have little except its mathematical

tactability to recommend itself as a failure distribution ; it does

seem to give good fit to repair time distributions(Barlow and
Proschan,1995 pagel?).
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o
1.5
it=lo=273
1
.45t
n I:I 1 1 1 1
1] LA 1 11 H ] 3 D DE 1 15 2

Fig 1-5 The hazard function for some lognormal variablewith p=1
(the horizontal axis isthe time and the vertical isthe failure function)

Example 1-4

If timeto failure of adeviceislognormally distributed with
(u=15,0=1). Find the values of the reliability and hazard

functions for t-150 units of time.

Solution
R(150) = Pr (z > ‘“151"‘5) = 0.496
1 _l(lnt—u)z
frt) = ——=e"2\"0 fr(t = 150) = 0.0027
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h(150) = £(150) _ 0/0027 _ 0_0053fail1,u"e/1 it time =

T R(150) ~ 0.496

failures
53 /10000units of time'

1-8-5 Uniform distribution

If the probability density function of arandom variableis as

follows:

1

fx(x) = {OE asxs<b (1-23-1)
o.w

Thevariableis said to be uniformly distributed over [a b].

For example the density function of the uniform distribution in

—  0<t<4,
theinterval (0 6,)is f (t)=16,
0 other
In this distribution:
X—a
FX(X) = E (1—23-2)
b—x
R(x) = -— (1-23-3)
_fx _ 1 23
h(x)—R(x)—b_x a<x<bh (1-23-4)
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Figures 1-6 and 1-7 showsthe density function f (X) and the
hazard function h(x).

hix) + f()()

'y {

1

s

.
=

a b b

Bl

Fig 1.7 The hazard function of  Fig 1.7 The density function of

auniform distribution auniform distribution
1-8-6 Waeibull distribution

If the probability density function of arandom variableisas

follows:

f(t)= %(%‘J _ é[_Bj t>A (1-24-1)

This continuous distribution is called Weibull  after Swedish
mathematician and engineer Waloddi Weibull.

The CDF, the reiability (survivor) function, the rate function
are:

t—A)C

F)=1-e (5 (1-24-2)
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C

R(t) = e (7) (1-24-3)
o C(t-AY"
r(t) =19 = E{Tj (1-24-4)

and the mean, variance and median are:

ET)=A+ Br(1+Ci) (1-24-5)
Var(T) = Bzr(1+3)-132 r(1+1)\
C c’ (1-24-6)
1
median=A +B(In2)° (1-24-7)

A is called the location parameter, B is the scale parameter and
C isthe shape parameter.

Aninterpretation of location parameter in reliability theory :

A minimum life time of A is guaranteed.

Figure 1-8 shows some Weibull distribution pdf 's.

In weibull distribution:

-If A=0, the distribution is called 2-paramter distribution.

-If A=0 C=1, thedistribution is exponentia distribution
whose hazard function is constant.
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-If A=0, C=2 thedistribution is called Rayleigh distribution
whose hazard function islinear. Thisdistribution is frequently
used as the statistical distribution of seawave height and to

model the behavior of some communication channels.

VR dgERyuetion A0 B= s oneshals A avetes
=1

S

i =L =
= = D=0

Fig. 1-8 Plot of the Weibull distribution for scale parameter B=1 and
five valuesof shape parameter (extracted from Grant& Leavenworth ,1988
page605)

Given arandom sample x; ...., x,,, the following relations
could be used to estimate the parameters B and C of aWeibull
distribution with A=0. Theserelations are related to maximum
likelihood estimation(MLE) method in statistics theory.

n ] -1
C= [Zl 1(x lnxl) _ ZizgInx; (1—23-8)

n

B = [E]C (1-23-9)

n
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- In aexceptiona case where the shape parameter of Weibul
(A,B,C) is C=3.44, the distribution could be approximated with
anormal distribution with parameters (Carter,1986 as refrenced
by O'Connor, 2003pagel22 )

u=A+Br(1+3)=A+09B, o=8B /r(1+r(§))go.33

Example 1-5
Write a MALAB code to estimate the parameters B and C

of a Weibull distribution from which the following random
sampleisat hand:

X=[113.0634 49.5432 53.4872 93.7147 74.0594
114.3216 97.1033 61.5069 74.7216 52.8807];
Furthermore estimate the parameters with wblfit MATLAB

command.

Solution
%Sample X=[X(1)......X(n)]
X=[113.0634 49.5432 53.4872 93.7147 74.0594
114.3216 97.1033 61.5069 74.7216 52.8807];
for C=.01:0.001:40
for I=1:length(X)
LNX(I)=log(X(1));
XIC()=X()"C;XICLNX (1)=XIC(1)*LNX(1);
end
A= C-(sum(XICLNX)/sum(XIC)-sum(LNX)/length(X))"(-1);
if (abs(A)<=0.001) C1=C; disp(sprintf('C= %6.4f ', C1))
end
end
B=(sum(X.*C1)/(length(X)))*(1/C1);
disp(sprintf('B= %6.4f ', B))
with MATLAB command whilfit:
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>>whlfit(X)
ans= 87.1543 3.7149A

1-8-7 GEV digtribution

Fisher and Tippet presented three statistical distributions
EVy,EV,,1EV3 or FTy, FT,,2FT;. Jerkinson (1955) showed
that these 3 are specia cases of one distribution which was
caled later generalized extreme value (GEV) distribution. The
characteristics of this distribution as well as Weibull distribution

and genera Pareto distribution are given in Table F at the end of
the book.

1-8-8 Gammadistribution

The gamma distribution is another continuous distribution used
inreliability work to fit failure data. It is sufficiently flexible. A
random variable X which follows a Gamma distribution has 2

positive parameter: )0 A)0 with the following pdf:

la

X%  x)0
f(x)=1T() ) (1-24-1)
0 X <0
Furthermore:
1 Extreme Value

2 Fisher-Tippet | or Gumbel distribution
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E(X)= % (1-24-2)
var ()= & (1-24-3)

a is caled shape parameter and A isthe scale parameter.

The failure rate function of the gamma distribution does not
exist inasimple closed form. Figure 1.9 shows the function.

For o > 1itisincreasing, for a = 1 it isconstant and for
o < 1litisdecreasing

h(t) (Gamma
N SRR a > 1
4 | T a < 1

Fig 1-9 The hazard function of gamma distribution
1-8-8-1 Erlang distribution

If @ issome positive integer n, the distribution is called Erlang
and in the pdf we could replace I'(n) withI'(n) = (n — 1)!.

If « =1 thedistribution isexponential;



Chap 1 Introduction and Basic Concepts 48

If a =2 ‘thedistribution is Rayleigh.

An application of Erlang distribution isto calculate the
probabilities related to the n™ occurrence in a Poisson process.

In Erlang distribution with parameters n and 4 the kth moment
about the originis:

E(x¥) = Fg;gnl;) n+k>0 (1-25)

Figure 1-10 shows three functions related to 7 different
distributions.
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| pdf | hazardf. | Reliab. f.
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Fig. 1-10 pdf, h(t),R(t) of some distributions
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1-9 Bathtub curve hazard function

The hazard function varies with time. A well-known pattern
is called bathtub curve whose ideal form is shown in Fig.1-11-1.

hit)
[}

o |
t .
Infaney ' useful life ‘2 Aging

Fig 1-11-1 Ideal Bathtub curve

It comprises of three parts. 1)Infancy(early-life period),
2)useful life, 3)aging. Thefirst part represents the failure rate of
early life period which is decreasing. The second part has a
constant rate of failure, The last part is the wear-out period and

has an increasing failure rate.

A distribution which could be used for each of the 3 parts of
Fig.1-11-1 is Welbull distribution with different shape

parameter C as described below:

0<C<1: O<t<t,
C=1 : t<t<t,
C>1 : t>t,
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Figures1-11-1 to 1-11-5 show some other variations of bathtub
curve which happen in practice,

[ Mechanical device
hiel
Electronic device
with elevated stress
Eiecrmnic device

Cmup‘.;rr:r softwiare

)

Fig1-11-2 Some variations of bathtub curve(Kuo& Zuo,2003)

BATHTUB CURVE

Decreasing
Failure Rate

h(t}

Constant
Failure Rate

Normal éperating
life

Increasing
Failure Rate

FAILURE RATE

<« Time Between Overhauls —» Wear out

i
I
!

TIME

Fig 1-11-3 A variation of bathtub curve for some mechanical devices
(Ireson,1995 pagel8-2)
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Waar-gul
| ma“\niir_.' ] ohase i p“m:b
phoe !

infora 1 Contan
[ —

Fig 1-11-4 Another variation of Bathtub failure rate function
(Nahmias, 2004, Fig.12-4)

Figure 1-11-5 shows different forms of bathtub failure curve dueto

different levels of stress on some mechanical devices.

hilt)

wvery high siress

\_/hiﬁhstre‘ﬁ
M‘w strass

Figl-11-5 Effects of stresslevels on mechanical failure rates
(Ireson,1995 Figl8-1, Stamatis,2010 Fig. 6-3 pagel63)




53 Reliabilty Engineering

1-9-1 Some forms of hazard functions

For each part of the bath tub curve different hazard function
is appropriate. So next some kinds of fallure rate function are
considered(K&L page 28) .

a- Constant hazard( failurerate) function

If the failurerate function ish(t) = A i.e. isconstant and
doesnot depend on time ,according to the relationship
between the hazard function and the density function of
lifetime(TTF);

f(t) = h(t)e_f(fh(‘r)d‘[ — Ae—f(f/'ld‘[ — /16’_/“ 1>0

_f® e
IO

R(t)

Therefore if the hazard function is constant , thelifetime is
exponentially distributed.

The concept of being constant isillustrated in the histogram
and table of Example 1-11.

b- Linear hazard function

If the failurerate function ish(t) = A + at, A1 = 0 which

represent aline, then

2

R(t) = e—foth(‘r)dr — e—lt—a% (1-26)
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ForthecaseA = 05 a > 0 , the hazard function is linearly

increasing:

h(t) = at t = 0, Thedensity functionis

f(t) = h(t)e_foth(‘r)d‘r —

t2

f@) = ate~ b = gte™7  t>0 (1-27-1)

Which corresponds a Rayleigh distribution or aWeibull distribution
with parameters A=0, Bz\[g , C=2 whoserdliahility functionis

t2
R(t)=e %z (1-27-2)
For the case that the filature rate of adeviceislike a bathtub except
thefirst and last part are linear, the hazard function is as follows(K& L
page 29):

(co—cit+A  A>0, 0<t<Z—O
1
h(t) =142 1>0, L<i<it (1-28)
1
c(t—ty))+14 A>0, t >ty

This hazrd function linearly decreases to A at time z—° remains
1

costant until time t,, and then linearly increases.
c- Power function Model

The hazard function might be of the following power
function:

h(t) = ==|=
® BC B \B
Then the density function and the reliability functions would be
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t C-1
£(t) = h(t)e™ Joh(®dt = 9(3) e® CcB>0
R = e (®)

Which corresponds to a 2-parameter Weibull distribution

d- Hazard function of form h(t) = 4 + Ct*
If the failure rate function is of the form h(t) = A + CtK

where C, k are constants then:

t tk+1
R(t) — e—fo h(t)dr _ e—At—Cm

e- Hazard function of form h(t) = ye*t

If the failure rate function ish(t) = ye*t where A,y are
constants , the function increase or decreases sharply and
(K&L page 30):

)4
a

f() = ye“te_( J(ewt-1) (1-29-1)

The distribution is akind of GEV distribution with the
reliability function:

Y
a

R(t) = e (&)(-1) (1-29-2)
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1-10 Somediscrete distributions
Below some discrete distributions are reminded.

1-10-1 Geometric distribution

Consider running an experiment(trial) which has two outcomes
(failure or success). Let p = the probability of successin eachtrid.

Now notice the two distributions described bel ow:
a) Geometric distribution for failures

We perform the above experiment until a success occurs. Let

X = the number of failuresbefore the first success,

then the probahility function of random variable X isgiven by:
PRx)=p(1-p)* 0<p<lx=012.. (1-30-1)

The following figure shows the function for p = i.
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Fig. 1.12 The probability function of a Geometric distribution (p=0.1)
The CDF, the mean and the variance are:

Fx(x) =1—-p(1—-p)**! (1-30-2)

Ex)=2P (1-30-3) Var(X):l_—g (1-30-4)
P p
In this distribution the hazard function is constant:
h(x) =p (1-30-5)

b)Geometric distribution for success

If We perform the above experiment until the first success

occurs and define arandom variable

X = the number of trials until the first success, and
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then the probability function of random variable X isgiven by:

Pk(x) =p(1—-p)* L o<p<l x=1.2.. (1-31-1)
and

1 1-p
E(X):B (1-31-2) Var(X):F (1-31-3)

Geometric distribution is the only discrete distribution whichis

memory-less.
1-10-2 Binomial distribution

If the probability function of arandom variable x with
binomial distribution which has 2 parameters positive integer n,

O<p<1 isasfollows:

Py(x) = (Dp*(1 —p)™%, x=0,1,.. (1-32-1)
As proved in Example 1-6 the mean of binomial distribution is
E(x)=np. (1-32-2)
Thevarianceis

Var(X)=np(1-p). (1-32-3)

Example 1-6

Find the mean of abinomial distribution .
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Solution

E(X)=Xx=0x (Z) p*(1—-p)

Since the value of the first term( i.e. for x=0) is zero and
LR v
i i-1

< n-x 2 -1 X n-x = -1 x—-1 n-x
E(X)=X§)X(:]p*(1—p) =;n[z_1jp(1—p) =npé[:_lJp (1-p)

n-1 -1 n-1-y
x-l=y = E(X)=np2[; jpy (1-p)

y=o

i=1

(a+b)" = Zn:[in]a‘b”’i =S EX)=np(p+1-p)"=np

For The binomial distribution with parameters ~B (k, 1)
E(X) =km.

End of Exampl e

1-10-2 Poisson distribution

The Poisson distribution gives the probability of a given

number of events happening in a specified time period.

If we let X= the number of events in a unit time, then the
probability function is given by:

(e %)

Py(x) === A>0 x=0172.. (1-331)
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and
Var(X)=E(X)=1 (1-33-2)

Therefore it could be concluded that if the mean and variance of

arandom variable are not equal, its distribution is not Poisson.
Now let X =the number of eventsin atime interval and

A = the average number of events occurring in a unit time
interval then the probability function is given by:

(A)*¥ —At
Py (x) = #

and

x=0172,.. (1-33-3)
Var(X)=E(X)=At (1-33-4)
In fact t could be expressed in other units (length unit , space
unit...) as well as time unit (Ireson et al, 1996).

Example 1-7 (Ireson et al, 1996page 11-26).

The failure of an electricity transfer line has roughly a
Poission distribution with annual mean of 0.0256 failure per
1000 feet(nearly 26 failures per one million feet). Find the
probability that no failures occurs along 515.8 feet of the line.

Solution

1=0.0256
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Let X=the number failures occurring aongt feet.

For t=515.8 feet, the desired probability is

Pr(X=0)=

(0.0256x515.8)0"0-0256%515.8

o

=1.8x10° A

The following g table shows the probability function, the CDF,
the hazard function of some discrete probability distributions.

Distribution Pr(x = x) Pr(x < x) h(X)
Discrete uniform 1 X +1 X
x€{0,1,..,n} — E—
n n n-—x
Binomial . .
(;") px(l _ p)n—x Z (Z) pk(l _ p)n—k (X): (1 - p)
x€{0,1,..,n} =0 si () pra —pyn
Poisson ] . 21X
X —
x€{0,1,..} A'e g4 X L x—1/’Lk
X! ke K! XI1-% )
k=0 k!
Geometric 1 N 1 1 1 D
cE(01,.) p(1-p) 1-p)

Hyper-geometric

max (0, m+n—N)
< x<

min(n, m)

() G%)

= () G
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1-11 On accelerated lifetesting (ALT), parametric

and non-parametric reliability analysis

In reliability theory, to speed out obtaining life datafor akind
of device, system or component there are some tests called
accelerated life testing and to estimate the values related to
reliability of  a device, system or component there are 2
methods: parametric and nonparametric. These concepts are
briefly described below.

1-11-1 Accelerated lifetesting(ALT)

To perform reliability analysis for a device ,system or a
component the analyst needs life data. In conventional life
testing, to obtain life data some devices are set on a test under
normal condition until they fail. Obtaining life datain this way
IS very time consuming and sometimes impossible. Accelerated
life testing (ALT) is the process of testing a product by
subjecting it to conditions (stress, strain, temperatures, voltage,
vibration rate, pressure etc.) in excess of its normal service. The
life test data is extrapolated to obtain the estimates of normal
time to failure. ALT produces the required data in a short
amount of time. Tobias & Trindad(2019) and Cabarbaye(2019)

are 2 references among many others which deal with ALT.
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1-11-2 Parametric reliability analysis

In parametric models of reliability analysis, a statistical
distribution such as exponential, Weibull, lognormal and normal
IS used to fit the life data or failure rate to estimate the values
such asreliability, failure rate of components.

1-11-3 Non-parametric reliability analysis

Nonparametric analysis allows the analyst to characterize life
data without assuming an underlying distribution. There are
some methods in this kind of analysis including Kaplan-Meier
method, simple actuarial method and standard actuarial method.
Below nonparametric estimation of functions h(t), R(t),
F(t), f(t) from grouped observations and from ordered sample
IS described.

1-11-3-1 Non-parametric Estimation of h(t), R(t), F(t), f(t)from

Grouped Observations

Below it is described how the functions h(t), R(t), F(t),
f(t) for a product could be estimated from a frequency
distribution table of grouped lifetimes or from a random

sample of lifetime
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1-11-3-2 Non-parametric Estimation of
h(t), R(t), F(t), f(t)from frequency table

Suppose the following frequency distribution table has been
prepared from a random sample of size N, put on test for the

lifetime of anitem:

interval | (& b)) | (@& b) | | @ b) @, b,) | sum

Frequ. | f; f2 I f fn N,

and let

N, Thesizeof theinitial sample put on lifetime test at t=0

N(t) The number of survivor components (or the number still

working adequately)at time t

Given the above frequency table, the four functions could be
estimated as follows:

The réliability function estimate

Thereliability function at t = b; isestimated as:

N(B)
N,

R(B)= (1-34)
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The hazard function estimate
The hazard function related to i interval i.e. 8 —h could be
estimated as follows(K&L page 13 Grosh ,1989 page 3):
N(a) N(b) number of items failed during (Al);

At) = — = — 1-35-1
= e o _a) N (3 ) x (A1), ( )

If during (At). =b, —a oneitem failsthen

~ _ 1 _ ~
MO =5 (a)x (At), (1-352)

The density function estimate

The density function for a; < t < b; isestimated as follows:

N( aI >_N< bi ) number of items failed during (At),

f) = (1-36)
N, x (bl _ai ) (intial sample size)x (At)l
The cumulative distribution function(CDF) estimate
The CDF a t = b; isestimated from:
. N
Fb) =1-Rby) = 1-N6) (1-37)
N,

Example 1-8

46 components were placed on a life test. The system is
observed every 20000 hours and number survivors are written

down (see the following frequency distribution table). Estimate
h(t), R(6), F (1), f (£).
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Time intervals(hr) failuresin interval f(r: :qrﬂ i:lm(:()z];t; ex;r;t:;r;f
Timet

0-20000 19 19 27
20000"-40000 11 30 16
40000"-60000 7 37 9
60000"-80000 5 42 4
80000"-190000 4 46 0
>100000 0 46 0

Sum N, =46

Solution

The above relationships were used to estimate h(t), R(t),
F(t), f(t). Theresultsare shown in the following table:

b. = R(b) f© ()

| N N multiply | multiply
. Na.)| Npb.) _ : ;
i i A~ by: by:
[ a a +(At), Nop| Fop | Y | Y
No a <t<b,

0 20000 |46 |27 |0.587 |0413 | 0.207 | 0.207

20000 | 40000 |27 |16 |0348 |0652 |0.120 | 0204

40000 | 60000 (16 |9 0.196 | 0.804 | 0.076 | 0219

B W N

60000 | 80000 |9 4 0.087 | 0913 | 0.055 | 0278

5 | 80000 | 100000 |4 0 0.0 1.000 | 0.044 | 0500

To see how the estimates were cal culated, Sample calculations

are shown below:
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2o}

<b1> GO R(20000) = N(20000) _26-19 _27 .o,

NO No 46 46
ﬁ(t)— N(a) = N(b) N
N(a) (b. —6\)
Y 46 — 27
hy - 46-27 i
@6)(20000) — 0-207x 107" 0<t<20000
N(& )=N{(b,
f(t) — ( ) ( ) 5
Ny x (6 -3 )

20000<t <40000 f(t)=—2"%  —g12x10-2 A

(46)(20000)

Example 1-9

10 components were placed on life test. If one failure has
occurred in each of the time intervals given in the following
table estimate and plot the density function, the reliability

function and hazard function for the time intervals. (Grosh.,1989
Example 1.1 )

Solution

Note that for al intervals f; = 1. Therefore according to Egs.
1-34 through 1-37:
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f(t) =— R(b, ) = N_(bi),ﬁt =
o N x(b. —a) (1) N, ®) N(a) (b -a)
S B

The following table and figures shows the results of the
calculations based on these equations.

A

' a, <t<bi ﬁ(;n for a <t<b

i a b; (x 0.01) N, (x 0.01)
110 5 1/(10*5)= 2 - | 1(10*5)=2
2 |5+ 10 | 1/(10*5)=2 o | U(9*5)=2.22
3 |10+ 175 |1/(10*75)=133 | 1/(8*7.5)= 1.67
4 |75+ 30 | 1/(10%¥12.5)=0. o U(7*125)=1.14
5 |30+ 40 1/(10x10)=1 - 1/(6*10)= 1.67
6 |40+ 55 | 1/(10*15)=0. 67 | 1(5*15)=1.33
7 |55+ 675 |1/(10125)=0.8 | 2 1/(4*12.5)= 2
8 | 675+ 825 | 1/(10*15)=0. 67 2 1(3*15)=2.22
9 |85 100 |1/(10*17.5=0. | 1/(2*17.5)= 2.86
10 | 100+ 1175 | 1/(10*17.5)=0. 0 11/(1*17.5)=5.7

The following figures shows the functions of Example 1-9:

LR ]
[ T - )

AN]SR -
I VI O { B T 10 2030 20 50 60 70 40 501001 10126
19 27 2040 50 60 7 BD A0L0D110120 S

TiFme, hours o

led
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Histogram of failure rate Polygon of failurerate
sl
=) BE
= Sl
w3 ?!Z.\k‘\v/\
: o ! T T . e e 8
]|‘ 1l TS 1 o 4 e e e e 10 20 30040 50 60w 40 23100110120
10 20 30 40 50 60 70 B0 90100110 126 Time, haurs
Time, hoHing o't
Iel
Histogram of density function Polygon of density function

Ll T
1 i (AN o P e et | Lo
10 20 30 40 &0 BO F0OAD A0 1G01100120
Time. hours

Lal

Cumulative density function and Rdliability function

Example 1-10

800 units of a product were placed on the life test and every 3
hours the number of failures were recorded (see table below).
Estimate and plot the density function, the reliability function &
hazard function for the time intervals.(Example. 1.2 Grosh,1989 )

Solution

The appropriate equations are:

f)e L R@)=MR g i
_No(bi _a|) , )=, h(t)=
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The following table and figures shows the results of the
Calculations:
Calculations of Example 1-10
Density function . Failurerate
- ; R(b)
i _ o f;
t)=wom |- h()-Fma=ar
P | bi no. of t<b L a, <t<b
failures | % <'<5 o
110 185 185/(800x3)=0.0771 615 | 185/(800x3)=0.0771
800
213 6 42 42/(800%3)=0.0175 573 | 42/(615x3)=0.0227
800
3|6 9 36 36/(800x3)=0.015 537 | 36/(573x3)=0.0209
800
4 19 12 | 30 30/(800%3)=0.0125 507 | 30/(537x3)=0.0175
800
5 |12 15 |17 17/(800%3)=0.0071 490 | 17/(507%3)=0.0112
800
6 | 15 18 | 8 8/(800%3)=0.0033 482 | 8/(490x3)=0.0054
800
7 |18 21 |14 14/(800%3)=0.0058 468 | 14/(482x3)=0.0097
800
821 24 |1 9 9/(800x3)=0.00375 459 | 9/(468x3)=0.0064
800
9|24 27 | 6 6/(800x3)=0.0025 453 | 6/(459x3)=0.0044
800
10 | 27 30 |3 3/(800%3)=0.0013 450 | 3/(453x3)=0.0022
800
J A
81 B
T 7
[.l la]
: i 6 ih) Polygon plol of h*;
5 5 Histoaram plot of /*(1) &b
= Al - r-[
il 3
2 1 o 2
| —‘ ]— Ij ]% T
i i,
i e B I O O O . o
36 9121518212427 30 36 9121518 7] f?j:
Time, hours Time, hours
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Histogram of failure rate Polygon of failurerate
L e
o lJll-
B i
TSR 4 id)
.'J 4 [
el fe) 5 Polygon plot of f*(t)
ol Histogram plot of f*(r) =
o 4
t_
L —I_D__H—l—l—h, 3
36 9121518 21 24 27 30 3
Time, hours 1
R ] [ R ) ] :
36 9 121518 21 24 27 30
" Time, hours
Histogram of density Polygon of density function
function
1.0 [e)
0.9 FFy&r )
0.8
e R0
h‘ (1“ - - -
oo Cumulative Distr .
m ] — .
S b function and
“‘ - Reliability function
0.2
0.1
SN T T T T
0 3 6 9121518 2124 2730
Time, hours
The functions of Example 1-10 (Grosh,1989 Example 1.2)

Example 1-11

Estimate the density function, the reliability function and the
rate function related to a product whose life test results for 200

units are shown on the following histogram.
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25
‘% o Histogram of 200 switches
= .| J) S—
E = 18—
,_E 16 ___
Em ol b 12 T?__
o 2 |—
- 7
= 4]

7

9 10 11 12 13 M4 15 16 17

1000-ly twne mtervals

elc

Fig. 1-13 Histogram of 200 Switch lifetimes (Feigenbaum,1990)

Solution

h(t)«f(t) , R(t) were calculated using Egs. 1-35-1, 1-36-1 and
1-37. Thefollowing table showsthe results:

Estimation of h(t), R(t),F(t), f(t) for the lifetime of the switches in

Histogram of Fig 1-12

1000-hr
_ 1 2 |3 |4 516 |7 |8 |9 10 |11 12
interval
Items volume
"
Woing &1 o600 | 1s0 | 162 | 146 | 132 | 110 | 107 | 96 |86 | 77 | 69 | 62
the beginning
of the interval
Failure

20 |1816 |14 |13 |12 |11 (109 8|7 |6
frequency
No. of 20
Failuresin P 18] 16 _ 14 o1 12 1) 10| 9 E Z 5
theimenal | 3¢ éio 62 | 146 Tl 19| 07| 96| 8 | 77| s9| &
h(t) = 0.1 ) ' '
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Estimation of h(t), R(t),F(t), f(t) for the lifetime of the switches in
Histogram of Fig 1-12

1000-hr
_ 1 2 |3 |4 5 /6 |7 |8 |9 10 | 11 | 12
interval
Items volume
working  at
o 200 | 180 | 162 | 146 132 | 119 | 107 | 96 | 86 77 | 69 | 62
the beginning
of the interval
Failure
20 |1816 |14 |13 |12 |11 |10 |9 8 |7 |6
frequency
No. of 20
Failures in = 18] 16 | 1 12| 11| 10 8| 7| s
. 200 180 | 162 | 148 01 | = | ——| — on _ U
the interval 0 1 01 | oo 146 119 | 107 2% 86 77 69 62
h(®) = 0.1
b p | B 5| v | 8| 2| u|l 0| o9 gl 7| 6
=2x10° — ~ Kl N gl Bl Bl Bl ey =~ = ~
] D D D| D D| DI D| D| D D D| D
f(t)
t inhour
f(t) 20 1€ | 16 14 13 12| 11 1| 9 8| 7| 6
t in 1000 o B - B B - - B B - B -
200 20C 20C 20C 200 20C 20C 20C 20C 20C 200 20C
hours
O tin | 5 38| 54 | 68 | 81| 93| 104| 114 | 123 | 131 138 144
1000 hours T T T D N T
200 200| 200 | 200 200| 200| 200| 200| 200 200 200| 200
R()=1-F(t) 08
0.90 1 073 | 066 | 06 | .54 | .48 | 043 | 039 | 36 | 48 | 0.28

End of Example A
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1-11-2 Estimation of h(t), R(t), F(t), f(t) from ordered
random sample

Suppose a random sample of n units of a product were
placed on life test and the n failuretime are :

tay < tay < < tm).

h(t), R(t), F(t), f(t) could be estimated similar to Example 1-8 by
forming subintervals with frequency 1. However at the i" ordered

timei.e. t(;).they could be estimated from the following relations as
well( K&L p 32):

- R(tw) - R(t(l+1))

h(tp) =
(to) = (tasn — f(o)[R(f(o)]

h(t(l)) (t(l+1) t(L))(n i+0.7) (1-40)
2 _ F(ti+1) F(tl)
f(t(l))_ ti+n) — L =

A 1

f(tw) = o omom (1-41)

Example 1-12

8 units of a kind of spring were placed on the life test. The
spring failed at the following kilo cycles:

190« 245¢ 265¢ 300¢ 320« 325¢ 3705 400
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Estimate F (1), R (t), f (t) and h (t)at the above pointsin

time.

Solution

The computations are shown in the following table.

Falure | ¢t =ty | F(t) R(t) f® h(t)
No.(i)
1 190 0.083 0.917 | 0.0022 0.0024
2 245 0.202 0.798 | 0.0060 0.0075
3 265 0.321 0.679 | 0.0034 0.0050
4 300 0.440 0.560 | 0.0059 0.0170*
5 320 0.560 0.440 | 0.0248
6 325 0.679 0.321 | 0.0025 0.0082
7 370 0.798 0.202 | 0.0040 0.0198
n=8 400 0.917 0.083

hy,

2

~ (325 —300)(8 — 4 + 0.7)
With empirical datathis kind of smoothing must frequently be done

= 0.0170

Because the short interval of time between failures 5 and 6 pFoduced
alargeincrease in h(t), thisinterval was combined with the previous
interval and h(t=300) was estimated as follows:

Some of the calculations are shown below:

1

hy = e ooy 00024
1 —

hs = oo Zemmaron 0-00%0

s S =0.0082

= (370-325)(n—-6+0.7)

1

-0

= R (195)=0.9167
0.4

Rp=1-12
4-0

R4 =1- n+0
6-0.3_

Re =1-100a”

> = R(300)=0.5595

R(325)=0.32144
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Example 1-13

In Example 1-9, 10 units of akind of components were placed on

life test. The failures occurred at the following times:

5 10 175 30 4055 67.5 82.5 100

1175

Use Egs. 1-38 through 1-41 to estimate F (t), R (t), f (t) and h (t)

Solution

The computations are shown in the following table®.

End of Exampled

. f(t): F(t) R(t) ﬁ(t):
i t=tg 1 i—03
S B = N 1
(t(i1) — ty) (0 + 04) n+ 04 1-F(®O) | (tgen —ta)—i+07)
1-03
o 10 + 0.4 - r
1 |5 (10 -5)(10+0.4) B 09327 | (10-5)(10-1+0.7)
= 00192 ~ =0.0206
0.0673
2 10 0.0128 0.1635 0.8365 0.0153
3 17.5 0.0077 0.2596 0.7404 0.0104
4 30 0.0096 0.3558 0.6442 0.0149
5 40 0.0064 0.4519 0.5481 0.0117
6 55 0.0077 0.5481 0.4519 0.0170
7 67.5 0.0064 0.6442 0.3558 0.0180
8 82.5 0.0055 0.7404 0.2596 0.0212
9 100 0.0055 0.8365 0.1635 0.0336
10 117.5 Cannot be computed 0.9327 0.0673 Cannot be computed

! Prepared by:Mr M Morrdi former student of Kerman University
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In summary, if the lifetime distribution is known or could be
specified, the relationships related to the distribution have to be
used for reliability computations; if the distribution is unknown
but sufficient data regarding the lifetime is availlable, the
relationships related to grouped data should be used, otherwise
prepare an ordered sample of the lifetimes and perform the

calculations using the ordered sample.

1-12 The density function & Cumulative distribution function of

sample minimum

Suppose random sample of sizen (X4, X5, ..., X, ) istaken
from ad\statistical distribution having CDF Fy(x) — o < x <
oco. Either the smallest or the largest of the n observationsis
referred to as an extreme value statistic. Practical applications
of extreme value statistics are many; e.g achain isnot stronger
than its weakest link. Let X(;y denote the smallest of then

observations. If X;,X,, ..., X, areindependent then:

Pr(Xoy > ) = P0G > 90,6 > 90, (6 > )] = | [Prex > 90 =

i=1

Pr(Xa) >y) = [1 - Fx®]"or

Fr@) =1=[1 = K" —c0o<y<o (1-42)

If the distribution of X; is continuous then the density function

of Xy is:
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d
) = Fxy ) —o<y <o (1-43)

Example 1-14

Random samples of size n are taken from a population whose
pdf and CDF are:

f(x) =2 x>0, Fx(x)=1—e™® x>0
Find the pdf and CDF of the smallest extreme value.
Solution

The CDF of the smallest value of the n observation is given by
Eq. 1-42

1—e™ y>0

_ n

The pdf isgiven by Eq. 1-43: fy,, (y) = nde ™, y > 0;

therefore:

The minimum of the samples of size n taken from an
exponential distribution with parameter A4 has an
exponential distribution with parameter nA.

End of exampleA
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1-12-1The CDF of the minimum of samples of
lar gish size taken from a population with known

Fx(x)

If the CDF Fy(x) of the population from which the samples
are taken is known, as the sample size(n) becomes large' the
following approximate approach is helpful in the study of the
sample minimum distribution (from K& L page 42).

To derive Fy, (y), when the sampling size(n) from the

distribution with CDF Fy (x) islarge, let random variable Un be
defined as: U, = nFy(X(y)) which has a value between 0 &1.

This variable is used in determining the limiting distribution of
Xy Below it is shown that Fy  (u) i.e. the CDF of Uyis as

follows:
Fo, () =1~ (1-2)" (1-44)

And as n approaches infinity we have:

limy, o Fy, (W) = Fy(w) =1—e™ (1-45)

Proof:

Fy,W) = Pr(U, < u) = Pr[nFx(Xq)) <u] =

Fy, ) = Pr [Fy(Xa) < %] = Pr|Xq) < F~! (%)] >

! This assumption in the fracture of structures islogical because the number
of their defects are large.
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Fy,(w) = Fx,, [Fx‘l (%)] 0<u<n

Substituting y = Fx (E) inEq. 1-42 i.e

Fx, () = 1 = [1 - Fx()]"

n
-1 u _ -1 u
Fx,, <FX (E)> =1- [1 — Fy (FX (E)ﬂ
Since F[F~!(x)] = x thenthe CDFof U, is:

n

Fun(u)=1—(1—%) 0<u<n

We know from mathematics that

u\1 —u
limy_, o0 (1 - ;) }=e™ uz0 therefore:

lim Fy (W) =1-e™ u=0
n—-oo

Hereit isreasoned that(K&L p 42, Mann et a,1974p 102):that

since the sequence of the following CDF's convergestol — e™*

1 n

Fu,) = 1= (1-7) oy = 1- (1-)

Therefore the sequence of random variable U,, i. e

Uy = 1F (X)), Uy =2Fx(Xy), o Uy = nFx (X))
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Converges in distribution to arandom variable U with CDF

1—e™™
Fy(w) =lim Fy () =1—e™
n—-oo

The pdf of U is:

fu(u) = ) _ fy(w) = e u > 0.Endof proof N

du

Now notice that

since U, = nFy(Xq)) then Xy = F~! (%) and the sequence
of random variables X,y convergesin distribution to arandom

variable, say Y, where
(U o o
Y = Fy (E) and U = limiting U, = limiting nFx(Xq))

Thus for large sample size( n) the limiting distribution of the
smallest extreme value(X4)) is given by the distribution of Y as
described in the following steps;

Derivation of Fiimitingx 4 i.e.the CDF of sample minimum

or X1y when sample size n - o

Stepl  Given Fy(x) substitute X=X ;).
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Step 2 Let U, = nFx(X(y)) then calculateitsinversei.e,

X = - intermsof U,

Step 3 Calculate the limiting X4y in terms of U(=limiting U,,)
from step 2

Step 4 Calculate the following:

Fiiminig x,, ) = Pr(limiting X1y <)

From thisrelationship calculate Fjpinig X in terms of
Pr(U< --)= Fy.

Step 5 Calculate Fiiminig X1 (y), considering step 4 and
Eq. 1-45i.ePr(U<u)=1-e™™

Examples 1-15 and 1-16 illustrates the derivation.
Example 1-15

Random samples of size n are taken from a uniform
distribution on [0 1]. What is the CDF and pdf of the smallest

extreme valuewhen n — oo.

Solution

The density function of the uniform distribution is:
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1
fr={g ~ 0s¥=a
0 0.w

To derive the CDF of the sample minimum asn — oo the above

5 steps are followed:

Step 1
x—0 X(l)
x(0) =— = F(Xa) =—
Step 2
nX(l)

a
U, = TlFX(X(l)) > U,= = X(l) = ;Un
Step 3

Let U =thelimiting value of U,, then:
a

X(l) n-ooo = ;( U)

Step 4
al n
FlimintingX(l)(Y) = PT(X(l) < y) = Pr (7 < y) = Pr (U < Ey)

= FlimitingX(l)(Y) = Pr (U < SY) = FU (Zy)
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Step 5
According to Eq. 1-45 the CDF of U is

Fy(uy=1—e™ u > 0;then
n —Ey
FlimitingX(l)(Y) =Fy (ay) =1—e a, -y = 0 =

n
Flimitingx, @) =1—e~ @, y=>0

Taking derivative yields the pdf asfollows:

fuimiting x, @) =1 @ =" End of Example A
0 others

Example 1-16

Random samples of size n are taken from an exponential
distribution with parameter A. What is the CDF and pdf of the

smallest extreme value when n — oo,

Solution

The density function of the uniform distribution is:

o= 27 X2 0

o.w
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To derive the CDF of the sample minimum asn — oo the above

5 steps are followed:
Step 1

Fx()=1—-e™*  FXy)=1-eHw

Step 2

Up = nFx(Xp) = Up =1 —e M0 =
X = o =ty 2o
O O T F i -

n
Taylor expansion of f(x) about x=ais:
fG) = f(@) + 3 f (@ (x — a) + 5 (x — 2)f" () +..
Thisexpansionforin(1+x) ,—-1<x < 1is
In(1+x)=0+ x—§xz+§x3—l x* 4.

4

Letx = — 2% then

e e
Step 3

Letas n —» oo U =thelimiting value of U,. Ignoring the terms

of order 2 and higher we could say that the distribution of X,

when n — oo approaches the distribution of n%

1
X(l) n—oo =EX U.
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Step 4

Fumiting xy (V) = Pr(limitingXy <) = Pr (n—l; <) =Pr(U <n2y)
= Flimiting x, V) = Fy(ndy)

Step 5

According to Eq. 1-45 the CDF of U is

Fypu)=1—e™ u > 0;then

Flimiting x, @) = Fy(nAy) =1 —e” ™, nly 20 =

Flimiting x, ) = 1=~ ™,y 20

Taking derivative yields the pdf asfollows:

—nly > 0
flimiting X () = {0 ’ yothers
End of Example A

Thefollowing example (extracted from K&L p 45) shows an
application of GEV distribution to reliability.
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Example 1-17

An applications of the extreme value distribution is to the study the failures of car exhauhs caused by

corrosion.

Consider akind of automotive exhaust pipe that has various
pits when new. The exhaust gases and other corrosives increase
the depth of these pits and, ultimately, a failure occurs when the
exhaust gases can escape through one pit that has penetrated the
thickness of the pipe and has become a hole. If we assume that
the time of penetration is proportional to the difference between
the pipe thickness(D) and the initial pit depth(d;) and d; has a

truncated exponential probability distribution between (0 D),
show that the time to failure of the exhaust pipes is a GEV
distribution and find the reliability function.

Solution
Symbols
D Exhaust pipe thickness
d; Initial pit depth of i™ piti=1,2,...N

Failuretime of i pit

<t

N Number of pits.

T Failuretime of the exhaust pipe

The distribution of d; isatruncated exponential with the

following density function:
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Ae—lx Ae—lx
Pr(0<x<D) 1—e

0<x<D

fdi(x) =

Since the failure time of i pit (t;)is proportional to (D — d;),

then
t; = k(D —d;), wherek>0 isthe constant of proportionality.
The cumulative distribution of t; is as follows

F,(t) = Pr(t; <t) =Pr((kD —kd;) <t)=Pr(kD —t < kd;) =

Fe,(t) = Pr (D —=< di).

Since the maximum of d; is D, then:
F.(t) = Pr (D _ % <d, < D) = Fy,(D) — Fy (D —%)
where
D isthe thickness of the pipe and
d, theinitial depth of thei™ pit, i=I,2,,..,N.
N isthe number of pits.

The d;'s constitute arandom sample from a truncated
exponential distribution defined ontheinterval (0 D) :
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1—e~Mx .
Fdi(X) =1_e—_w ,OSXSD,IZ 1,2,...,N

Therefore

- t
_1-e 1-eHp—y

t
Fe(t) = Fgy(D) = Fg, (D — 1) = oy - ——p =

t At
e—l(D—E)_e—AD _ e D kgD N
1-e~AD 1-e—AD

SinceD—iZO and D—£§Dthen 0<t<kD and

At
ek —1 _
Fti(t):ewi_l OStSkD,1=1,2,...,N

Let T =the failure time of the entire exhaust pipe, then
N
T = min (t;) and itsCDFis:

Fr) =Pr(T<t)=1—-Pr(T>t)=1—Pr(t; >t,...,.ty > t)

Assuming t4, ..., ty areindependent and similar, we could

write:

Fr() =1=Pr(ty > ) . Pr(ty > ) =1 —[1 = F, (©)] ... [1 = F, ()]

Fr() = Pr(T <) =1-[1-F,®)]"

In mathematicsitisshownthat for0 <a<1,[1—a]V

—Na

approaches e as— oo , then
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Since 0 < F,(t) <1 andtherearealot of pitsin the pipe,
therefore Fr(t) = 1 — eV ®,

At
ek—-1

We saw earlier F (t) = a5 then:

At At
ek -1 ek—-1

Fr(t)=1—e VN e1 = R(t)=1—Fp(t) = e "etP-1
Thisis an extreme value or a GEV distribution(K& L page 46) A

Example 1-18

In the previous example, suppose D = % inch, N = 104,
k=10° hr/in and the average depth of pitsis 318 in.
Find the life time that will give areliability of 90% .

Solution

If the pdf of theinitial depth of a pit were Ae2di | the average
depth would be - = — and A = 128. However here the pdf is

T 128

—Ax
fa,(x) =f_2—_w and to find the value of Athe following

equation has to be solved:

1
B D B 1 D= 1_6 n
E(d) =] xfg(x)dx = 178 1
0 E(d)) = —< in
' 128

B = |

0

D/ je™H* p 1 fODAxe‘Axdx 1
1e ™)™ 1287 1 128



91 Reliabilty Engineering

D _
Axe M dyx

. - fO _ 1 - .
Solving the equation *——;— = —in MATLAB:

1-e~AD

>>syms landa x; landa =solve((int(landa* x* exp(-
landa*x),x,0,1/16))./(1-exp(-landa/16))==1/128)

landa=127.64972

Notice that ignoring e =*P from the denominator yieldsa = 128.

Substituting the followingsin R(t) = e " ¢

N=104,k=106,D=%,,1=128,R(t)=0.9

Yieldst = 242 hr. A

Fisher -Tippet and central limit Theorems

Fisher -Tippet Theorem

If x,,..x, ae independent and identically distributed(iid)
random variables then as n increases
the distribution of the maximum of these variables approaches a
GEV distribution and
the distribution of the minimum of these variables | approaches

another GEV distribution. W

It is worth mentioning that:
1) inthe original theorem by Fisher and Tippet, states that
the limiting distribution is one of three extreme value
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distributions (EV*1=FT1, EV2=FT2 and EV3=FT3) but
Jerkinson(1955) showed that the aforementioned three
limiting distributions can be unified into a single
expression known as the generalized extreme value
(GEV) distribution.

2) This theorem is used in extreme value analysis such
finding the possible maximum of wind speed, wave
length, etc.... Interested readers could refer to references
such as Coles (2001).

3) For using this theorem, some random samples of largish
size from the desired population are needed. Extract
their minimum or maximum and prepare a vector (titled
say Data) of the minima or the maxima. Then use
gevfit(Data) command to estimate the fitting GEV.

Central Limit Theorem

According to the central limit theorem the mean of

random samples x,..,x of sufficiently large size n from a

population with mean p and finite variance o2, tends towards a
2

normal distribution with mean p and finite variance G—n; even if the

origina distribution is not normally distributed. The theorem aso

! Extreme value 1=Fisher Tippet 1
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states that sum of the sample elements(}; X;) tends towards a

normal distribution with meannp and finite variance no?.

1-13 Bartlett's goodness of fit(GOF) test for

exponential distribution
To deal with the following hypotheses using a GOF test
Ho: The distribution is exponentia
Hi: Thedistribution is not exponential
we could use the Bartlett’ test described below:

Take arandom sample of sizeat least 20 :ty, ...,t, r = 20,
wheret; isthe time of thei™ event; calculate the statistic B
given by(K&L p239):

e i

1+ r+i
or

B= (1-46)

which has a chi-squared distribution with r-1 degrees of freedom
under the null hypothesis Ho. If B isoutside the

interval [ x2_«__,  Xa,, | refectHo; a isthelevel of
2

—r—
2

significance of the test.
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xa _ is read from Table E or calculated in MATLAB from

27

chi2edf(1 — =, r — 1)

X;_«,_, Is read from Table E or calculated in MATLAB

from chi2edf(-,r — 1).
Example 1-19

The following sample of size r=20 is available from the
lifetime of a kind of electric bulb. Does an exponential
distribution fit the lifetime data? Use Bartlett's test with a =
10%. If the answer is yes, give the mean and the pdf of the

distribution?

501 | 209 | 311 | 965 |363 |99.1 | 426 |849 |6.2 32.0

304 | 877 | 142 | 46 25 18 115 | 846 | 886 | 10.7

Solution
Ho: The lifetime distribution is exponential
Hi: Thedistribution is not exponential

Let t;,i =1...,r =20bethe sample values. We use Bartlett's
test:
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oz (e

1+ r+l
or

B =

“t, =50.1+20.9+...+88.6+10.7 = 836.3

> Ln(t;) =Ln50.1+ Ln20.9+...+ Ln88.6+ Ln10.7 =63.9385

2] 1 552 8021
B = 501 =19.34
1+
6x20

x> « . = chi2inv(0.05,19) = 10.1170
1—2—,r—1

Xo _ = chi2inv(0.95,19) = 30.1415
>~

Ho is not rejected because, the value of statistic B does not
: 2 2
fall outside [ X - %o ng‘r_ L ] Therefore the

distribution of the bulbs are fitted to an exponential

distribution with the mean and padf:

s ¥20t; 8363 _ _1 -t
0——20 = = 41.82, f(t)—exeB =

It isworth mentioning that using Kolomogrov-Smironov
testin MATLAB does not reject Hg
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>>Data=|...
50.1

10.7];
>> H=kstest(Data, [ Data expcdf(Data,mean(Data))] , 0.1)
H=0

This means that Hy is not rejected at the significance level
of 10%. A

1-14 Q-Q plot

Quantile-Quantile(Q-Q) plot isa graphical device to observe
whether a particular distribution fits a dataset or not. In this
graph the observed data and the corresponding data obtained
from the distribution are plotted versus each other in an X-Y
coordinate plane. The better the population follows the
distribution, the closer the points to the angle bisector of the first
quarter of the X-Y plane .The procedure for preparing a Q-Q

plot is asfollows:

e Sort The sample of data from minimum to maximum,

giving rank 1 through n: X X

1y

e Allocate a number F(i), called plotting position calculated

(n)

from one the following formulae to each x, . Infact
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F(i) is a number near to relative frequency and an

estimate for the cumulative distribution function at x ;.

There are many formulae for plotting position including the

followings:
A)Gumbel Plotting position

One of thefirst formulae for plotting position was given by
Gumbsel:

Fli)=——r. ool a7

B) Plotting position for normal distribution

There are some formulae for the normal case including

(Besterfield,1990 page52):

i —05

F()= - (1-47-1)
or (Goda,2000 page 287):
. i —0.375
F(i)=—""°1 " (1-47-2
) n +0.25 ( )
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C) Plotting position for Weibull distribution with
parametersA,B,C

The Plotting position for Weibull distribution with parameters
A,B,C is(Goda,2000 page 287):

i —a

PO =10 (1-48)
where a=0.20+ 220 p_0204228
Jc &

D) Plotting position for Exponential Distribution

Since Exponential distribution could be considered a Weibull
with C=1 then:

. i —0.47
F = 1'48'1
® n+0.43 ( )

e From F,[%,] = F(i)foreach F(i), i=1,..,n calculate
f((i),izl,..,nfrom where  isthe cumulative
distribution function of the distribution under study.

e Plot the pairs ( xj)& %, ) in an X-Y coordinate plane,
and fit a line to the points. The closer this line to the
angle bisector of the first quarter of the plane, the better
fits the distribution to the dataset. It is worth knowing

that the better the distribution fits the data set the closer

the correlation coefficient of X & x;, to 1; but the vice
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versa is not necessarily true i.e. if the correlation

coefficient of X & %x;, is close to 1,necessarily the

)
distribution does not fit the dataset well.

The correlation coefficient is calculated by the following

formula:

R nZX«ﬁ%;ZMZ% _ (1-49)
\/nZXaf—(ZXm) Janz—(Z*m)

Example 1-20

The following table shows a sorted random sample, X 's,
from a population. Is the sample a representative of normal
distribution?

Solution

To answer, a Q-Q plot is drawn. The mean and variance of
the distribution is estimated as follows:
. S
i=X=54 o=—=117287
C4
i —0.375
+0.25
plotting position, and inserted in the table. Then the

F(@i), i=1,..,.n was computed using F (i) = as the

corresponding % ;,is calculated by equating the F(i)to the
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normal standard cumulative distribution, and calculating %

from these equations.

Pr(X < %) = Pr(Z < X<' X0 _E@y a=X, 625
4
sample calculation follows:
Fori =1:
Pr(z <M):F(i), Pr(z B RN 0.0294 => X, = 32.37
G 11.7287/0.9876 @
or 9?(1) = norminv(0.0294,54.81,11.8751) = 32.3698.
The following table contains al the results
Rank(i) | Xy | F() Xy | Rank(i) | Xq | F() Xy

1 [32 [00294 [ 3237 |12 59 | 05471 | 56.21
2 34 0.0765 | 37.84 | 13 59 0.5941 | 57.64
3 |39 [01235 |41.06 | 14 60 | 0.6412 | 59.10
4 44 0.1706 | 4351 | 15 61 0.6882 | 60.64
5 |46 | 02176 | 4555 | 16 64 | 0.7353 | 62.28
6 |47 | 02647 | 47.34 | 17 67 | 0.7824 | 64.08
7 |50 [03118 | 4898 | 18 68 | 0.8294 | 66.11
8 |51 |03588 |5052 |19 70 | 0.8765 | 68.56
9 |51 [04059 |51.98 | 20 70 | 09235 | 71.78
10 |52 |04529 | 5341 |21 71 | 09706 | 77.25
11 56 0.5000 | 54.81

Fig.1.14 2 shows x , 'sversus g, 's and alinefitted to them.
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QQplot an
80 t
+ 'Q2-0 plot
pp=(-0.375)/(n+0.25) 0 pe=ii-a.5)n +
70 .. ++’
(i)
- 6o 5 0
5 =+ T
£ 50 £
-+
al ¥
40 + -
+ -
+
it a0
30 ‘ ‘ ‘ ‘ 20 a0 a0 0 0
30 40 50 60 70 80 Obzered X5y
Observed
Fig. 1.14-1 Q-Q plot with Fig. 1.14-2 Q-Q plot
o o i-0.5
(i ):' 0375 withF(i)= —=.
n+0.25

Since the points are near to the fitted line and the line is close to
the angle bisector of the first quarter of the X-Y coordinate
plane, it is concluded that the normal distribution fits the dataset.

In MATLAB, the command qgplot could be utilized to make a
Q-Q plot from the normally distributed dataset X. The Q-Q plot
of Fig. 1.13-1 was made by this command. The difference of
the two plots is not significant. It is worth mentioning that if the
dataset X is not normally distributed, the following MATLAB
command could be used to plot the Q-Q plot:

X=[data]; pd=makedist('Distribution name'...);qqgplot(X,pd)

The correlation coefficient(r) between x ;,,x ,,iscalculated by

r=corrcoef(X,Xhat);r=R(1,2)
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where

X isthe vector containing Xg), 1,=1,2,3..

Xhat is the vector containing x;, (= 12,. which gives
0.9826. Thisvalue, being near to 1, together with the Q-Q plot
of Fig. 1-13=1 or Fig. 1-13-2 indicate that normal distribution is
agood fit for the data best fit. A

1-15 Convolution

Since the concept of convolution of functionsin statistics and
probability is used to find the distribution of the sum of
independent continuous random variables X and Y having the
density function (pdf), fx(x) and fy(y) and the cumulative
distribution function Fx(x) and Fy(y); thisconcept is reviewed
below.

1-15-1 CDF and pdf of sum of independent variables
XandyY

Let X and Y be 2 independent random variables and Z=X+Y .

a)The CDF of Z i.e. Fx,y(a) isderived from the following
relationship which is called the convolution of Fy &Fy and is
denoted by Fy * Fy:

Fysy(a) = Fy * Fy(a) = [ Fx(a—y)fy(»)dy (1-50)
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Proof (from Ross,1983 page 17):

Frpy(@ =Pr(X +Y < a) = [0, Pr(X +Y < alY = y) fy(y)dy=
[ PrX +y <alY =y) frdy = [, Fx(@ = ) fy (dy.
End of proof of section all

b) The pdf of Z i.e. fy.y(a) isderived from the following
relationship which is called the convolution of £ &f, and is
denoted by £y * fy:

@ =@ = [ K@= DhGd = [ KEk@-0dx (1-51)

—00 —00

where
fx(x) isthe pdf of random variable X

fy () isthe pdf of random variable Y

Proof (from Ross,1985 page 54):
d [ d
fror@ =1 [ Fx@-np0dy = [ 2oFxa- Ay =

&wwr:f&@—wn@wy

End of proof of section b 0
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Notice that

- When calculating the convolution integral, usually it is easier
to set the simpler function as the second function(Gordon,
1993).

-If the distribution of X+Y is known for us, thereis no need for

the above integrations

-The concept of convolution has been extended for more than 2

functions.

Example 1-20 (Ross, 1985page 54)

X and Y areindependent uniformly distributed random
variableson theinterval (0 1). Find the density function of
X+Y.

Solution

feay(a) = f fx@— 9y »)dy

y=—00

Considering the uniform distributionof X andY on (0 1) ,itis
evident that avalue of X+Y, say a, liesintheinterval (0 2);

mathematically 0 <a < 2.
To find the limits of the above integral noticethat:

For0 <y <1, fy(y)isnonzero and
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fx@—y)#0 for0<a—y<lora—1<y<a

Then the limits of the integral are the intersection of the
intervals 0 <y <1 anda—1<y<a. Tocaculatethe
resulting interval which depend on the value, we divide the

rangeof 0 <a<?2 into0<a<landl<a<?2:

If 0 <a <1, asthefollowing figure shows, the limits of integral

wouldbe0 <y < a:

0<a<l1
e % Y
a-1: Owa 1

|
2
a-l<y<a g<y<1

If 1 <a< 2, usingasimilar figureit could be shown that the

limits of integral wouldbea—1 <y < 1.

Therefore

fray(@) = f G — Dy )dy
y:—oo

( a

f1x1@70SaS1

_ ) »=o0
=3 7 =

j 1x1ldy 1<a<?2
=a—1

\y
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(a 0<a<i1
fX+Y(a)_{2—a 1<a<?2

Example 1-21

X and Y are 2 independent random variables with density
functions fy(x) =e™, x>0 and f,(y) =e™¥, y =0.Findthe
density function of Z=X+Y.

Solution No.1

ferr(@) = f @ =)y

y:—OO

Considering the range of X and Y, we could say that a = 0.
To find the limits of the above integral noticethat:

fy(y) # 0 for y >0 and

fx@-y)#0fora—y>0 ory<a,

Therefore the range of integral to become nonzerois0 <y < a:
frav(@) = [_y @ =i (dy = [ e VeVdy =ae™, a2 0

Solution No.2

fx+v(@) = foo_ fy(@a—x)fy(x)dx.

y=—c0
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with a similar reasoning for the range of integral:

a
fxav(a) = j e"@XeXdy =qe @ a=0

x=0

Solution No.3

Asitiswell known that the sum of 2 independent variable with

the same parameter hasa Gamma (n = 2,1) distribution, then:

B ﬂefla(la)nfl _efa(a)Zfl B L
frer (@)= - @y x az0A

Example 1-22

X and Y are independent random variables with normal (u, o)
and Uniform(0,1) distribution respectively. Find the density

function of X+Y.

Solution

fear(@) = f fxG— 9y »)dy

y:—OO

Therange of a=x+yis —o0o < a < .

To find the limits of the above integral noticethat:
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fy(y) #0for 0 <y <1and
fx@—y)#0for—co<a—y<o or —o0o<y< 0,

Theintersection of these 2 interval is0 < y < 1.Therefore the

integral is not zero between 0 to 1:

fear(@) = f KG@-y)x1 dy

y=0
If weleta—y =t, therangeof twouldbe isa—1 <t <a

a-1 a . o
fx+v(@) = f fx(®(—dt) = fame_%(Tﬂ) dt -

t=a-1

fxiv(@) = @z(@) —@pz(@a—1) —o<a<ow
where ¢, isthe CDF of standard normal distribution. &
1-15-2 n-fold convolution of f with itsalf

Suppose we have n independent random variables with the
same density function f(x) and we want to derive the density
function of their sum i.e.g(t) = fyx,(t). g(t) which called n-
fold convolution of f with itself and denoted by [f(¢)],. id

defined as follows:

g@®) =f@® * [f Oln-1y.-  (1-52)
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Furthermore, denoting F *xF by F,,, F,., the n-fold
convolution of F(cumulative distribution function) with itself is
the distribution of the sum of n independent random variables
each having distribution F(Ross,1983, pagel?) is denoted by:

F * F(n—l)* = Fn*' (1'53)
and also
F x F= F,, (1-54)
Example 1-23

Find the probability density function of the sum of the
exponentially  distributed lifetimes of 3 independent

components with parameter A.
Solution
Using convolution:
9(@®) = [f O]y« = f(©) * [f O] n-1):
= Ae™* x [1e™ ]

[f(©] -1y = [(O]2.
[f ()], :j:f (a-t)f @)t a>0

Since the lifetimes are exponentialy distributed

(B3-1)*

t>0anda-t>0(=t <a),then 0 < t < a and:
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[f @I, = [ 2676 Vck = 2% [t = 2%

Continue with convolving Ate™ and Ae~* to reach the
solution whichis: %(Aa)ze‘“.

The solution was, because the sum of 3 independent
exponential distributions with the same parameter A has a
Gamma distribution with parameters (n=3, A).

End of Example A

1-16 The pdf of the difference of 2 independent

and nonnegative random variables

Suppose Xi, X, are 2 independent nonnegative random
variables with density functionsf , andf, andlet Y=X>-X.. Y is

sometimes called interference random variable. The density
function of Y is calculated from (extracted from K&L page
125):

©

.[ fxl (y+ XZ) fXZ (Xz)mg yZO
LO)=[ )y (o) =1
' I fy (y+x)fy (), y<O

X=y

Needless to say that if the distribution of X2-X1 isknown

(1-55)

There is no need for using The above equation.
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1-17 Percentage of a distribution being outside

limits

To calculate the proportion of arandom variable which fell

inside and outside any specified limits, lets distinguish 2 cases:

a)lf thedistribution of Y iscompletely known
The calculation is as ssimple as follows:

For continuous random variablePr(a <Y <b) = fab f(y)dy.

For discrete random variable Pr(a < Y < b) = Y2 p(y).

where f(y) and p(y) are density or probability function of Y.

b) If thedistribution of Y isunknown

In this case Tchebycheff inequality could be used which
states that in all statistical distributions the fraction falling

outside uy + koy k > 1isat most %:

Pr(lY —py| = ko)) <=, k>1 (1-56-1)

or

Pr(uy —koy <Y <y + kay) >1——,k > 1 (1-56-2)

where

Uy and gy are the mean an standard deviation of Y.

) A table containing someintervals and frequencies

In this case if the frequency distribution shows the
distribution of Y has only one mode and the mode is the same as
the arithmetic mean and the frequencies decline continuously on
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both side of the mode,(Grant & Leavenworth,1988),according to

an adaptation of the above inequality by Camp and Meidel:
4 1

PrlY —u|2ko)<5=55 k21 (1-57-1)
Or
Pr(uy —ko <Y <py +ko) >1--5,k21 (1-57-2)

Example 1-24

The strength of a kind of component is a random variable
with [EX=0 . For each of the following cases determine, what
percentage of the components fall within the specification limits
(34, 46).

1)The strength is normally distributed withs=2

2) the distribution is unknown but 6=2

3) can the strength in part a be exponentially distribute?

4) the distribution is unknown but has one mode andc=2
Solution

Normal distribution

Pr(a<X <b)=P@ £ <z Dony_
(o) o

Pr( 0 7 4640):Pr(-3<z<3)
2 2
From Table C:

Pr(-3<Z<3)=0.99865 - 0.00135=0.9973



113 Reliabilty Engineering

With MATLAB:
Pr(34 <X< 46) = normodf(46, 40, 2) - normedf(34, 40, 2) = 0.9973
That is99.73% of the product fall within (34 46)

2)Using Tchebychef Inequality:

Pr(X-ko<X<X+ko)>1- !

k2
X-ko=34, X+ko=46= k=¥
1 1 8
Pr(40-3x2< X < 40+3x2) > 1-F=1-3—2=§=0088.9

In this case more than 88.99% of the product fall within 34

and 46.
3)The distribution cannot be exponential because the mean

and standard deviation of exponential distribution are equal.
4)Assume the conditions for applying Camp-Meidell
inequality holds, therefore :

Morethan 1. X —1. % of the product fall within (34 46) ;
2.25k? ok?

or

1 1
Pr (34<X<46) >1- =1- =%695.06 A\
2.25k%  2:25%9

Appendix 1 Parameter Estimation Techniques

There many techniques for estimating the parameters of a
statistical distribution including the following:
1)Maximum Likelihood Estimation(MLE)
2)Method of Moments(MOM)
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3)Least Squares Method(L SE)
4)Bayes Method

5) Geometric Mean Slope*

6) Pickands Estimators

7)Heuristic Algorithms

8) Minimum chi-squared Estimation
9)Using Inverse Probability theory

10)Bootrap Estimation Method
From the above methods, MLE and MOM are described briefly below.

1-Maximum Likelihood Estimation Method

To use maximum likelihood method, we first need to define
likelihood function. Likelihood is a concept that works with

joint distributions.
Definition of Likelihood function

Suppose arandom sample X4, ..., X,, has been taken from a
continuous or discrete distribution. The following joint
probability function L is called likelihood function:

For continuous distribution:

L="Ff0x...%)=f, () f, () (1-58-1)

! Refer to page 25.33 Handbook of Reliability by Irenson et al,1996
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For discrete distribution:
L=Pr(X; = xq,..,Xn = x,) = Pr(X; = x;) X .. X Pr(X,, = x,)
(1-58-2)
eg..
for exponential distribution:
L=(le™).(le™)=1"e*™  (1-58-3)
for binomial distribution:
L =11k, (]ji) pEiari x (1 — )z (1-58-4)

Notice that the caculation of this method is based on the
assumption that X, .., X, are independent and identically
distributed(iid).

Stepsof Maximum Likelihood Estimation(MLE) Method
To estimate the parameters 0 = 601,602, ... ,0k of a
distribution, MLE method could be used through a 3-step
Process.
1. Findthelikelihood function L for the given random
variables (X1, X2, ..., Xp),
2. Maximize the likelihood function by taking the
derivatives of L with respect to 0.

Notice that log(x) is a monotonel-increasing function of X,
maximizing logarithm of a function is equivalent to maximizing
the function(based on Barlow and Proshan,1996 pl66).

L A function is monotonic if its first derivative is always positive or negative
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Therefore it is often simpler to maximize the logarithm of
function L rather than L itself (Bowker and Lieberman, 1972
page287)

3. Estimate thevaue of 04, 65, ... , B¢ by setting the
derivatives obtained in Step 2 equal to zero.

Notice that if X, ..., X, israndom sample from a uniform

distribution with f(x)zé «< X < @itisproved that:

MEL (9) = max (X )

Example 1-25

a)Given arandom sample X, ..., X,, from an exponentia
distribution, use MLE method to estimate A.

b)If thesampleis (1.1, 0.9, 1.21, 0.8)calculate the value of A.
Solution

a)Since the sampleisrandom, X; 's are independent.

L=2"e"* =InL =In(3ne 2% )=nNA-ATX; =

d(InL) j-_n _1
=0=MLEA)=A=——=+=
doA *) XX X
— 1 4 4
b)MLE(A) = A = Fa Y X T 11409+12408 1A

L emma®

! Based on page 290 Bowker & Liberman (1972).
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If B is the maximum likelihood estimator of 8 and T(8) is

the function of 6 possessing a single inverse(i.e. its derivative is
dways positive or negative) , then T(8) is the maximum
likelihood estimator of T(6):
MLE[g(6)]=9g[MLE (6)]

End of lemmall
Example 1-26

If X;,...,X,, isarandom sample of size n, taken from an
exponentially distributed lifetime, estimate 6 = }% .
Solution

Since6'(A) = % <0 therefore 6 has a unique inverse and
according to the above lemma:

MLE[6(A)] = 6(MLE(})) =

Xl =] =
Il
>

Example 1-27

Given a random sample x; ...,x, from a Waebull
distribution with location parameter A=0, use MLE method to
derive the relations for calculating the scae and shape

parameters B and C.

Answer

C= [Z?zl(xiclnxi) _ Y, Inx; - (1-59-1)

C
X Xx; n

1
!
B = [ZT"]C (1-59-2)
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It is worth mentioning that the MATLAB command whbfit
estimates the parameters of aWeibull distribution. A
Example 1-28

a)Write a MATLAB code to return the estimates of a 2-p
Weibull distribution from which the following sample is
available.

b)Also use whlfit function to estimate the parameters.
Solution

a)

%Sample X=[X(1)......X(n)]

X=[113.0634 49.5432 53.4872 93.7147 74.0594 114.3216 97.1033
61.5069 74.7216 52.8807];

for C=.01:0.001:40

for I=1:length(X)

LNX(1)=log(X (1));XIC(1)=X()"C;XICLNX(1)=XIC(1)* LNX(1);
end
A=C-(sum(XICLNX)/sum(X1C)-sum(LNX)/length(X))"(-1);

if abs(A)<= 0.001 )C1=C;disp(sprintf('C= %6.4f ', C1)) end

end

B=(sum(X."C1)/(length(X)))(/C1);

disp(sprintf('B= %6.4f ', B))

b)
>> whlfit(X)

ans= 87.1543 371494
Example 1-29

Let x;,i=1,.,k bethe number of successes in asample of sizen

from abinomial distribution with parameter p, Find MLE(p).
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k
Din-x;)

In(L)=In(ﬁ(:j)+|n(piz‘Xi)+In(qi‘ )=

In(L) :iln(: j+in Inp+ _k (n—x,)In(—p),

ixi i(n—xi)_ ‘- p i(n—xi)_nk_ixi

aln(L) i= i=) i=) 1=
== - = =T X K

op p \-p p 3x, 3x,
i _ _
X;
™ MLE (p) =
P X, N Endof ExampleA

i =\

k =v= MLE (p) ==
n

MATLAB commandsfor estimating Distributions
parameters
The MATLAB commands for estimating the parameters of
some statistical distributions are givenin Table H.
For example, given a sample the MATLAB command
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e 9

DX

expfit returns parameter 6 for f(x) =

DI

poissfit returns parameter A of a Poisson distribution

binofit returns parameter p of abinomial distribution.

Example 1-30

The following sample shows the lifetime(in year) of some
units randomly taken from a batch of a device having an
exponentially distributed lifetime. Estimate the parameter of the
distribution.

0.04 015 004 009 003 001 004 006 001 0.15
Solution

X=[0.04 0.15 0.04 0.09 0.03 0.01 0.04 0.06 0.01 0.15]; expfit(X)

~

This yields 6 = 0.062 which is the mean of the distribution.

Thus A =% = 16.13, which the average number of annual
failures.
Example 1-30

The annual number of failures of a device has a Poisson
distribution; given the following sample estimate the distribution
parameter.

17 13 19 8 17 17 12 19 18 19

Solution

>>X=[17 13 19 8 17 17 12 19 18 19]:paissfit(X)
Thisreturns A = 15.9. End of Exampled&
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Example 1-30

To estimate the failure probability(p) of the cables used in the
construction of a kind of bridge, 5 samples of size n from this
kind of cable was set to life test. The number of failuresin these
5 samples are as follows:

Xy =2,:x,=1,1x3=4,:x,=0,:xs =1. What is the

maximum likelihood estimate of p?

Solution
. 241444041
k= 5,n = 100, MLE(p) = 2= X _ 5
’ ’ p kn n 100

MLE(p) = 0.016
Using MATLAB:

Given x; =2,:x,=1,:x3=4,:x,=0,:x5 =1 As seen
below, binofit function returns 5 estimates with mean
of p=0.016.

>>x=[2 1 4 0 1]; P=binofit(x,100); phat =mean(P)
phat=0.016.

2- Methods of Moments(MOM)

A widdy used technique in estimation is method of
moments .
Before describing the method, it is reminded that:

the k™ moment of random variable X about zero(0) is
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E(XX) = expected value of XX and
the k™ moment about 0 of sample x;, ..., x,, IS

n

X

M — i=\
k n

Methods of moments for estimating the parameters of the
distribution of random sample X is based on the fact the g the

k™ moment of X could be estimated by the k™ sample moment

e E(X*) =M, , k=1,2....

Steps of MOM
To estimate parameters 64,..,0, of the dtatistical
distribution of random variable X ,

i-Compute E(X),j =1, .., kintermsof 84, ..., 0.

Notice that always the first moment of a distribution is its
mean and the second moment is equal to the variance of the
distribution plus the squared mean.

ii-Form the k equations

EX) =M ,j=1, ...k

iii-Solve the equations for the parameters 64, ..., 0.

The resulting values are caled method of moments

estimators for the parameters.
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Example 1-32

Let X4, ..,X, be arandom sample taken from an
exponential distribution with parameter A , Estimate the
parameter by the method of moments.

Solution

E(X):M,é%:—':ﬂuz

End of exampled
Example 1-33

Let X4, ..., X, bearandom sample taken from an normal
distribution with parameters p and o?> , esimate the

parameters by the method of moments.

Solution
_ 22X,
E(X):M\ a n
E(x")=M, = |, . Ix/
U +o =
n
>X. R _
p=—" f=X
= n — N ZXY
Y H _
v XX i o =1 _x7
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In statistics theory it is proved that instead of the above

n

X

estimate for variancei.e..2——X ' sample variancei.e.
n

n

i(xi =X) D x -nX"

== is a good estimate for the
n—) n—\

S\'

variance of X because of being unbiased i.e. E(§%) = o?.
Appendix 2: Application of MATLAB in Reliability theory

Softwares have provided calculations easy. Here some MATLAB
functions which might be used in reliability subject is described.

A-Plotting the frequency distribution of lifetime

Given a sample of the lifetime of a kind of product, the
frequency distribution which consists of classes and their
corresponding frequencies could be plotted using the following
command,;

>>hist(Data,K)
where
Data is a vector consisting the life times of a sample selected at

random from alot of the product,

K isthe number of classes into which the range of life

timeisdesired for partitioning.
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B-Parameter estimation

Once the histogram in the above section was prepared one
might guess the statistical distribution to which the life tomes
belong. The parameters of this distribution could be estimated

using some commands given in Table H at the end of the book

eg.

X

To estimate 0 in an exponentia distribution with f(x) = %e o
thetahat=expfit(Data)
To estimate the parameters of a normal distribution:

[muhat,sigmahat] = normfit(Data)

To estimate the parameters B and C of a Weibull distribution

x—A

with reliability function e "5 " and A=0;
BhatandChat= whlfit(data)

where Datais a vector containing a sample of the life times of
the product.

C-Goodness of fit (GoF)

Goodness of fit implies a comparison of the observed data
with the data expected under the model using some fit. It
describes how well a statistical model fits a set of observations.
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To accomplish this, one could use several GoF tests aswell asa

kind of graph known as Q-Q plot.

There are a number GoF tests including Pearson chi-squared
test for continuous ad discrete distributions and
Kolmogorov_Smironov test for continuous distributions. In this
section the latter test isintroduced.

C-1 Kolmogorov-Smironov(KS) test

The Kolmogorov-Smirnov test is used to examine whether a

samplecomes from apopulation with a specific CDF F(x) or not:

H, Thedistribution with CDF F(x) fits the data
H, CDF F(x) does not fit the data

The MALAB function related to thistest is as follows:
H = kstest(Data,CDF,«a)
where

Data A column vector containing data
a Leve of significancee.g. 0.05,0.10

CDF  hypothesized, continuous cumulative distribution function F(x)

Examples for the format of specifying the desired CDF are
given below:
[Data wblcdf(Data,A, B)] ,
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[Data expcdf (Data, 6)],
[Data, [Data normedf(X, pso )].

if omitted or

If the CDF is unspecified (i.e., set to an empty matrix []), the
hypothetical distribution is assumed to be a standard normal:
N(0,1).

H indicates the result of the test:
H = 0= Do not rgject the null hypothesis at significance level a.

H = 1 = Reject the null hypothesis at significance level a.
Example 1-33

Could it be said that the following sample comes from an
exponential distribution with significance level @« = 0.05?

[110, 520, 645, 680, 330, 75, 95, 480, 360, 575, 1065, 170,
415, 15, 20,1275, 270, 90, 1500, 1923, 715, 1523,427, 730,
1120, 390, 240, 40, 220, 673, 2397, 1032, 315]

Solution
Entering the data as a column vector:
>>Data=|. ..
110
520
1032
315];
Giving the command:
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>>H=kstest(Data, [Data expcdf(Data, mean(Data))], 0.05)

The answer for His0; i.e. it is not rejected that the data belongs
to an exponentia distribution with significancelevel @ = 0.05 .

A
C-2 Q-Q plot

Quantile-quantile ( Q-Q) plot examines the conformity
between the empirical distribution and the given theoretical
distribution through command gqplot( X , pd) which displays
the quantiles of the sample data X versus the theoretica
quantiles of the distribution specified by the probability
distribution object pd:
>> X=[....data];
pd=makedist(distribution name); e.g.
pd=makedist (‘exponential")

pd=makedist ('Gamma)
qaplot(X,pd)

Figurel-15 shows a sample Q-Q plot.

20 Plat of Sample Data versus Standard Mormal

250 A

168r

0sf b

as5F b

Cuantiles of Input Sample
o
+
+

RN + L i

1 1 1 1 1 1 1
-2 -8 -1 048 ] 0a 1 1.5 2
Standard Mormal Cluantiles

Fig. 1-15 A sample Q-Q plot
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The more the points near to the line and the line near to the
bisector of the first quarter, the better the distribution fits the
data.

D Calculation of Reliability

Once the distribution of the lifetime of a device is determined
to be one of the well-known distributions, the reliability could
be easily calculated using the CDF commandsin Table H; e.g.
for exponentia :

R=1-expcdf(x,0) where X is mission time and 6 is the
distribution mean,

for normal :

R = 1-normcdf(X, pu, o) where x isthe mission time and y, o

are the distribution mean and standard deviation.
for 2-parameter Weibull( location parameter A=0)

R = 1-wblcdf(x, B,C) where where x isthe mission time and
B,C arethe scale and shape parameters of the distribution.

E Calculation of theinverse of cumulative distribution
function (CDF )and Reliability function

Theinverse of a CDF gives avalue say a associated with
random variable X such that the probability of the variable being
less than or equal (X < a)to a isequal to the given cumulative
probability.
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Table H shows the MATLB command for this purpose. The

commands have the suffix .inv

Example 1-34

Suppose the life time(X) of adeviceis exponentialy
distributed with mean of 100 hours,

aFindainPr(X <a) = 0.3935

answer :

>>x=expinv(0.3935,100)

x=50

b) Find the reliability for lifetime equal to 50.
answer

>> p=1-expcdf(50,100)

p= 0.6065

c)Find the lifetime value for which the reliability of the device
is 0.6065.

>>x= expinv(1-0.6065,100)

x =50.0051 A
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F Finding polynomial roots and Solution of Equationsin
MATLAB

During the calculations of problems the following MATLAB
commands might be helpful

F-1: Finding Roots of Polynomial Equation

To find the roots of a,x" +--.+a;x+ -+ a,— 0 the
following command in MATLAB is used:

>>roots([a, ... a; ag))-
F-2: Finding solution of algebraic equations

Solve function in MATLAB finds the solution of an equation

of asimultaneous equations. For example to find the value of 2

1

16 Jxe M dx 1 .
f"———, the following

which satisfies the equation ~128

1
1-e 4G9

commands could be used:

>>syms landa x; landa =solve((int(landa* x* exp(-landa* x),
x,0,1/16))./(1-exp(-landa/16))==1/128)

landa=127.65

One who brag ,

will not become savant
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Exer cises

1-(Problem 3 Page4d9 K&L) Two designs for a critical
component are being studied for adoption. From extensive
testing on prototypes it was found that the time to failure(TTF)
is Weibull distributed with a minimum life of zero. Design |
costs $1,200 to build and has Weibull parameters of C= 2 and

B = 100v/10. Design Il costs $1500 to build and has Weibull
parameters of C= 3 and B= 100 hours,

(a) The component has a 10 hour guaranteed life. Which design

should the manufacturer produce and why?
(b) For a 15 hour guaranteed life what should the choice be?

2(Problem 6 Page49 K&L) Consider the piecewise linear
bathtub hazard function defined over three regions of interest
given below.

h(t)=b1—C1t, OStStl

h(t) - b1 — C1t1 - Cz(t - tl)' t1 <t< t2

h(t) = bl - Cltl - Cz(tz - tl) + Cg(t_ tz), tz <t<o

The constants b and ¢ in the above expressions are determined
so that they satisfy the normal requirements for h(t) to be a
hazard function. Find the reliability function based on the above

hazard function.




133 Reliabilty Engineering

3(Problem 11 Page49 K&L) If h(t) is a hazard function prove
that [ h(t)dt — oo.

4- (Problem 7 Page50 K&L) Which of the following functions

can serve as hazard function

eZt

a) e b) & ¢)ct® det™ e)t—3

Develop the density and Reliability functions for those which
are hazard function.

5- (Problem 9 Page50 K&L)

50 automobile components are placed on test with a hazard

[unction as below:

h(t)=\+" wheretisin kilometers

Compute the expected number of falures after 10,000
kilometres.

Hint: Let X= the life time; use binomia distribution with

N="50, p=rr(x > 10
6- Repeat the previous Problem for hazard functions
DO=10% i)h{)=10"e®" t=km

7- (Problem 15 Page50 K& L)Given the population distribution
isuniformon (0 6) , find the CDF and the pdf for the smallest
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extreme value in arandom sample of size n. use the exact theory

not the approximation for large n.

8-(Problem 17 Page50 K&L)Rework the previous problem,
assuming n large and asymptotic distribution of extreme values.

9-I1f a population is uniformly distributed on (. 9) find the

expected value and the variance of the minimum of the samples
taken from this distribution.

10-What is the maximum likelihood estimate for parameter b in

2

Rayleigh distribution with CDF F(x)=1-" ** ?

11- Write the required relations for estimating the parameters of
Bernoulli and normal distributions using MLE method.

12-Assuming f(x) is a unimodal pdf with modal value %, prove

that h'(%) = h2(X) .

P ic)) 1y _ FTOORM)-R' ()f (x)
Solution:h(x) = o = ) = 00

rey _ FTE®R@-R'@f @) _ 0XRE-R (B)f (%) 1oy _ —RIE®FE
=h@® = R2(%) B R2(%) =@ = R2(%)

-R'@)  f(®) M) — he (%
e x%:h(x)—h (X)
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2

Static Reliability Models

Aims of the chapter

This chapter is concerned with modeling the reliability of the
systems in which time coordinate is not presented in the
reliability of their subsystems or components. In this regard the
chapter after introducing a diagram caled reliability block
diagram (RBD); deals with some reliability configurations such
as series, pardld, k-out-of n configurations. Furthermore
calculation of upper and lower reliability bound for the complex
systems is described.

2-1 Definition of static reliability models

Here, the word static means that the time coordinate is not
presented in the calculations. In modeling a system from a
reliability stand point using static models, the component or
subsystem reliabilities are considered to be constants; thus some
base time period isimplied(K&L page 55). Before dealing with
some conventional component configurations, a graph is
introduced below.
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2-2 Reliability Block Diagram

A reliability block diagram(RBD) is a graphical model of the
elements of a system permitting the calculation of system
reliability given the reliability of the elements . Figures 2-1 and
2-2 are RBB examples. Each component or subsystem of the
system is presented by a block or box in the RBD. This useful
and important graph is used in the calculation of systems
reliability. Now some conventional configurations and their
RBDs are addressed below.

2-3 series configuration

A series system is one that requires all of its subsystems to
function in order for the system itself to function; in other
words, it has a configuration such that if any one of the sub-
systemsfails, the entire system fails. Figure 2-1 shows the RBD

of asystem with series configuration(or simply series system).

Fig. 2.1 RBD of aseries configuration

Let Ei=event that subsystem i operates successfully, then the
reliability of i" subsystemis R; = Pr(E;) andthe system
reliability(R,ys) equals:
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Rsys = Pr(E; N E, .0 Ey).

Assuming the operation of the subsystems are independent of
each other, we have:

Rsys = Pr(E;) ..Pr(E,) = Ry X ..X R, =

Rsys = ?:1 Ri . (2'1)

Since 0 < R; < 1 therefore r,,, < rr1j1n (R} ; that isthereliability of

a series system with independent components is not greater than
the least reliable component(K& L page 56). It isworth
mentioning that in an n- component series system, if the
reliability of al componentsisequa toR; =1 —gq,i =1, ...,n
then: Rsys = (1 — g)™. Now notice since according to binomial

expansion:
(x4 )" = Oy Xyt QI Ry (Txly e ety

Therefore

nn—1)

A-@" =1+n(-q)" +——

(—)*+...+(=)"

Ignoring higher order terms, Ry, could be approximated as

followsif ng < 1:
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Series system: Rg,s = (1 —q@)" =1—-nq, nqg<1.

If the components do not have the same reliability and i

element failure probability is denoted by q; =1 —R;, an
approximation for the series system reliability is given bykeL

page 58):

Rsys =1- q; Zq. <1
i=1 i=1

Example 2-1

A ten-component system with 95% reliability isto be
designed. The system isto be designed in such away that if any
component fails the system would fail. What should be the
reliability(R) of each component?

Solution

The system configuration is series and itsreliability is:
Ryys=(1—q@)" 095= (1-¢)*° = ¢=00051=

R=1-q =0.9949
Using approximation:

Rys=1-nq = 095=1-(10)(q) = q=0.005

R=1-q=.995 A
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Noticethat if the components are not independent Eq. 2-1
could not be used for computing the reliability of aseries
system. Inthis case, the chain rule for factorization, as
described below, might be useful:

Chain Rulefor Factorization

Let Ej=event that subsystem i operates successfully; then the
system reliability(Rs,,s) equas:

Rsys = Pr(Ep NE,_; N ...NE; NEy),

Using the chain rule for factorization, thisjoint probability can

be rewritten as follows:
= Pr(E,|Ey_1, ..., B2, E)Pr(Ey_1|Eq_gy o) E1) ... Pr(E, |E;)Pr(E,)

=Pr(nt component is on|other components are on)X ... X Pr(1st component on) (2-2)

2-4 Parallél configuration

A system is said to have a paralel configuration if any of the
elements in its structure permit the system to function; in other
words paralel system isa configuration that works aslong as
not all of the system componentsfail.

Assuming the components work independently of one another,

ParallelRgys =1~ (1—R)(1—Ry) ..(1—R) =1— Hu -R) (2-3)

i=1
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It could be easily verified that the reliability of a parallée

system is more than any of its components reliability.

Fig. 2-2 Reliability block diagram of a
parallel system-all components working

Proof of Eq. 3-2

Suppose in a 2-component system, components land 2 are
connected in paralel, and let E; and E, denote the events that
land 2 operate successfully. Since the systems worksiif either 1

or 2 works then the system reliability(R,,) is equal to:

sys

Rsys = The probabilty that either 1 or 2 works= Pr(E; + E,)

Pr(Ey) = Ry Pr(E;) = R,

Reys = Pr(Eq + Ep) = Pr(Ey) + Pr(Ep) — Pr(E1Ep) =

R;+R, —R;R, =R; +R,(1—Ry) =

é— (I1-R)+R,(1-RY=1-(1—-R)(A—-Ry)
r

Rsys = 1 — Pr(both components fail ) = 1 — (1 —R{)(1 — Ry).
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And in general if n components of a system are connected in
parallel independent of each other ,then the reliability of n-

component parallel systemis:

Ry =1-(1-RIA-R)..A-R)=1-[[a-rR). @=3-2)
If the unreliability of component i isdented by @; = 1 — R, then:
Ryys =1—0Q1 ...Qp (2=3-3)

End of proof B
Example 2-2

a)A 6-componet parallel system with a reliability of 80% is
to be designed, determine the reliability of each component.

b)How many componentsin a parallel system leadsin a
reliability of 99.9% system reliability?

Solution

1
a R,,=1-(1-R)*>080> R>1-(1-08)s=

sys

02353 = 23.53%
b- Rys=1—(05"=00999 =>n=10 A

Example 2-3 (k&L page 71)

In an electrical distribution system, electronicaly operated
circuit breakers(CBs) can be activated to interrupt the current. If
the current exceeds 105% of the rated line current it is required
that the circuit breakers open, thereby disconnecting the supply.
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The probability that a circuit breaker functions correctly is 0,98,
and each breaker has its own line voltage sensor. If the
reliability associated with interrupting the circuit is to be at least
0.999, how many circuit breakers in series are necessary to
achieve the desired reliability?

Solution

98% of the times a CB could disconnect the un-alowed
current load. To increase the reliability associated with
interrupting the circuit, series configuration cannot be used
because a series configuration of number of the CBs would
result in a reliability of less than 98%; instead a parallée
configuration is used, the necessary number of CBs in parallel
is calculated as followss R=1-(1-098)"=.999 > n =
log(.001)/log(.02) =2 A
Example 2-3 (from K&L)

A detection system for the CO level in atest cell is under
cosideration. Specifically, there is a sensor available that will
close a circuit and thereby signal the personndl if it detects a
particular level of CO concentration. However, this sensor can

fail in the following ways:
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Failure Statuts Probability

Signal high CO level when noneis present 0.10
Not detect high CO level when it is present 0.15

Obviously, the sensor is not too reliable and it is ecided to use 3
of themiaDC circuit.
(@) Arrange the sensors such that the probability of
delecting a high emission level if it is present, is maximized.
(b) Calculate the probability of afalse signal for each
arrangement considered in (a)
Solution
a) Therdliability of the sensor is:
R=1-p=1-(0.1+0.15) =0.75
Thereliability of the systemis
Parallel: Rgys =1 — (1 —0.75)% = 0.98
Series:  Rgys = (0.75)% = 0.42
Select parale configuration.
b)

The false signal probability is 0.1, then the probability of false
signa in aparallel arrangement is:
1—[1-(1-0.9)3] = (0.1)3 = 0.001.

Since the probability of without-error operation of the series
system is (0.9)3 ; then the probability of afalse signal for series
configurationis 1 — (0.9)° = 0.271.4A
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2-4-1 Typesof parallel configurations

In aparale system the components might be arranged in the
following ways;

1-Activeredundant

In this parallel configuration more than one components are
active and failure of one component still makes the system keep
working(Fig 2-2). Egs. 2-3-1 through 2-3-3 are related to this
type of parallel systems.

2-Standby redundant

In this paralle configuration one component works and some
similar components are waiting to replace the on-line
component when it falls. he system is functional until all
components fail. It is worth mentioning that waiting (standby)
units might be subject to failure when waiting for eplacement.

3-Shared paralle configuration

In the shared parald system, the failure rate of surviving
components increases as failures occur. An automobile wheel
assembly is an example of the shared parallel arrangement; if a
lug nut comes loose the remaining nuts must support an
increased load, and hence the failure rate is increased with each
successive failure. Thus, the shared parallel is not truly a static
model (K& L page99).
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Definition of Perfect and Imperfect switching

In standby redundant configurations by "perfect switching" it
is meant that when the active component fails and a standby
component is to replace it by the help of a switch, the switch
does not faill during or before replacement operation,
mathematically the switch is 100% reliable (Ps=1).

"Imperfect switching" refers to the situation in which the
switch has a probability of failing to change over from active
component A to component B when A fails in a standby

redundant configuration.

2-4-1-1 Two-component system with 1 active and 1 standby-

Perfect switching

Consider a system composed of an origina and a backup
component shown in Fig. 2-3. When the original component
fails, a perfect switch(i.e.100% reliable) turns on the standby
backup component and the system continues to operate. Let

R1,R, denote the reliability of the components.

1

—
L2 1

Fig. 2-3 RDB of a 2-component standby system

Thereliability of this system isequal to:
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Rsys =
Pr(system works) = Pr( A works) + Pr ( A does not work ) X Pr( B works)
= R, +R,(1—-R,) =R, +R,—RR,
Therefore the reliability of a two-component standby system is
the same as to that of a 2-component active system as given below:

2

R =1-(1-R)(1-R) Ps1  (2-3-1)

2-4-1-2 n-component system with 1 active and n-1 standby-
Perfect switching

Consider an n-component standby system with one normally
operating subsystem and n-1 in standby status(Fig 2-3-1). The

system is functional until n failures occur. The reliability of this

systemis:
standby R =1—(1— R)....1-R.) (2-3-2)
sys

— 1]
> 2 —
> 3 >

/ —-0

\ > n—1 >-

v
=
v

Fig. 2-3-1 RDB of n-component standby system

(https://egyankosh.ac.in/bitstream/123456789/35169/1/Unit-15.pdf)
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Proof of Eq. 2-3-2

Suppose asystem includes 1 active subsystem and 2 redundant

subsystems in standby status with a perfect switch. The

3
reliability of thissystem(R )is:
sys

Stand by 3 Reliabiltyl-active 1standoy
Rws =1- {1— 1-1-R)A- RZ)]}{l— Rs} =

Sy R @-R)A-R)A-R) Ps =1

Thiswas proof for a 3-component standby system; if the
calculations continue in a similar manner for 4-component, 5-

component ....standby systems, the result would be Eq. 2-3-2.
End of proof _J

Example 2-5

A parallel system has an active device with 90% reliability.
When this active fails, a perfect switch replacesit by a standby
backup with 80% reliability. Calculate the system reliability.

Solution

ﬁsys =1-(1-R,)(1-R,) =1-(1-0.9)(1-0.8)=0.98 A
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2-4-1-3 Two-component system with 1 active and 1 standby-

Imperfect switching

Consider a system composed of an origina and a backup
component as shown in Fig. 2-3. When the original component
fails, an imperfect switch with reliability 0 < P, < 1 turns on
the standby backup and the system continues to operate. Let
R1,R, denote the reliability of the components in the system
R, R, and Ps are constants not functions. The redundant
component do not share any of the load and is not probable to be
in a failure mode before turning on. In this case the system
reliability (g ) is given by the following relationship (based on

Billinton& Roy,1992 page77 EQ.4-12):

R =R+PR,(R)=1-(1-R)(1-PR,), PR <1 (233
sys

Example 2-6

Evaluate the reliability of the system in Fig. 2-3 if A has the
reliability of 0.9, B has a reliability given A has failed of 0.96
and switch has areliability of 0.98.

Solution

2

R =1-(1-R))(1-PR,)=1-(1-0.9)(1-0.92x0.96)=0.9883 A
sys
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2-5 Combination of Seriesand Parallel Configurations

Some systems have a series-parallel configuration as the ones

shown in the following example.

Example 2-7 ;. Consider the series-parallel configurations
A& B given below; which oneis morereliable? A or B?
A

Solution
Assuming the components are independent from each other,
Ry=[1-(0=R)A—-R)I[1—-(1—-R3)(1 =Ry
Rg =1—(1—R{Ry)(1 —R3R,)
Ry —Rg =R{R4,(1 —R;)(1 —R3) + R;R3(1 —R)(1—R,) >0

Then A ismorerdiablethan B. A
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Example 2-8

In example 2-7 letr, =0.95,R, =085, Ry = 0.75,R, = 0.8and
the components work independent of each other. Calculate the
reliability of the configuration.
Solution
R,=[1-(1-0.95)(1-0.85)][1-(1-0.75)(1-0.8)]=0.9429

R;=1-(1-0.95%x0.85)(1-0.75%x0.8)=0.9230 A

2-5-1 Redundancy Leve

Redundancy is the duplication of critical
components or functions of asystem. It isacommon
approach to improve the reliability and availability a
system. In this chapter you were introduced with active

and standby redundancies.

One of the most fundamental determinants of component
configuration concerns the level at which redundancy is to be
provided. Lewis, 1994, Chap. 9). In this regard the following

redundancies are introduced:
+» High-level redundancy(HL) or the system level redundancy

¢ Low-level(LL) redundancy or the component level redundancy
High-level redundancy involves the duplication of the entire
system while low-level redundancy is limited to the duplication

of components or subsystems.
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High-level redundancy(HL) or the system level redundancy

Suppose we have n types of component and using k
components from each type, a series configuration is formed. If
the n subsystems are connected as a parallel configuration then
high-level(HL) redundancy or the system level redundancy has
been formed(Fig 2-4-1).

Fig. 2-4-1 Example of High-level(HL) redundancy (Lewis, 1994 p272)
Thereliability of the above RBD is;

Ry, =1—[(1 — RyRpR.)]?

Low-level(LL) redundancy or the component level redundancy

Suppose we have n types of component and using k
components from each type, a parallel configuration is formed.
If the n subsystems are connected as a series configuration,
then low-level(LL) redundancy or the component level
redundancy has been formed(Fig 2-4-2).
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-]
-]
-]

-]
[-]
[-]

Fig. 2-4-2 Low-level(LL) redundancy (Lewis, 1994 p272)

Remember that if 2 similar components with reliability R are
paralleled then the resulted system would have the following
reliability:

1—(1-R)(1—R) =2R —R?
Therefore the reliability of the above RBD is equd to:
Ry, = (2R, — R))(2R, — RE)(2R. — RZ)
If R, = R, = R, then
Ry, — Ry, =6R3(1—R)?>>0 = Ry >Ry

Regardless of how many components the origina system has
in series, and regardless of whether two or more components are
put in paralel, low-level redundancy yields higher reliability,
but only if a very important condition is met. The failures must

be truly independent in both configurations (Lewis, 1994 page 273)
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Example 2-9

Find the reliability of a system having the RBD shown in Fig.
2-5-1 in which m series subsystem of n components are
paraldl.

1 % 3 F=-[n
1 % 3 F=-n

| |

| |

I I

| |

| |

' 1 2 3 F=-[n |—

Fig. 2-5-1 TheRBD of part a of Example 2-9
Solution Let r; denote the reliability of ith component

fori=1,2,...,n. Then each subsystem reliability is equal
to [IiL, r;, and the system reliability is given by:

Rsys =1- (1 - Hli]=1 ri)m (2'4'1)
where
m  number of subsystems
n  number of components in each subsystem
r;  thereliability of i™ component i=1,2,...,n

b) Find the reliability of the following system
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1 1 1
2 2 2
3 3 3
n n n
Fig.2-5-2 The RBD of part b of Example 2-9
Solution

The figure shows that the system has m parallel subsystems each

having n components. The reliability of this LL redundancy

system is given by:

Rsys =[1- 7i1=1(1 )™

Exampl e 2-10( Lewis, 1994 page271)

(242 )A

Find the reliability of the RBD given in the following figure:

1

2
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Solution: Rys = [1 — (1 — RyR,)(1 — R3)I(R,) A

Example 2-11

In the following 2-component system, the reliability of the
components are respectively Ry, R,. If the reliability of this
system is not enough for us, and we have the following two

optionsto use, which one has morereliability? A or B?
3 1

l e { I
2 1

Solution

[

Ry =Ry(R, + R, — R%)
Rg = [Ry + Ry — (R1)(RI(R2)
Rg — Ry = (R1R)(R; — Ry)

Thereforeif R, > R, , configuration B would be more reliable than

configuration A A.

Not surprisingly, this expression indicates that the greatest
reliability is achieved in the redundant configuration if we
duplicate the component that is least reliable; if R, > R; then
system B is preferable, and conversely. This rule of thumb can
be generalized to systems with any number of non-redundant
components; the largest gains are to be achieved by making the
least reliable components redundant(Lewis, 1994 page271).
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2-6 k-out-of-n configuration

A k-out-of-n system has n identical independent components
or subsystems, of which only k need to be functioning for
system success(Fig. 2-6). It is supposed that Each component
works, independently of all the other components ..

H subsys.

subsvs. 2}

snbsys.. n

Fig2-6 A k-out-of-n system

xamples of real world applications

Applications of k-out-of-n systems can be found in many
areas such as communication, electric and electronic, safety
monitoring systems and human organizations.

In a cable-supported bridge having n supporting cables, at
least k cables must be working
A committee with n members who must decide to accept or

regject innovation-oriented projects and the committee will

accept a project when k or more member (Nordmann and Pham 1999)
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2-6-1 Reliability of k-out-n configuration

In k-out-of-n configuration, if k=1 the configuration is active
parallel configuration with the following reliability:
R,=1—-(1-=Ry)...1—=R,)
If k=n, the configuration would be:
Rseries = R1 X .. X Ry
If k=n-1,the system does not fail with the failure of one
component, but it fails with the failure of 2 components.

In the ssimplest form, let the reliability of all components be
the same and equal to R. To compute the reliability of this k-
out-of system notice that(Lewis, 1994 page 269):

For identica components, the reliability of an k-n system
may be determined by the binomial distribution. Suppose that p
is the probability of failure over some period of time for one
unit. That is, p=1- R, whereR isthe component reliability.

From the binomial distribution the probability that n units
will fail isjust

Prx =x) = (0)p*(a - py

The n-k system will function if there are no more than n-k

failures. Thus thereliability is asfollows:

n—k

PriX<n-k)= z (;l) p*(1—p)*~*

x=0

Substituting 1-R for p yields,
Ryys = Zxco (1) (1 = R*(R)™ (2-5)
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with MATLAB:
R¢ys = binocdf(n — k,n,1 — R) (2-5-1)
The system failure probabilty or system unreliabilty is calculated

from:

1—Rgys = 1 — binocdf (n — k,n,1 —R)
Alternatively,
we could say that system work as far as n-k components out
of ncomponent fail. Then the probability of system

failureisgiven by:

PriX>n—k) = Z (Z) p*(1—p)**

x=n—-k+1
Then the system reliability (Rs,) is,

n

R, =1— "\ (1 = R)*R™*
w=1- 2

x=n—k+1
Or we could say that system work asfar as k components
out of n component work. Then the reliability of system

isgiven by:

n

Ryys = z (7:) Ri(1 - R)™

i=k

where R is component reliability.

This relationship and the following integral are equal (Barlow &
proshan,1998 page218):
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Rsys = k(}) fOka‘l(l — x)" kdx.
In summary, if the reliability of components in a k-n system is
denoted by R then:

Rsys = X1 (D R = R = k(T) [ 211 — x)"*dx. (2-6)

where
R component reliability
Rgys system reliability
n Total number of componentsin the system
[ no. of components that work

N-i no. of components that fail

using MATLAB:

Ryys = 1 — binocdf(k — 1, n, R) (2-6-1)

Notice that Egs. 2-5 and 2-6 are equal.

Example 2-12
A system has a 3 out of 5 active redundancy configuration.
The reliability of each component is R=0.9. Calculate the
reliability of the system.
Solution
Using integral of Eq. 2-6:
Reys = 3(3) [, (1 — 2)°3dx=6R*-15R"+10R*
R=0.9 = R,,=0.99144

Using X in EqQ. 2-6:
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k—1 3—-1
i= i=

ny . . 5 . .
Rys = 1 — () R(1-R)"™ =1- () 0.9'(1 — 0.9)5
1 1
0

i=0

With Matlab:
Eg. 6-2
3* nchoosek(5,3)* int(R"2* (1-R)"2)= 6R>-15R*+10R?
Eq. 2-5-1
binocdf(n — k,n,1 — R),Rsys = binocdf (5 —-3,51—-.9) =
0.9914
Eq. 2-6-1:
Rsys = 1 — binocdf (2,5,0.9) = 1 — 0.00856=0.99144
End of Exampled
Example 2-13
The system shown in the following figure has only 4
components A;,A,, A;and A, . Each component works,
independently of al the other components .Determine the

configuration of the system.
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Solution
It is evident from the figure that the system works in the

following conditions:

If A;, A, & A; work,

If A, ,A; & A, work,

If A;, A; & A, work,

If A, A, & A, work,

If A, A,, A; & A, work.

Therefore the system works if at least 3 components work; i.e.

the system has ak=3/n=4 configuration. End of Exampled
Example 2-14

The system shown in the following figure has only 3
components 1,2 and 3 . Each component works, independently

of the two others .Determine the configuration of the system.

1 2
2 3
1 3

Solution

It is evident from the figure that the system works in the
following conditions:

If 1 &2 work,
If 1 &3 work,
If 2 &3 work,
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If all 3 components work.
That is at least 2 components out of 3 must work in order to
have a working system. Therefore the system has a 2-out-of-3
configuration. A
Example 2-15

Verify that a k-out-of-n configuration converts to a series
configuration for k=n and reduces to parallel configuration for
k=1.
Solution

Accordingto Eq. 6-2, thereliability of ak/n systemis:

Rsys =

-

1l
=

(Tll) Ri(l _ R)n—i

L

substituting k=n:

Reys = (rll) Ri(1—R)™ i = (Z) R™(1 — R)"™ = R"

-

i

I
S

k=n = Rsy; =R"

substituting k=1:

=3 ()0
i=1

Rsys = Z (Tll) Ri(l - R)"_i — (S)Ro(l R0 =
i=0

Reys = Z (Hra-mmi-a-rr

1=0
According to Newton binomial expansion:
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n

@+b=> (0) @b

x=0
then
n
Z(n)a—R)xR"-x =(1-R+R"=1"=1
x=0 x
therefore

n

n . i
Rys=) (DRG-R™-a-R"=1-1-R"
i=0
i.e. for k=1 k/n configuration reducesto parallel configuration.
End of Example A

2-6-1-1 Upper bound for k-out-of-n reliability

Thereliability of k/n configurationisgiven by Eq. 5-2:

n—k
n
Rsys = z (X) (1-R*(R)"™
x=0
Then
n
n
Rys=1- > (Ja-rr®r
x=n—-k+1
-1 — n — n—k+1 n—(n—-k+1)
(s O
_ n _ pyn—k+2/p\n—(n—k+2) _ ...
(ol oo
Then
Rys<1-( 7 )a-pmet  @-7)
sy = n—k+1

Thisis an upper bound for the reliability of ak-out-of n

configuration.
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Example 2-16

A pressure vessal is equipped with 6 relief values that work
independent of each other. Three values are enough for the safe
operation of the vessel. The failure probability of each valveis
0.1%. Cadculate the probability of safe working of the vessel.

Solution
The reliability of this system, which has a 3-out-of-6
reliability configuration, is given by Eq. 2-6-1:

R =1-0.001=0.999
Rgys = 1 —binocdf(k —1,n,R)
1 — binocdf (2,6,0.999) = 0.99999999998502
The probability of failure(unreliability probability):
1— Rgys = 1.4976 X 107 1.End of Example A

Noticethat:
In Reliability literature related to k-out-of-n configuration

sometimes the binary variables c; and n are defined as:

o = { 1 if component i is functioning
o otherwise

i.e. The structure of the i component is described by this binary

variable.
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n

1 ZCiZk

i=1

n= n

0 Zci<k.

i=1
The binary variable n indicates the state of the k/n system.

These binary variables might be used in the optimization
problems related to k/n systems.

2-7 Complex System Analysis

Not al designs can easily be tackled for reiability
computations. Certain designs such as those shown below are
so complex that pure parallel or series are not appropriate for the
calculation of their reliability. Such systems are known as
complex systems. There are some methods for calculating the
reliability of complex system including:

a)Enumeration method

b) Path Tracing

¢) Conditional Probability Method or Application of Bayes
theorem or Conditioning on a key element

d)Delta-Star Transformation Approach for Reliability Evaluation

€) Method based on Markov chain

f) Cut and tie set analysis
Methods ¢, d and f are described below.
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2-7-1 Conditional Probability M ethod

To evauate the reliability of a complex system using
conditional probability approach or the decomposition method ,
follow the steps explained below:

1.Choose a component, say K, which appears to bind
together the reliability of the system as a keystone component.
A poor choice may increase the number of steps in the
calculations.

2. Decompose the original system first by considering the
keystone component to be working all the time, which meansis
100% reliable. Secondly, consider it as not working (which
means that it is not reliable at all or has failed). Prepare 2 new
RBDs as reduced subsystems:

in the first one, replace the working K by a line in the
reliability block diagram of the original RBD. This means that

the information can flow in either direction with no interruption.

For preparing the other subsystem remove component K
from the RBD of the original system. This is because if
component K does not work, it means that the path(s) of
information which goes/go through component K idare
interrupted. Hence, information cannot pass through component
K
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3)Calculate the reliabilities of the reduced subsystems and
then calculate the reliability of the system (Rgys) from:
Rys =
Pr(system success| component K iswaorking) +

Pr(system success | component K does not work at all)

It is worth explaining that this method has been extended to
choosing more than one key element. For more details refer to
references such as Wang & Jiang(2004).

Example 2-17(Lewis,2014Page 281)
Calculate the reliability of a system with the following RBD:

1a 2a 3a

1h 2h 3b

Solution

Component 2ais chosen as the key element and system
operation is conditioned on:

i) 2aworksall thetime

i) 2a does not work at all

With the following symbols :

Y The event that the original system works successfully

X The event that Component 2afails
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X The event that Component 2a works

R1 Thereliability of Components 1a& 1b

R, Therdiability of Components 2a& 2b

R1 Thereliability of Components 3a& 3b

The sample space(SS) includes 2 events: SS = {X, X}.
Applying Bayes theorem:

Pr{Y} = Pr(Y|X)Pr(X) + Pr(Y|X)Pr(X) (2-8)

Let Pr{X}:Rl Pr{X}:RZ
Then Pr{X} =1 — R, and and Eq. 2-8 is could be written as:

R=Pr(Y)=R (1—-R,)+R*R, (2-9)

Now, we must evaluate the conditional reliabilities R* and
R™.

For R~ in which 2a has failed, al paths leading through 2ain
the origina RBD are disconnected. The resulting RBD is as

follows:

1h 2b 3b

This reduced system forms a series configuration of components
1b, 2b and 3b then:

R~ = Pr(Y|X) = R,R,R;
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Conversely, for R in which 2ais operational alineisdrawvn

instead of 2a. This action bypasses component 2b.

1a 3a
_ N\ -
1

1
1h 2?h | 3b

Thereforein this case the resulting RBD appears as follows:

1a ia
. 1 .. |
| Ih | | ih |

which has the following reliability

R* = Pr(Y|X) = [1— (1 - RD2][1 — (1 - Ry)?]

Substituting the expressions for R~ and R* into Eq. 2.8, the
reliability of the origina system is asfollows:
R=RR,Rs(1—R)+[1-(1- R1)2][1 -(1- R3)2](R2) (10-2)

2-7-2 Delta-Star Transformation Approach for
Reliability Evaluation

In this section, the reader is presented with the so-called delta
configuration and star configuration, delta-Star conversion and
the use of this transformation to simplify complex reliability

block diagrams.
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Figure 2-7 shows the star and delta configurations. Here we
use the capital letter R for the reliability of each component of
star connections and lower caser for that of delta configuration.

Capital letter V stands for vortices.

Vi

Star Delta
configuration configuration v,
1
pl
1 "
3
R
Ra -
V
¥y Vv, 3 ‘ v,

Fig. 2.7 Star and deltaconfigurations

Delta- Star transformations help us to transform some reliability

networks into series parallel networks. Thisis dealt below.

2-7-2-1 Transforming a delta configuration into an
equivalent star configuration (Grosh,1989 Pagel37)

Suppose a delta configuration is completely known and given
in Fig 2-7 and we would like to find a star configuration which
has the same reliability. The reliability equivaence of the 2
configurationsin Fig. 2-7 requires that:

1)The reliability of the section between vortices V,and V, in

star configuration (R in serieswith R) must be equivalent to

the reliability of same section in delta configuration
(subsystem r, in paralel with"r; in serieswith r;"); i.e.

RR =1-(-r,r)1-r,)=C=r,+rr,—rrr,
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2)With asimilar argument for vortices 1 & 2,we could write:
RiRy =1-(1-1,r,)A-r) = A =r 415,511,
3)Similarly:

R2R3 =1-(1- r2r3)(1— r'l) =B= rl + r2r3 — r1r2r3
The equivalent star configuration:

Solving the above 3 equations simultaneously for r;,Rr,,r,would

result in:
R = 'ABBC (2-10-1)

1|R :\/[\—(\—n)(\—r,n)][\—(\—r\)(\—rrrr)][w—(\—rr)(x—rrr‘)]

‘ \—(—r)(—r.r.)

29R = ‘ACBC (2-10-2)

3|R. = 'AAB < (2-10-3)
A=r—(-rr)0-r,) B=1-(-rr)0o-r)
C =\—(-r.r)0-r)

Example 2-18

Suppose the components of the delta configuration in Fig 2.7
has the following reliabilities r1=0.7 , r,=0.8 , r3=0.9. Find the

equivaent star configuration.
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Solution
v ABC v ABC ABC
R= 5 R, =~ R, = A

A=1-(1-1,r,)(1-r;)=1-(1-r,-1,1, +1,1,1,)=0.956
B=1-(1-r,r,)(1-1,)=0.916
C=1-(1-1,1,)(1-r,)=2-(2-1,-1,1,+1,1,1;)=0.926

0.900497

+ABC=0.900497 Rl:w =0.9831
' A
2:M: 0.9725 R3:O'—E 9 :5:7:.9419

2-7-2-3 Transforming a star configuration into an
equivalent delta configuration

In this section ry, rp,r3  have to be found from the 3 equations
of Sec. 2-7-2-3intermsof Ry,R,,R3. Thefollowing MATLAB

code could be used to do this:

% Star2Deltam

clc;

clear;

closeal;

% Parameters input

R1=input('Please Insert R1 valuein Y config.: );
R2=input('Please Insert R2 valuein Y config.: );
R3=input('Please Insert R3 valuein Y config.: );
global A B C;

A=R1*R2;

B=R2*RS;

C=R1*R3;
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%% calculations
options=optimset('Display’,'Off");
Eg=fsolve(@De€lta,[0.5,0.5,0.5],0ptions);

Eql=Eq(1);

Eq2=Eq(2);

Eq3=Eq(3);

display(['rl= 'num2str(Eql)," r2= '
numz2str(Eg2) ;'  r3= " numz2str(Eg3)])
The sub-code Deltam used aboveis as follows:

function W=Delta(r)

globa A B C;

W=[1-(1-r(1)*r(2))* (1-r(3))-A;
1-(1-r(3)*r(2))* (1-r(2))-B;
1-(1-r(2)*r(3))* (1-r(2))-Cl;

Performing star 2Delta using the data in Example 2-11
>>gtar2Delta
Please Insert R1 value: 0.9831
Please Insert R2 value: 0.9725
Please Insert R3 value: 0.9419
Results: r;=0.69991 r,=0.79993 r3=0.90017

Special case: identical components

If a delta configuration consists of 3 identical component
with areliability of I, ; the equivalent star configuration must
have the following components:

R =R,=R,=\-r]+rf+r, =R, (2-11)

Conversely a star configuration with identical components R,
has an equivalent delta configuration in which al its 3
components has the reliability I', obtained from the following:

— +r +1, —R, =+ (2-12)
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Example 2-19

In a delta configuration the reliability of the 3 subsystems is

r,=0.9. Find the equivalent star configuration.
Solution
Ry =/-rs+r2+r,=0.99045 i.e. R =R,=R,=R,=0.99045

Conversdly if Eq. 2-12 is solved with R, =0.99045 ,
-r¥+r2+r,-0.99045*=0 would give 3 answers(-0.995,1.0952 and
0.9) for r, , the acceptable answer is r,=0.9.

End of Exampled

The following example illustrates the delta-star
transformation approach for reliability evaluation of complex
systems.

Example 2-19

A system has the following RBD. The components work
independent of each and the reliability of %90. Find the
reliability of the system.
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1
| vy | -
1 r1—0.9 I —_ r470.9

Solution No.1: star-delta approach

Thevortices 1,2 and 3 in the given RBD constitute adelta
configuration. The equivalent star configuration has 3

components with the following reliabilities:

JABC R _JABC R _JABC
B 2 C A

R, =

where

A =B = C =1-[1-(0.9)(0.9)] (1-0.9)=0.981

N0 oo,

Ri=R=R3=" 0981

170~

Replacing the delta configuration with this star configuration

would yield the following equivalent RBD for the system
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Ry = 0.9904 | Ry=0.9

Ry =0.9904

Ra=0.9904 Ry=09

The reliability of the system based on the new RBD is calculated

asfollows:

Rsys = 0.9904 x(1-(1-0.9904 x0.9) (1-0.9904 x0.9))= 0.9787.
Solution No.2 Conditiona Probability Approach

The Element No 3 is chosen asthe key element. If thiselement is
not functiond, the following RBD with ardliability denoted by R,

would be obtained.:

RSP:1-(1-O. 9x0.9)(1-0.9x0.9)=0.9639

0.y l 0.9
1 . 4

b
0.y 0.9

S
ra7
[ |
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Suppose Element No. 3in the original RBD works all the time.

Replacing it with aline would result the following RBD with a

reliability dented by Res.

R, =[1-(1-0.9)(1-0.9)][1-(1-0.9)(1-0.9)]=0.9801

.09, 09
1 -+
0.9 0.9
2 l___ -

w

Now Rﬁ( the reliability of the system) is calculated using Bayes

Rule (Eq. 2-8) asfollows:

RS,S ZRSDX(I—r3)+RPS><r3=O.9639><O.1 +0.9801 x0.9=0.9785 A

2-8 Calculation of upper and lower bounds for

complex system using cut and tie set analysis

In this section a procedure is introduced for calculating an
upper and a lower reliability bound for complex systems. This
procedure is based on the so-called tie and cut sets. The RBS of
some complex systems are shown below.
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Fig. 2-9 Three complex systems
Before performing the cal culations, some definitions are
introduced:

Definition of minimal cut set

Thisset is aminimal set of components which by failing
guarantee the failure of the system(Grosh,1989 pagel25); in
other words the failure of its components cause interruption of
all paths from the input to the output of the system.

Definition of minimal path

A minimal path isaminimal set of components by functioning

ensures the system operation(Grosh,1989 pagel25).
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Notice that

-Each complex system has usually several minimal path and cut
sets. A set could be both cut and path.

- In the foregoing discussion, by mentioning cut set, minimal cut

set is meant and by mentioning path set, minimal path set is meant.
Example 2-21 (Grosh,1989 page 125)

Find the minimal path and cut sets for the following RBD.

1 [

: Ci ca
——— c3 s

Solution

The minimal cut sets are:

Cut set no. components
1 GG
2 C4Cs
3 CiCsCs
4 C.CCy

The minimal path are:
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Cut set no. components
1 CiCy
2 C.Cs
3 C1CsGCs
4 CoC3Cy

End of Exampled

Example 2-22(0'connor,2003 page175)

The RBD of asystem is given below. Show the minimal cut

and path sets on the RBD.

1

(O]

Solution

Theminimal cut setsare (1-3 2-3 and 4 )as shown below:

5

1

2

— 3=

L |
-

33

The minimal path setsare (1-2-4 3-4) shown below:
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g-

S A

4
G VF Y, \)E.n' FETTEELYS

End of example A
Exampl e 2-23(shooman,2002 page285)

What are the minimal cut and path sets between source a and

target b given below?

a | i
Q) target
source 5
2
(4]
L ———
o 3 o

Solution

If al components fail but Component 1,the connection
between a and b does not interrupts thenthe set {1} isatie set
If all componentsfail but Components 2& 5, the connection
between a and b does not interrupts thentheset {2,5} isatie
set

Functioning of the set with minimum elements 6,4 ensuresthe

system operation, then Set {6,4} isaminimal path.
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The other cut and tie sets are determined with similar reasoning.

The following table shows the minimal cut sets and minimal

paths.

Theminimal cut setsand minimal paths of Example 2-23

Path no. Components | Tie set no. Components
1 54,1 1 1
2 261 2 25
3 3.6,5.1 3 6.4
4 4321 4 234
5 6.3.5

End of Exampled

2-8-1 Calculation of reliability upper & lower bounds
for complex systemsusing auxiliary networks

To compute upper and lower reliability bounds for a complex
system, based on the minimal cut sets and minimal paths, two
auxiliary systems are constructed(Grosh, 1989, page 125).

DAuxiliary network N; is composed of pardle
configuration of all the minimal path elements in series. This
network is based on this fact that as far as one minimal path

work the system works.
2)Auxiliary network N, is composed of the series

configuration of al the minimal cut elements in

parallel(Grosh,1989 p 127).
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After calculating R, , the reliability of Network Niand that

of network Nz (R ,),we have the following inequality for Ry,

thereliability of the original system (based on Grosh, 1989 p 125 -6)

Ruz <Ry <Ru (2-13)

For some reasons such as dependence of the subsystems of

Network N1, The calculated upper bound( Ry, ) is usually over-
estimated by thismethod. If R, exceeds1set Ry, =1

Example 2-24
Draw the auxiliary networks for calculating the upper and
lower bounds for RBD of Example 2-21.
Solution a)Auxiliary network N;
Network N1 which is a paralée configuration of all the

minimal path elementsin seriesis shown below:

cl C4

c1 C3p—C5

CCG—Ca

a) Network I
The reliability of this RBD given by the following relationship
is the upper bound for the original system reliability of Example
2-21:
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Ry; =1-A—rr,)A-rr)A-rrr)d-r,r.r,)
b)Auxiliary network N,

Network N2 which is the series configuration of all the minimal

cut lementsin parallel is shown below:

o] ]
i BH—E
c2) s ‘_
cd
1.3

Network N,
The reliability of the above RBD given by the following

relationship is the lower bound for the original system
reliability:

RNZ =

[ 1)) [ 1) || 1H0n) ) ) || 1))y ]

Then Ry, <R<R; A

Example 2-25

Draw the auxiliary networks for calculating the upper and
lower bounds for the following RBD. The number in the box is

thereliability of the component.
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1 0.90 g

0.99 0.80 0.99—

0.90 \ p
3 0.80

Solution
The minimal paths are:

1-3-6-7 1-3-5-7 1-2-4-7 1-2-5-7
The minimal cut set are:

1 7 23 456 2-56 345

The auxiliary networks N; and N are shown below.

— 1 q (1) -
- 1 3 = 7
- —e
— 1 2 4 7
—1 1 2 =] i

Network Ny
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el 2 sh

EpiSniEp|

Network N,

After calculating the reliability of Network Ni( R, ;) and that
of Network No(Ry,) wecouldwrite Ry, <R <R; &
2-8-2 An approximate formula for the upper and
Lower reliability bounds of complex systems

Approximate bounds on system reliability from minimal cut

setsand minimal path are given below (o'connorg Kieyner 2012, p153)

Cut sets Paths
C T
1-> [[a-R)<R. <Y [IR @
j=lieA, k=1ieBy

The number of minimal cut sets
The number of ct set

The number minimal paths(tie sets)

> 4z °

The components of | cut set, J =12...C

The components of k™ path, k=12..T
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=Y [1a-R)=

j:lieAj

1-( Product of unreliabilities of the components of A;+...+ product of

unreliabilities of the components of A. )
T

2 IR =

K=1ieBy

Product of reliabilities of 1% path components +...+ Product of reliabilities

of last path components

In the relationship 2-14, if the calculated upper bound is
greater than 1, let the bound equal to 1; if the calculated lower
bound is negative let the lower bound equal to zero.

Example 2-26

Calculate the upper and lower bound for the reliability of the

following system. Each component has the reliability of 90%.

c1—c2-|7

- 4

3

Solution
The minimal cut sets and the minimal paths are given in the

following table.
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Path No. k | components Cut Set No.j | components
k=1 1-2-4 =1 1-3
k=2 34 j=2 2-3
j=3 4

Method 1: Using auxiliary networks

Network N1

Network N2

T:2/ 81:{11 2; 4}; BZZ{ 3; 4} C:3/ Alz{ll 3}: A2:{21 3}1 A3:{4}

c1|:2
e

The reliability of the system( Ry )lies between:
R=1-(1-R,R,R,)(1-R;R,)=0.948
and

Ry, THR)IRIHIR)(1R)N(R,)=08821

Then 08R1<R <0948,
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Method 2: Using Relationship 2-14

-3 H(l—Ri)<RWS<iHR =

j=lieA; k=1ieBy

1- [ (1'R1)(1'R3)+(1'R2)(1'R3)+(1'R4)] <RWS<R1R2 R,tR;R,

1—[(l-Rl)(l-R3)+(1-R2)(l-R3)+(1-R 4)] =0.88
RR,R,+R,R,=0.729+0.81=1539 1
Then O.88<R%<1.

It is obvious that this was an illustration for the methods.
There was no need to apply these 2 method to this simple RBD;
because its exact value of reliability is ssmply calculated as

follows: [1-(1-RR,)(1-R,)](R,)=0.8329 A
2-9 Applications of Bays reliability in Design

According Bays' theory, if the sample space of an experiment is

SS={H,u..uUH,}and H,'s are mutualy exclusive( i.e.
H, NH,=Jfor i,j=1,2,...k; i# ), then:

Pr(H, | B) = kPr(Hi)Pr(B/ H) (2-15)

> Pr(H) Pr(BIH)

where B is an event defined on Sample space SS.
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Example 2-27(k&L page 392)

Suppose a design engineer has developed a new mechanical
system that has never been built or tested before. The engineer
believes, based on his previous experience and intuition, that if
the system has been designed properly to meet the performance
criteria, the time to failure, is normally distributed with a mean
of 50,000 kilometers. If the system is improperly designed, the
mean life may be 30,000 kilometers. Based on his experience,
the engineer has good confidence in his design. A priori, he says
that the probability that the design has a mean life of 50,000
kilometers is 0.80, and hence 0.20 is the probability that the
design has amean life of 30,000 kilometers.

A single prototype is built and tested in a ssmulated environment
that duplicates as nearly as possible the actua environment. The
system is tested, but economic considerations dictate that (he
testing be stopped at 40,000 kilometers. The engineer also says
that, based on past experience, it is known that the standard
deviation for the life of the system is 10% of the mean life.

The objective isto predict the reliability of the design .
Solution

Let

A = the event that the system has been tested and operated
successfully for 40,000 kilometers.

B, =the event that the mean life is 50,000 kilometers, R(B)=:A
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B, = the event that the mean lifeis 30,000 kilometers, P(B,) =-.¥
SS=B,UB,

A |A)= Pr(B)Pr(A[B,)
Pr(B,)Pr(A|B,)+Pr(B,)Pr(A|B,)
Pr(B,)=0.8

Pr(A Bl)=PI‘(X340000,|.L=5OOO()):Pr|: 7> ~40000-50000 }

(50000)(0.10)
=Pr(23-2)=0.9772
40000-30000

PI(A|B,)=Pr(Z> —————-)=0.00045=>
30000%0.10

Pr(B)Pr(A|B,) 0,999
Pr(B,)Pr(A|B,)+Pr(B,)Pr(A[B,)
Pr(B,|A)=1-Pr(B,|A)=1-0.9999

PI(BA)=

Suppose later, after production stage, one of these devices
was selected for amission of 35000-km- experiment. Assuming
a normally distributed life time with mean 50000 km and o
=5000 km the reliability is given by

35000-50000
5000

We are 99.99% confident about the mean used for this

R=Pr(X >35000)=Pr(Z> =Pr(z>-3)=0.99865

calculation because R(B,|A)=090. Therefore we are 99.99%

confident that the reliability of the deviceis 0.99865.

However before performing the test on the prototype which
lead to a life of 40000 km we were able to state with 80%
certainty(obtained from the engineers original beliefs) that the
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35000-km reliability of the device is 0.99865. Because we
were 80% confident about the mean used for the calculation.
After the testing which was terminated after 40000 km, the
probability of the event u=50000km conditioned on Event A
was obtained 99.99%. Therefore the confidence for the
predicted reliability shows increase using the Bays' theorem.

End of Exampled

Exercises'

1-(Problem 1 Page 68 K&L) Calculate the reliability of each of the
following RBDs, where each component has the indicated
reliability

' From K&L chapter 3
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2. A system consists of 100 parts connected functionally in
series. Each part has a 1000- hour reliability of 0.9999.

Calculate thereliability of the system.

3 A systemiscomprised of four major subsystemsin parallel.
Each subsystem has areliability of 0.900. At least two of the
four subsystems must operate if the system isto perform
properly. What is the reliability of this system?

4 A systemis comprised of 10 subsystems connected
functionaly in series, [f a system reliability of 0.999 is
desired, what is the minimum subsystem reliability that is
needed?

5- -(Problem 5 Page 69 K&L) Assume that 4 wheel bolts are
adequate from a design standpoint. However, the wheel
attachment under consideration has 5 bolts. If the chances



195 Reliabilty Engineering

of losing a wheel bolt are 0.00001, what is the reliability of this
bolt system?

6- -(Problemn 7 Page 70 K&L) The system diagram given below
describes the circuitry for aneutral start switch on a manua
automobile transmission. According to the service manual, in
order to start this vehicle the clutch pedal must be fully
depressed and the ignition switch must be in the start position.
(&) Definerdliability asit relates to this system

(b) Draw an appropriate reliability block diagram(RBD)

(c) Assuming that each functional block in your RBD has a
0.0001 chance of failing, calculate the system reliability.

7- A manufacturer wishes to know the reliability of askid
protection system |o be used on military tractor trailers. The
system consists of:

(@) Two battery or generator powered sensors per wheel.

(b) Onelogic unit per sensor to predict wheel skid.

(c) A command unit, which operates an electric or an engine

vacuum solenoid.
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(d) The solenoidsin (c) operate an actuator that controls the
pressure to the brake.

. The system diagram (not reliability diagram) is shown below.

(_Semer |- toge ok b . :,-,:;;@I
Sanr Logk: unit }_h d[‘mu{im_wgdh

z i 1 sotenaid
Beattery
Identical 1o sbove Command v
; for four wheels unht Tdentical to above
Generutor S . for‘four whesis
. . .

L. .

8) A DC battery has atimeto failure that is normally distributed
with amean of 30 hours and a standard deviation of 30 hours,

(a) What is the 25-hour reliability?

(b) When should a battery be replaced to ensure, that thereis no
more than a 10% chance of failure prior to replacement?

(c) Two batteries are connected in paralel to power a light.
Assuming, that the light does not fail, what is the 35- hour
reliability for the power source?

(d) A particular battery has been in continuous use for 30 hours.
What is the probability that this battery will last another 4
hours?
9)Caculate the reliability of the following two systems, where
each component has the indicated reliability
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10)A customer of abank uses 2 different cards for Automatic
Teller Machines. One of them is connected to 2 accounts with
reliabilities Rl and Rl and the other is connected to the account
with reliability RI. The reliability of the cards is R. Which

card do you prefer?

R

|R1||R2|‘ |R1| |R2

-~
-

I ]
Ans. R >R, .

11)To have a 6-component series system of at least 95%
reliability, how many components do you suggest?

12) A system consists of several components with 94%
reliability To have asystem with 95% reliability, what
configuration do you suggest and many components?

14) In the following RBD, each component has the indicated
reliability. B, isastandby component which replaces B; by a
switch. The failure probability of the switch and the standby
component when they are needed is negligible. Calculate the
reliability the system with the given RBD and compare it with

the case asif thereis no redundant standby component.
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e e e ]

A
0.98

P P P e i 777

standby
= i
B2 G2
“’g [ {ng
Bl C1
0.9 (.95

It is best to start every thing with

trustfulness and

end it with
faithfulness
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3

Reliability Considerationsin Design + UGF Technique

Aims of the chapter

This chapter is divided into two sections. First section deals
with reliability considerations in design. The second section
introduces one of the methods used to conduct reliability
analysis; i.e. the universal generating function(UGF) method
which is amethod of modern discrete mathematics.

3.1 Reliability Considerationsin Design
The design process dictates the system configuration and the

configuration chosen influences the reliability level as well as
the cost of achieving this level. Thus, a preliminary reliability
analysis as well as the many other design factors should be
considered during the design phase. .(K&L page 62)

Since the designer is the system architect he or she should be
familiar with the basic reliability analysis concepts that can be
used to evaluate the design. Only after the design is completed can an
independent reliability group analyse and test the product. So it is
important that the designer evaluate the reliability levels and costs of
various designs before the final choice is made.(K&L page 63)

A frequently used measure of complexity is the number of
components in a system. It is a fundamental tenet of reliability
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engineering that as he complexity of a system increases, the
reliability will decrease, unless compensatory measures are
taken(Lewis, 1994pace).

This section will emphasize some trade-offs between
reliability and the number of components. This might be helpful
to adesigner in developing aternatives(K& L page 63).
3.1-1R€dliability considerationsin series configurations

Consider the series system shown in Fig 3.1

Fig 3-1 A series configuration

If the reliability of each component isequal toRi.e.
R, = R, = -+ = R, = R then according to Eq.2-1 the
system reliability(Rsys) isgiven by Rgys = R™.
Rsys depends on R and n(reliability and number of
components). This relationship is shown in Fig 3.2.



Chap. 3 Réliability in Design + UGF Technique 202

1.0 —

R= Component Reliahility

o
o
|

R=0.599

System Reliability
o
m
[

/

R=0.95

e R=0.45
T I | ] 1 ]
1 L] ] 12 8 0

Mo. of components

Fig 3.2 The relationship between An n-component system's
reliability, and the number components for 3 values of R

Some considerations on the design of a series configuration
follows. Accordingto Fig 3.2:

1)For agiven component reliability(R), the reliability of aseries
system can be improved by decreasing the number of
components in series. Conversely the system reliability id
decreased as the number of components increases.

2)for a given number of components , the reliability of a series
system will improve if components of greater reliability are
used.

3)When the number of components is increased, the system
reliability will not change if components of appropriate greater
reliability are used.

The following figure also conveys some concepts similar to
those that does Fig. 3.2.
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Fig.3.3 Series system reliability as a function of number and
reliability of components (Lewis, 1994 page 253)

3.1-2 Rdiability considerationsin paralle configurations

The paralleling of componentsis usually mentioned as a
means to improve system reliability. However the gains are not
aways realizable(K& L page 64). Consider the RBD of m-

component system in which all components are actively
paralel. If thereliability of components are the same and equal
to R, the reliability of the system shownin Fig. 3-4 is:

Rsys =1 — (1 —R)™. Figures 3.5 and 3.6 plot this relationship.
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Fig 3-4 A Parald-active system
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components
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06— .
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L l L | | |
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Fig. 3.5 Parallel system reliability as a function of reliability of
components for 4 values of m (K&L page 64)
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Fig. 3.6 Parallel-active system reliability as function of no. of
components for 3 values of R.

Some considerations regarding this system follows:

1- For a given component reliability the more the number of
components (m) the more the system reliability; however for

m>4 the increase slows down(see Fig. 3.5and 3.6)

2- To use cheaper and less reliable components and at the same
time to keep the system reliability fixed, the number of

component has to be increased, asit is evident from Fig. 6.3.

3- For agiven number of components, the more the component
reliability (R) the more the system reliability.
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For exampleif m=2 Fig. 3-6 givesthe system reliability0.84
for R=0.6 and 0.91 for R=0.7.

It isworth knowing that

designing a parallel system for amechanica deviceisusualy
extremely difficult. Some forms of parallel arrangement such as
providing spare parts (a standby parallel arrangement) or using a
load-sharing design (a shared parallel arrangement) are probably
more representative of the true situation.(K&L).

3.1-3 Reliability considerationsin series-parallel
configurations

Remember that given an n-component series system, we can
either provide redundant components, which give a system
design diagram as shown in Fig.3.7, or provide a total redundant
system as shown in Fig.3.9.

As you know the former redundancy is known as low-level

redundancy whereas the latter(system level redundancy) is also
called high-level redundancy.
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m m m

Fig. 3-7 Component redundancy or low-level (LL) redundancy
Now we would like to make some comparisons between LL

and HL redundancies. Assume all components are independent

of each other and have the same reliability of R.

Reliability of LL redundancy

Thereliability of LL configurationin Fig 3.7 is given by:
(Rsys)LL = [1 -(1- R)m]n (3-1)

Thisequation is plotted in Fig 3.8
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Fig. 3.8 LL configuration's reliability in terms of no. of subsystems (n)
and number of components(K&L p66)

Reliability of HL redundancy

Thereliability of HL configurationin Fig 3.9 is:

(RSyS)HL =1-[1-R"™. (3-2)
where

m is the number of subsystem and

n is the number of components in each subsystem
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Fig. 3.9 High-level or system redundancy

Eq. 2-3isplotted in Fig. 3.10 in terms of n for 3 values of m and
2vauesof R.

System refiability

Number of component positions (1)

Fig. 3.10 HL configuration's reliability in terms of no. of
components of subsystems (n) (K&L p67)

Now we would like to compare HL and LL redundancies.



Chap. 3 Réliability in Design + UGF Technique 210

By comparing the graphs in Figs. 3.8 and 3.10 it is evident
that the low-level redundancy gives a higher system reliability in
all cases. However, the difference is not as pronounced if
components have high reliabilities. Basically the 2 Figures
indicate that providing spare components will result in better
overdl reliability than providing a spare system. Of course, this
can be applied at different levels to subsystems, depending on
the possible system breakdown, for, in some instances, design or
system peculiarities make it impossible to apply all of these
rules. Also the total system operation must be considered. For
instance, if your automotive brake system fails at 80 km/h in
heavy traffic it would not do you any good to have a complete
set of components in your glove compartment. So the rules must
be used as guides and applied with discretion( K& L page67-68).

Example 3.1 Find the reliability of the LL redundancy given
inFig. 3.7 and that of the HL redundancy given in Fig 3-9 for
a)n=3m=4R=0.7

b)n=3m=2,R=09

Solution

a)

From Eqg. 3.1

(Rsys)LL =[1-(1-R™",n=3m=4R=0.7

(Rys).. =0.9759

From Eq. 3.2

(Rsys)HL =1-[1-R ™ n=3m=4R=07

(Rys)y. =0.81368

b) forn =3 m = 2,R = 0.9FomEgs. 3.1and 3.2=

(Rs/s)HL =03 (RWS)LL =097

End of exampled
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3-2Universal Generating Function(UGF) analysis of
Reliability Systems
Before dealing with Universal Generating Function.; It is

worth reminding that in the reliability analysis of system 2
different systems are identified: binary -state system and multi-
state system (MSS).

a binary -state system assumes only two possible states for a
system and its components. either perfect functional or
completely down

and multi-state systems reliability models alow both the
system and its components to assume more than two levelsii.e.
different performance levels and severa failure modes with
various effects on the entire system performance . In other
words, in multi-state systems the system and its components
have multiple possible states: some intermediate states as well
as complete failure and perfect functioning.

Different methods, such as Monte Carlo simulations,
extension Boolean models, stochastic processes and the
universal generating function (UGF) method have been
proposed to conduct the reliability analysis of M SSsl.

Although the UGF method which is a method of modern
discrete mathematics has a high computing speed in the
reliability assessment of multi-state systems (MSSs), it can be

! Jinhua, Mi, et a, 2015 _ _ _

Belief Universal Generating Function Analysis of Multi-State Systems
Under Epistemic Uncertainty and Common Cause Failures ™ IEEE
Transactions on Reliability Vol. 64 No.4
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used for the analysis of binary-state systems. we proceed now

with the use of UGF in the | atter case.

Universal generating function(UGF) is an extension of
moment generating function(MGF) and probability generating
function(PGF). UGF could be used in determining the prob-
abilistic distribution of complicated functions of some discrete
random variables. Before proceeding with UGF, some
definitions are reminded.

3.2-1 Moment generating function of discrete random variables

Consider a discrete random variable(rv) X which can take
values X, ... X, such that Pr(X = x;) = p; and X, p; = 1. the
mapping x; — p; isusually called probability mass function.
Themean of and MGF of thisrvis:

E(X) = Zoxipi

MGFx(t) or x(t) = E(etX) _ ipietXXi

i=0
For exampleif X has abinomia distribution B (k, 1),
then gy (t) = (wet + 1 — m)k.

Some properties of moments generating functions (MGFs) are
asfollows:

1. The MGF of arandom variable(rv) is uniquei.e.
if the MGF exists for an rv, then there one and only one
distribution associated with that MGF uniquely defines the
distribution of therv.

2. The MGF of the sum of some independent rv'sis
equal to the product of the MGFs of therv's:
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k
Pyic x, (1) = Moy ().

d®
3. E(X ):F(pX(t)lt:O

i.e. the k™ derivative of px (t)with respect to t givesthe
value of k™ moment of the distribution about the ori gin,
for t=0.
4. The additive property of some distributions such as

Poisson and normal distributions could be verified by
MGF.

3.2-2 Z-transform or probability generating function of

discrete random variables

The probability generating function of a discrete random
variable is defined as follows:

k
w(z) =E(z*) = ) pZ* B-3)
2
Thisfunctionisalso called Z-transform if variable X.
Example 3.2

If avariable X takes on thevalues x;, =1, x, =2 and
X3 = 5 with probabilities 0.3 ,0.5 and 0.10. Find the Z-transform
of thevariable.

Solution
3
wy(2) = Zpizxi =03xz'+06xz%2+01x2z°

i=1
End of Exampled
Some properties of z-transform

A useful property of z-transformisits ability to solve
difference equations. Some other common properties are:

1.The probability function of arandom variable whose z-

transform is w(z) is derived from the following relationship:
0)
pj =5 X 5 0(@)lz=o (3-4)

dzJ)
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2. The first derivative of w(z) with respect to z gives the value

of the distribution mean, for z=0.
k

! d X d Xi xi—1
W'(2) = LB ==Y (2p) = Zoxl-z e (3-5)
=
z=1 = a)’(z) =Y xp; = EX)
3.The z-transform of the sum of some independent rv'sis equal

to the product of the z-transforms of therv's:

k
gk (@) = Twy, () 3-6)
4. If in the definition of the MGF et is replaced by z, then one
gets z-transform of the random variable.
Example 3.3

Suppose k independent trials each having 2 outcomes:
success with probability  and failure with probability 1- 7. are
performed independently. For j™ trial let X; defined below:

p(xj=1)=n _
Therefore the z-transform of X; is: jo(Z) =nzl+ (1 —-mn)z°

A X]:1
1-m xj=0

k

If X = z X ; then X represents the number of successes that
i=1

occurs in the k independent trials and the z-transform of X is:

wy(z) =[mz+(1-m]x.xX[Mz+(1-m]=[nz+ (- )]k

This z-transform is that of abinomia random variable with
parameters (k, ) whose probability function is given by:

o | _
p; = (i)n‘(l—n)k“ 0<i<k

End of Exampled
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3-2-3 The Universal Generating Function(UGF)

Consider independent random variables X3, ..., X;, ..., X;, with
mapping x ,p . If we want to find the probability function of
f(X;..X,), we have to obtain a vector Y composing all
possible values of f and the probability of the occurrence of the
values.

Each possible value of f corresponds to a combination of the
values of its arguments X4, ..., X,, . Let the probability function
of X; taking k; values be represented by:

X = Xi1) ooy Xik, P =D Py,

Then the total number of possible combinations constituting

k
therangeof f(X;..X,)is= _lill(ki) , Where k; isthe number of

possible values that X; takes.

Since X; ..X, are independent the probability of the j™
combination of therealization of f variatesis equal to:

probability of | variate of f=q;=[1, py,

where(L evitin,2010page)

pij; is the probability of the redlization of the arguments
composing the combination.

And the corresponding value of f can be obtained as:

fi = Ff(Xqj 0 Xnj,)-

Some combinations might have the same values. Since all

combinations are mutually exclusive, therefore the probability
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that the function f takes on some value is equal to the sum of the
combination producing this value(Levitin,2010 page 6). Let A
be a set of combinations producing the value f;,. If the tota
number of different realization of the function f(X; ... X,,) isH,
then the probability function of fis:

Y ={f,:1<h<H},

n _
q= > Hpiji :1sth} 3=7

(Xlil ..... le)eAh i:l*
Example 3-4

Consider independent random variables X;,X, with the
following probability functions:

06 xe1 01 x=05
P ={17 %= P, () =106  x=1
1 04 x=4 2 0.3 =2

Find the probability function of Y = f(X;, X,) = X, 2.

Solution
All possible combinations of X, ,X,and the probability
function of Y isgiven in the following table:

X1 X2 Y =X, % Py (y)
1 1 |05 1 0.6x 0.1=0.06
2 4 |05 2 0.4x0.1=0.04
3 1 1 1 0.6x 0.6=0.36
4 4 1 4 0.4x0.6=0.24
5 1 2 1 0.6x0.3=0.18
6 4 2 16 0.4x0.3=0.12

As the table shows some combinations have the same value .

Since al combinations are mutually independent then the
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probability of the occurrence of this same value is the some of

the probabilities of the combinations producing the value. e.g.:

P(Y=1) =

Pr(X, =1,X, =05) +Pr(X; = 1,X, = 1) +Pr(X, = 1,X, =2) =
P(Y =1)=0.06 +0.36 + 0.18 = 0.6

Therefore according to the calculationsin the table;

Y={y=1,y,=2,y3=4,y,=16},
q = (0.6,0.04,0.24,0.12).End of Example A
For solving problems such as the one given in Example 3-4,

another approach called the UGF technique could be used. The
technique, based on using z-transform and a composition
operator (denoted by & f), is described below.

Let X; takeson X;q, ..., X, with probabilities p;4, ..., D,

the corresponding z-transform is the following polynomial:

ki
wx (2) = ) pyZ 3-89
=

Asyou know the z-transform of the sum of independent random

variables X ,,..., X isthe product of their z-transforms:

The probability function of acombination of severa

independent random variable such as Y given in Example 3-4
could be obtained from its z-transform. Therefore if one could
find the z-transform of a combination, it will be easy to obtain

the probability function of the combination.
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UGF Technique

In the so-called UGF technique, To cal culate the z-transform,
U(z2) , of every arbitrary combination(function) of independent

random variablesX,,....X. , replace the product operator (I ) on

the z-transforms in Eq. 3-6 with an appropriate operator denoted

by & f- Here the z-transform of random variable X; of

independent variables X,,..., X, ..., X is denoted by U;(2).

The z- transform of f(Xy, ..., X;,) isdenoted by Ut (z) orU(z)
(Livitin, 2010page 8). According to this notation for 2 variables:

U(2) =@ [U1(2), Uz ()] = [U1(2) ® U2(2)] (3-9)
for n variables(Livitin, 2010page 8):
U(z) or Up(2) =@ ¢ (U1(2), ..., Un(2)) (3—-10)

Ue(z) =
ki kp

ki
®r (Z PijiZX“‘> = Z Z
ji=1

Kn
j1=1j2=1 in=1
The technique based on using z-transform and composition

operators ®f is named universal z-transform or universal

(moment) generating function (UGF) technique (Livitin, 2010
page 8 ). UGF technique has applications such as finding the
probability function of an arbitrary function of severd
independent random variables and finding the reliability of
complicated systems. For other applications refer to reverences
such as chapter 2& 3 in Levitin(2010).



219 Reliabilty Engineering

Notice that(Livitin,2010 page 8):

1-Although U;(z) resembles a polynomia, U(z) is not
necessarily a polynomial.

2-When the U(z) represents the probability function of a
random function f(Xy,...,X,), the expected value of this

function can be obtained as the first derivative of U(z) at z=1.

Example 3-5(Levitin, 2010, page9)

Consider the probability function of Y from the table in
Example 3-4. The z-transform of Y takesthe form:
U(z) = 0.06Z* + 0.04Z% + 0.36Z' + 0.24Z* + 0.18Z* + 0.12Z7%°
Merging the like forms resultsin:

U(z) = 0.6Z' +0.04Z% + 0.24Z* + 0.12216

As you may have noticed, this function represents the
probability function for Y asfollows:

Y=(1,2416), q=(0.6, 0.04, 0.24, 0.12)
which is the same as what was obtained in Example3-4. A

The described technique of determining the probability
functions is based on an enumerative approach, which is
extremely time consuming. Fortunately, many functions used in
reliability engineering produce the same values for different
combinations of the values of their arguments (X;’s). The
combination of recursive determination of the functions with

simplification techniques based on the like terms collection
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allows one to reduce considerably the computations needed to
obtain the probability function of complicated functions.

The following procedure is easier for solving this example.
Based on the datain Example 3-4 the u-function of X; and X, is

as follows:

U,(z)=06z'+04z*, U,(z)=01z°°+0.62'+0.32°

Let u-function of Y =X,*2 be denoted by Uy,(z), then
according to Eq, 3.9

Uy (2) =U1(2) ® e U,(2) =

U, (z)=(0.62'+0.42")® (0.1z°° +0.6z" +0.3z7?)

power

05 1 2
U, (z)=06x0.1zL") (1) 40640321 ) +

40.5)

+0.6x0.6Z

1 >
0.4x0.12% ) +0.4x0.62%) +0.4x032¢47) =

Uy(z) = 0.62% + 0.04Z% + 0.242* + 0.1221¢

From this function the probability function of Y is obtained:
Y=(1, 2 4 16)

probabilities = q = (0.6, 0.04, 0.24, 0.12)

End of example A

Example 3-6( based on Livitin, 2010 page 9)

Random variables X3, ..., X5 are independent and the data for

their probability functions are given in the following table:
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X X, X; X, Xs

(x) @ | x| plx| p|x|p|x|p

o

X10=8 P.o=0.7 5 | 06 0.1 06| 1 |05

X;,=10 | p,=03 | 8 |03 05(2/04|15|05

12 | 01 04

Find the probability function of
Y = f(x1 ... x5) = [max (X, X,) + min(X3, X4)]1(X5).
Solution

The total number of term multiplication procedures that one has
to perform using enumerative approach is
2% 3 %X 3x2x2=72; however applying UGF technique as
performed below reduces this amount to only 26 (Livitin,2010

pagell).

The u-function of the variables are:

Uy(2) = p1Z*10 + py 1 Z*11 = 0.7Z8 + 0.321°

Uy (2) = pyoZ¥20 + pyZ%21 + p,y,Z%22 = 0.6Z° + 0328 + 0.1212
U3(2) = p3gZ¥30 + p31Z%31 + p3,Z%32 = 0.1Z° + 0.523 + 0.4Z°
Uy(2) = Py oZ*40 + py1Z%41 = 0.6Z° + 0.4Z>

Us(2) = psZ¥s0 + psZ¥51 = 0.5Z* + 0.5Z1.

Let usintroduce the following 3 auxiliary random variables:
X6 = max(Xl,Xz) X7 = min(Xg,X4) X8 = X6 +X7

ThereforeY = XgX:. Using composition operators on pairs of u-
functions, the probability function of Y is obtained as follows:

UG(Z) =U,(2) O max Uy(z) =
= (0.7Z8 + 0.3Z2'%) ®,,,0x (0.6Z° + 0.3Z8 + 0.12'2) =
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0.42 Zmax (854 0,21 zmaxE8)4
—— ——

0.7X0.6 0.7x0.3
0.07 Zmax(8,12)+ 018 Zmax(10,5)
—— ——

0.7x0.1 0.3%x0.6

+0.097max(10,8) | () 037max(10,12) —,
Us(2z) = 0.63Z8 + 0.27Z° + 0.12*2

U7(Z) = U3(Z) ®min U4(Z)
= (0.1Z° 4+ 0.5Z3 + 0.4Z°) ®pin (0.6Z° + 0.42%) =

0.062min(0.0) 4. 047min(0.2) 4 37min(3,0D+( 2 7zmin(3,2)
+0.242Zmin(5.0) 4 0.167Min(52) =
Uy(z) = 0.64Z° + 03622

Ug(z) = Ug(2) ®4 Uy (2) =
= (0.6328 +0.27210 + 0.1Z12) ®. (0.6420 + 0.3622) =

= 0.4032Z8%0 + 0.226825%2 + 0.172821%%% + +0.0972Z1°*2 + 0.0642'2*° + 0.03621%*% =

Ug(z) = 0.4032Z8 + 0.399621° + 0.016122'2 + 0.0362*

Uy(z) = Ug(2) @« Us(2)
= (0.40327% + 0.39967'° + 0.016122"2
+0.036Z'*) ®, (0.5 + 0.52%°)
After necessary calculations and simplification, the final answer

for Uy(z) is

Uy(z) = 0.2016Z8 + 0.199871° + 0.28227'% + 0.0182*
+0.199821% + 0.08062'8 + 0.01822!

From Uy (z) the prabability function of Y is obtained as follows:

Y=(8, 10, 12, 14, 15, 18, 21)
0= (0.02016, 0.1998, 0.2822, 0.018, 0.1998, 0.0806, 0.018)

End of Exampled
3-2-4 derivation of thereliability usng UGF

Given the UGF of a system, its reliability could be
estimated> Thisisillustrated in the following Example.
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Example 3-7

The universal generating function of asystemis:

U(z) = 0.1Z8 + 0.15Z2° + 0.4Z*° + 0.352°°,
Find 20-hour reliability of the system.
Solution
R,o = Pr(X > 20) = 0.40 + 0.35 = 0.75.
End of Exampled

3-2-4 Reliability Analysisof Binary -State Systemsusing UGF

Symbols
Rsys | System Reliahility
R; | Therdiability of j" subsystem
X; | Thestate of j"" subsystem(either 1=working or O=down)
X The system structure function

The UGF method is very effective for the reliability analysis of

multistate systems; however it could be used for binary-state

systems, though that effective as compared to conventional
methods (see Kuo & Zuo,2003).

This section focus on the alocation of UGF technique to

reliability systems whose components and the system itself have

only 2 states: either working or not.

Xy

@ 3 Subsystem 1

= Subsystem 11T —

Subsystem I1

X3

A

Fig 3-10 The RBD of a -eries-paralel system
(Livitin, 2010page 30)
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Consider the RBD of a system given in Fig. 3-10 with the
system structure function(Livitin, 2010page 32)
X = min[X;5, max(X,, X,)]
where X; is the state of ji™ subsystem(with 2 values :either
x,=1=working or x; =0=down).
Let
Ri=P, be the reliability of j™ subsystem for a fixed mission
time, the probability that is on working conditions during the
mission time
and 1-P, be the probability that the j™ subsystem is down.
Then the expected value of X; is:
E(5) =0(1-B)+ 15 =B =R
where R; is " subsystem reliability.
Therefore for a fixed mission time the system reliability
equas the expected value of X;.
Similarly the reliability of the system for a fixed mission
equals the expected value of the system structure function X:

Rsys = E(X), (3-12)
Where
X =fXuXy o Xn)
X;  Thestate of j" subsystem(either 1=working or
O=failed)

Therefore for a fixed mission time the system reliability equals
the expected value of X.
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Usualy the element reliability vector is known and we would
like to obtain the system reliability as a function of R;’s . In

systems with independent elements, such functions are available

and depend on the system structure.
Example 3-8(Livitin, 2010Page 31)

Consider the following RBD, X denotes the state variable
of j™ subsystem taking values x; = 0 or 1.

Xy

X

Let the static reliability of | subsystem = R; , then

1-x;

Pr(X; = x;) = R7(1—R;) x;i=0orx;=1 j=123

If the subsystems are independent then:

PriX;=xnX,=x;NX;=x;) =

[RT'(1 = RO [Ry'(1 — R)*][R3*(1 — Ra)* ]

Suppose the system structure function or system state variableis
X = min[X5, max (X, X,)], then the probability function of X is

as the following table shows:
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X1 ,Xz ,X3 Value Of Pr( X = X) = p X (X)

x; = 0 down, x; =1 working 1

0,0,0 0 (1-R)(1 - R)(1

00,1 0 (1-R)A-R)R;

0,1,0 0 (1 - Rl)RZ (1 - R3)

0,11 1 (1— Ry)R,Rs

1,0,0 0 R;(1—Ry)(1—Ry)

1,0,1 1 Ry(1— R,)R,

1,1,0 O R1R2(1 - R3)

1,11 1 RyR,R;

According to Eq. 3-12 for abinary system :

Rsys = E(X) = prx(x) =[(1 =R —R)(1 —R3) X O] + -+ + [RyRyR3 X 1]
=

Rsys =Ry +Ry; —RiRy)R; = R3[1 = (1 = R)(1—Ry)].
If in this binary system R;=0.95; R,=0.9; R;=0.85, the system
reliability would be:

Rs* (1-(1-R1)* (1-R2))= 0.8458 A

Having the reliability functions of independent system
elements R, (t) (1 < j < n) one ean obtain the system reliability
function Rys(t) by substituting R, with R; (t) (Livitin 2010,p32)

Example 3-9
Consider the system form previous example whose RBD is
1
— 3 —
2

and assume that the reliability functions of the system element
are:
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Ri(t) =e™Mt  Ry(t) =e %2t  Ry(t) =e Pt
Then this series-parallel system reliability is:
Rsys(t) = E{X(0)] = R3(O)[R1(t) + Ry (t) — R1(DR,(1)]=

e—l3f[e—llt + e—lzt _ e—(ll‘l'lz)f]‘or

R(®) = R3()[1 = (1-R1())(1 — Ry (t))]= e % [1 — (1-e M) (1 — e~*21)]
End of Example A

At the end, it is worth mentioning that having the u-functions
of the elements of an n-element binary system of the form

Ui(Z) = (1 - Ry)Z° + R;Z? 0<j<n (3-13)

and the system structure function X = 0(X,, X5, ..., X;,)

The system reliability measure can now be obtained
as(Livitin,2010, page34):

au(z)_
O |y (3-14)

where U (2) =®¢[Ul(z),...,Un(z)]_

E(X)=U'(1) =

The application of UGF technique to n-element binary systemis
discussed in references such as Livitin(2010) pages 32-41. Moreover
Wei-Chang(2009) is areference on UGF.

Exercises

1.Consider the system given below, composed of 4 like elements
having discrete life time of 2010 and 30 days with probabilities 0.2 «
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0.3and 0.5 . Calculate the UGF or U(z) of this system and the 10-daay
reliability of the system.

=

2.Repeat the previous example for the following RBD:
A oy BN j

Keep in mind
that you are
never absent

from

God’s sight,
so keep looking
how you are
acting
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Structural Reliability Analysis

Aims of the chapter

This chapter focuses on thereliability of the networks and
structures whose strength (capacity) and/or loads are
probabilistic. Reliability expressions for various statistical
distributions of strength and load namely normal, exponential,

lognormal, gamma and Weibull are presented.

4.1 Introduction

Designers of systems such as structures take many factors
into considerations including the reliability. Strength(capacity)
and load(stress) are 2 variables that affect the reliability of
structures(dams ,bridges; communication networks and
antenna). To be reliable, structures require to withstand ultimate
loads without failure.

There are 2 approaches for this purpose: deterministic and
probabilistic.
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The deterministic approach seeks out a worst case and
specifies a factor of safety for the extreme case to use in the
design. The probabilistic approaches utilize the statistical
distribution of input variables (here mainly load and strength) to
caculate reliability.

It should be added that in both approaches the amount of data
influences the results.

. Load-strength Interference Analysis

While the deterministic approach adopts the safety factor as
stability index, the probabilistic methods adopt as the probability
of faillure (Queiroz, 2016)

Structural faillure occurs when load(stress) exceeds capacity

(strength).Figure 1.4 shows such acase.

rS

-~
Strength 0

Failure

l

0
S

0 >
————  Timeto failure, T ————— | Time t
Fig 4-1Theinterference of the time-dependent load and strength

(Rausand & Hsyland, 2004 Fig 1.2)
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4-2-1Deter ministic approach: Application of Safety Factor
Safety factor is defined as'

8
Sk= 5 (4-1)

where § is the strength and siis the load.
SF<1 resultsin failure. An acceptable SF is traditionally 1.5°.

To cover unknowns and ensure safety, the deterministic
approach introduces conservatism by specifying a largish factor
of safety(SF). Calculating such a conservative SF requires a
high experience. On the other hand, this approach practically
forgets the randomness nature of design variables and
parameters (load , strength...). Of course the specialists of this
approach may notice the randomness of them but in
computations, the specialists act asif they are not probabilistic.

4-2-2Probabilistic Design Approach

The probabilistic approach incorporate the variability of
input parameters and variables and utilizes their statistical
characterization and attempts to provide a desired reliability in
the design. Probabilistic approach uses different methods. In

! When the stren%h and load are independent random
variables, the average SF,E(SF), is approximately:
. E(5) - o'

E (SF ) = -
E(s)] E'(s)
2 MIL-HDBK-17-3E, Working Draft page -7 )
https://www.gla_ac.uk/extern /asranet/Resources/milhdbk. pdf
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its simplest form, the measure of rdiability is made by
comparing a component's stress to its strength(miL-HDBK-17-3E).
The system does not faill as far as load(s) is less than its
strength(8) and failswhen S > 6.

4-3 System reliability -Load & Strength variable

When the strength (8) and/or the load(s) are random variables.
Thereliability( R) of the system is given by

R = Pr(S < ¢) (4-2-1)

R=Pr(S-6<0) (4-2-2)

4-2-3

R = Pr(é >1) ( )
S

R = Pr(SF >1) (4-2-4)

Let Y =6—S then
R =Pr(Y >0) (4-2-5)

If the distribution of Y isnot known , the following
relationship might be helpful:

R=Pr(s>9)= (5,5)dsds, (4-3)

Il f
5>s 05
where f ;o (5.S)is the joint probability density function of

strength and load.
If Sand § are independent, then:
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R= T fa(a)ﬁfs(s)ds}déS: Tfs(s){ T f5(5)d5}ds:»

R= J:Ofs(s)[l— F,(s)]ds (4—4)
where

f The pdf load
f The pdf strength

F Thejoint pdf of strength

Moreover, if sand § are independent, the pdf of
Y = § — S might be calculated from(K& L page 125):

jfb,(y +s)f (s)ds y >0
0

fo (y)=[f,(y +s)f (s)ds =1 ° (4-5)
: [f:(y +9)f (s)ds y <O

and the system reliability(R):

R=PIY >0)= [ f, ()= | [fy(y+of, sy 4O

y=0 y=0 s=0

Example 4-1
The stress and the strength distributions for a component are

uniform over theinterval :
Strength: [15 25]
Stress :[20 25
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How many percent of this kind of component break inasingle
application of the load?

Solution

i s 1 s15
R= LOfS(S) [1-F(9)] ds=L20 25-20 [1_ 25-15} =

1 25
R=— j (25-5)ds=0.25
50 =20

100(1-R)=75% break.

End of Example‘

4-3-1 Definition of safety margin(SM)

Safety margin is an index related to the subject of reliability
defined as follows:

SM = HoTHs (4-7)

’a§+a§

us and u, arethemeans of the strength and load,

where

02 and o? aethevariances of the strength and load.

In astructure, if S < §, the more s far from § the less failure
probability and the more reliability. Then the more the
denominator the more the reliability; the less variation of the
load and strength (or the less the denominator), the more we are
confident. Therefore the greater SM>0, the more reliable the
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structure. It is worth noticing that actually SM equalsi—Y where
Y

Y=3-S. or it equals the reciprocal of the coefficient of variation of
Y.

An application of SM isin the calculation of structures
reliability when the strength and the load are independent and
normally* distributed (See Figs. 4-2-1 & 2)

load Strength

it

Hy Hi
Fig 4-2-1 Normally distributed load and strength: Non- interference

' In aexceptiona case where the distribution is Weibul (A,B,C)
with shape parameter C=3.44, the distribution could be
approximated with anormal distribution with parameters
(Carter,1986 as refrence by O'Connor, 2003 )

u=A+BI(1+3)=A+09B, o=8B /r(1+r(§))zo.33
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Strength

pdf
\\

Failure
region

Fig 4-2-1Normally distributed load and strength: interference
Suppose in a structure
the load is normally distributes with parameters ug and oy .
the strength is normal with parameters ps and os
the strength and the load are independent.
Then:

Y =6 — S~Normal( Hs — L&, O'§+052)

R =Pr(Y > 0)

R=Pr(Z >_L'“SZ) —Pr(z < HoHs )

2 2 2
\Os +0; \JOs +0;

Since-22=Es. = SM then
o2+0}

R=¢, (SM) (4-8)

where ¢, isthe CDF of standard normal distribution.
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Therefore when the load and the strength are independent and
normally distributed, the reliability(R) is calculated from Eq. 4-
8. The more SM the greater R. More specifically on the average
the more the difference ((strength-load) or the less the variances

of load and strength the more R. Moreover

« Negative safety margin indicates that on the average load is

greater than strength of the structure which is dangerous;

« [SM|=c0 indicated that load and strength are deterministic.

It is worth mentioning that if a random sample of normally
distributed strength and a sample of normally distributed load is
available, the estimates of the mean and variance of S and §

could be used when using Egs. 4-7 and 4-8.

Example 4-1a

The strength and the load related to a structure are normally
distributed. Calculate the reliability for 0,25<SM< 6.
Solution

The following table shows the reliability calculated from Eq.
4-8 for several SM . Figure 4-3 shows the related plot.

SM b ||, o
ARER-HR IS B B o |0 ¢ v |©
o o i i N ™
0l o
o) |~ o
~ 0N ™ N @ N~ ©| O
R=- RO R BB IEIS | S
PRACEBL IR BRI IR S| QS
NONRR e 05 e (o & 2
$.(SM) @ e
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i i i 1 ¥

0 05 1 15 2 25 3 35 4 a5 %
SM

Fig. 4-3 Plot of Reliability versus Safety Margin( K&L page 80 Redrawn)
U T T T T

'
N
T

A

'
[e2)
T

co

-10 -

12+

14t

log(1-R)(log of failure probability per application of load)

-16 1 1 1 !
0 2 4 6 8 10

safety margin

Fig 4-4 Plot of Logarithm of unreliability versus safety margin(SM)

Fig 4-4 shows the logarithm of unreliability ( falure
probability) per application of load versus SM. The figure has
been plotted using the following MATLAB commands:
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SM =0:.25:10;R=normcdf(SM); F=log10(1-R);plot(SM , F)

Table 4.1 gives the reader an idea about the variability in R
related to different magnitudes of variability in norma y
distributed strength and stress random variables(K& L page 79)

Table 4-1 Effects of different cases of normally distributed
load and stress on reliability

Strength Stress SF R=
SM
¢z (SM)

Case No.

Hs Os Hs Os s ps

50000 | 2000 | 20000 | 2500 25 [937 |10
50000 | 8000 | 20000 | 3000 25 351 09997
50000 [10000] 20000 | 3000 25 287 09979
50000 | 8000 | 20000 | 7500 25 |23 (09969
50000 [12000] 20000 | 6,000 | 25 [22%  |0.987
2000 | 10000 | 2500 25 469 09486
25000 | 1000 | 10000 | 1500 25 [82  |09446
50000 [20000[ 10000 | 5000 50 [18% 09738
50000 | 2000 | 40000 | 2500 | 125 [3123  [0.99909
50000 | 5000 | 10000 | 5000 | 50 |56 092

BLOOJ\ICDU'I-th\)I—\
g

End of Example‘

Figure 5.4 is a sample plot of log(1-R) versus SM per
application of load. The figure shows if the SM of a design
liesin thethird region (i.e. if SM is greater than a threshold), the
logarithm of failure probability is very small and the failure
probability becomes infinitessmal and the design is said to be

intrinsically reliable .
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Table4-1 Ex bp)reﬁonsfor different independent Distributions of Load (S)

& Strength (
& m
C o) Dist .of Dist .of
% Eq. for reliability z Strelngth( 5) | Load(s)
3 .
1 rR=2s = | Bxpls) | Bxp(hs)
hsths © Ref:K&L page 157
2 7| Nema (%)
R=1- —pu XA AR
exp (muxA+t—7) LR KE L page 157
3| gy = Mot | N(ogspy) | N(ossm)
{ ™ | K&L page 126
68+(5 =
R = dy( ? =normcdf(SM) e
Calculab ein MATLAB
4 | R = ¢z(z)=normcdf(2) logN(asspt;) | logN(ossmy)
=K —~
7= = = [Ref:K&L page 130
0'5+ o? K
o areth etersnot |
the met and Sianderd Clviaion - -
amma anma
o R:rr(;a);g)) T xe0oxr o, 1@, 4) (b, As)
" | Ref:K&L page 141
=betacdf (ﬂsis&; ,a,b) : mATLAB w
Calculablein MATLAB
A- Weibull Normal
6 R=Pr(6 > s)=qb< UM)+ an &o\:?léK;)&L (Or)
. _ Ak R page
x Jy exp [-y¢ =05 (Cy + )]dy &5 | 1428 Appendix 1
CaIClﬁabIe in Matlab Maple... _ _
7 e Lo oty e | B TG
5 Cs
y=( BAS) = REKEL page 146
8 Cs—1 E INK&L 2% jsseenin

dy =

C5 5 45

Bs
the express on which

seems to be atypo
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Load-strength Interference

| |
Reliability  Reliability  Intrinsically
too low ioo sensitive reliable design

___________ o o———

-____-‘_""“-—-.. :
I

Constant
loading roughness

Ig (failure probability)

Salety maroin
Fig. 4.5 Characteristic regions of atypical log(1-R) Vs SM curve
(O'Connor, 2003 pagel19)

Example 4-2

A normaly distributed load with parameters (u ,0 ) was
applied onceto a structure with constant strength ,

a) Plot the failure probability(F=1-R) versus SM and aso plot
log(1-R) versus SM.

b) Calculate a fixed value(8) for the strength in terms of g
,0s such that the structure lies in the intrinsically reliable

region.
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Solution
F=1—R=1-Pr(Z<SM),
Hs—Hs  O—ps  &—p

T2 o
\/G§+G§ \/GS+O

The following figure shows failure probability( F )versus SM
plotted by the following MATLAB commands:

SM =

SM=.001:.01:8.5 ;F=(1-normcdf(SM)); plot(SM,F)

The following figure shows logarithm of F versus SM plotted
using: SM=.001:.01:8 ;LF=log(1-normcdf(SM)); plot(SM,LF).
0

5

Ln failure probahility) |
b o =

[x]
431

w
=

-35
i]

2 4 5 g 10

Shd
This figure shows that for SM>8 the structure is intrinsically
reliable:
§—u

> =SM>8 = 6>u+8o

Note that for SM = 8, the reliability and the failure probability
is:
F=(1-R)=1x10"5

R=Pr(Z < SM = 8)= normcdf(8) = O.999999999999999A
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4-3-2 Reliability Computation for Probabilistic
independent load and strength

The reference  K&L has done a lot of computations for
deriving the reliability of systems having various independent
distributions of load and strength. Table 4-1 shows the results.
It isworth mentioning that
1. exponential distribution could be considered a specia form
of gamma and Weibull distribution. Therefore if , for example,
our structure has a Weibull-distributed load independent from
the exponentially distributed strength, then we could use case
no. 7 of Table 4-1 to calculate the reliability.

2. If we have a structure with Weibull-distributed load and
strength having the same shape parameter C and zero location

parameter then the reliability of the structure ( R) is given by:

_ (Bs)C
T (Be)C+(ByC

(4-15-1)

Proof: Form Eqg. 4.15

_A5C
= (——\Cs
y (Ba)

[ee)

Bs 1
R=Pr(6>s)=1 —f e Yexp [—(B—yC)C]dy
0

1- [ evexn | y(—)]

0

j e dy:

0
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C c-1

s 35 p o c 0
v, dy = — |+ dé =
s \Bs

-1-
f Bi N (B 16 5
[l o

R= G
(@) "

o Pl g
() B+ B

__ By° ]
= R= BTt (S End of proof

Notice that

-if C=1i.e. theload and strength are both exponentialy
distributed with parameters As = —— and A; = Bia respectively,

S

then Eq.4.9 is obtained

-if theload and strength are both Rayleigh distributed with
scale parameters B; and Bs respectively, then the reliability is
calculated from Eq. 4-15-1 for C=1:

_ (Bs)* :

= o (4-15-2)
Example 4-3-1

A lognormal distributed load with mean of 60000 Kpa and

standard deviation of 20000 Kpais applied to a structure which
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has an lognormal distributed strength with a mean of 10°
Kpaand standard deviation of 10* K pa.
a) Find the parameters of th4e distributions:
b) Estimate the system's reliability
¢) Using Egs. 1-22-1 & 1-22-2 verify the parameters
obtained in part afor load distribution.
Solution

a)lUsing MALAB software and Egs. 1-22-5 & 1-22-6 :

+1) =

, [Var(S) ] 200002
Oog = In

1|=In (s
EZ(S) " (500002

log(2000072/60000"2 + 1) = 0.1054

2
us =InE(S) — = =10g(60000)-0.5+.1054= 10.9494

o [Ver@®  ]_, 10000® (100000 N\ o
% =M g2 (s) =In (T500002 7V = 9\ 1000002 =

2
us = InE(8) — % =10g(100000)-0.5*.01= 11.5079

b) Using MALAB software and EqQ. 4-12:

R = ¢, (2)=normcdf(z) z= _Ms—ls

o%+ o?

- 11.5079—10.9494
7= = V0.01+0.1054 = 16441
\/a§+0'52 : :
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c)According to Egs. 1-22-2 &3

o2 54
ES) = etz =exp (10.9494 + ) = 60000

Var(S) = (62”5“752)(6”52 - 1).

J(ezus+03)((e03) —1) = sqrt(exp(2 * 10.9494 + 0.1054)
(exp(0.1054) — 1)) = 20004 . Thedifferenceisdueto

approximations. A

Example 4-3-2
The following random sample is from the load random
variable applied to astructure. Thevaluesarein KPa.
284.9188 104.1661 20.6819 461.9137 197.4067
159.5707 161.5850 50.4525 130.1263 161.5384

418.1608 29.1977 80.9464 7.0621  76.3582
87.0721 16.6974 64.4067 159.6288 39.7292

The strength is also arandom variable , of which is as follows:

1153541 26.0195 153.8555  264.6725 51.3116
168.7690 214.7956 18.8720 22.9266 139.8943
66.7714 151.4207 164.2746 153.6125 219.3838
1493005 206.9543 30.3550 91.1805  81.8012
Assuming the 2 random variables are independent, calculate the

reliability.
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Solution

Using softwares such as ARENA* or goodness-of-fit tests or
Q-Q plot help usto consider the load is exponentially distributed
with mean 100KPa and know that a Rayleigh distribution with
mean 111 or equivaently a Gamma(a=2, As = 0.018) fits the
strength.  Since the exponential distribution could be considered
Gamma(b=1, A, = 0.01), therefore according to Eq. 4-13 the
reliability of the structure is:

_ Tatb) ~
" T(a)(b)

betacdf(%,a,b) MATLAB

_[ X*(1-x) ™ dx =
x=0

ye 0.01
F(2+l) X:ooﬂ?fom ) 2 0028 o 2 OOTOZ:LS
— -1 114, — i _ ] -
T ._fo X (Ix) =1 IO X(1-) dx=x“] 5 0.1276
X= Y=

or by MATLAB

R =betacdf (22 21) =0.1276 A
Example 4-3-3

The strength(6) of a component and the stress (S) applied to
it are exponentially distributed with means 150 and 100 psi
respectively. Find the rdiability( R) of the component using
Egs. 4.9 &4-15.

! ARENAtools-input analyzer- new-file data file- use existing- fit all
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Solution
From Eq. 4-9:

1

As 100
= =" =0.60
Asths  155%Ts0

From Eq. 4-15:
Since exponentia distribution is a specia case of Weibull
distribution, then
Cs=Ci=1 As=A4s=0
1

R=1- [ evep [~GLy)1dy
0

S

(5 =) - B e -

R=1-[ ) [B%e_(%)_(’%)l as

Let bs = Bg, bd = Bs. Using the following MATLAB

instructions resultsin R:E.

>>hd=150;bs=100;syms x;W=[ (1/bd)* exp(-(x/bd)-x/bs)]
>>R=1- int(W,x,0,inf) A

4-3-3 Definition of Loading Roughness

Load roughness (LR) is a factor in load-strength interference

which combines the load information and strength information
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(Wu & Xi, 2010)". Quantifies LR is defined as follows
(O'Connor & Keleyner,2012 page 121) :

9s
65 + O'S

where

og isthe standard deviation of |oad(stress) random variable

O'2+02

5s+os is the standard deviation of the difference 6 — S.

An application of LR is in the calculation of the failure and
reliability of components and systems subject to multiple
application of loads. The most reliable situations are those with
low LR and high SM; and the least reliable situations are those
with high LR and low SM(Reuben,1994 page 209-210).

SM and LR allow, in theory, to analyze the way in which
load and strength distributions interfere and so generate a
probability of failure(O'Connor &Keleyner,2012 page 121).

Wu,Y. Xi,L. 2010 Load-roughness impact on reliability considering
dependent failure ,Proceeding 16" ISSAT conference on Reliability and
Quality in Design
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Moreover avalue of LR alows to know about the variations of
Sand § such that:

For alargish SM, if the variance of load is small and that of
strength is large then LR will be small(e.g. 0.3); and for afixed
SM, asthe load spread becomes wider than that of the strength,
LR increases. Therefore for alargish SM if the variance of |oad
is large and that of strength is small then LR will be large (e.g.
0.9).

Figure 4-6 shows four cases in which the distributions of
strength and load are normal and have no considerable overlap.
The LR for each case is indicated on the figure;, SM=4.5 and
single application of load results in a reiability of ®,(4.5) =
0.999997. Thisfigure aso shows that:

a)For SM=4.5 if we know that LR is small, it is concluded
the variation of strength and load islarge and small respectively.

a)For SM=4.5 if we know that LR islarge, it is concluded the
variation of strength and load is small and large respectively.
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! load Strength
i

o : :

o - LE=03
—

; : R
-
Q-

/\LR 0.5

5.8

jpd
=

5.8

s
E’-..,_/\ | ir-o0s
He Hs 5.8

Fig. 4.6 Four cases of normally distributed load and strength
with SM=4.5 and 4 different LRs(King.1990 page 348)

To study more about the effects of loading roughness and
safety margin, refer to O'Connor & Keleyner(2012) Fig5.2.

Example 4.4(oconnor.2003example 4-1)

The strength of a component is normally distributed
: 5~N(5000N,400N). The load it has to withstand is also
normally distributed s~n@soon,400n). Assume the strength is

independent of the laod.
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a)What is the component reliability per application of |oad?
b) Find the extreme load L such that Pr(5 > L )equals the
answer in part a.

Solution
a)

5000 — 3500

’4002 + 4007

_ _ L5000,
R=Pr (3>L)=0.99598 = Pr(z<L22090)=0.00402 =

R=Pr(z<SM)=pPr|z< =0/99598

b)

L'-5000 __ _
0 =-2/65 = L=3940N

or by MATLAB

L=norminv(1-0.99598,5000,400)= 3939.85N A

4.3-4 Effect of Safety Margin and L oading Roughness
on Reliability (Multiple Load Applications)

The reliability for multiple load application is calculated
from(O'Connor, Kleyner, 2014 page 124):

R = Tfa(é){ifs(s)ds} ds (4-17)

where
nisloading times, the number of load applications which are independent

f.(s)istheload pdf and

f ;(9)isthe strength pdf independent from the load.
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0 |
~ — Single load
” ________:_:‘;“_ ‘*”f application
— _——
________‘-—-—-\\ - %
I = e 2 NN
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roughness
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load and srength are independent and normal

Fig 4-8 Failure probability versus SM for large n aswell asn=1
(O'Connor, Kleyner, 2014 page 125)
Figure 4.8 shows the effects of different values of LR and

SM on failure probability per load application for large values of
naswell for single load application(n=1).

For details refer to O'Connor& Kleyner( 2014) and Wenxue
Qian et a ( 2014). Wenxue studies the reliability of a com-
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ponent in relation to some parameters including LR, SM and
loading times(n). O'Connor gives 2 examples which illustrate
the application of load-strength analysis to design of an

electronic device and a mechanica one.

4-4 Calculation of structures' reliability : Load
or Strength deterministic

In this section those systems are considered in which the
capacity has known deterministic value and the load is a
random variable or vice versa the load is known and the
capacity isarandom variable.

4-4-1 Calculation of structures reliability when
strength is deterministic

Consider a system with a known capacity ¢ and a distribution

of possible loads as plotted in Fig. 4.11.

fs(s)

o
Fig.4-11 Interpretation of reliability -Load :variable, strength: fixed

» Soro
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For a fixed o if the probability density function of load is
f:(s) and the CDF is F4(s) then the reliability of the system ( R)
is the shaded areain the figure calculated as follows:

3
R =Pr(s <) =F) = f fi(s)ds  (4—18)
0

Example 4-6 (Lewis, 1994 p181)

Suppose the bending moment on a match stick during
striking has an exponential distribution. The match stick have
the given strength 6 and break 20% of the time. The
manufacturer increases the strength by 50%. What fraction of
the strengthened matches are expected to break as they are
struck?

Solution

Bending moment S~exp (1),

5 5
R =F4(9) = ‘(S)ds= | leMds=1—e*9

©) = [ frs = [ aeas =1

08=1—-e? = 1 =02
Now the strength ismultiplied by 1.5i.e.6 =156

then

NewR = f01.55le—/15d5 —1—e 1528 — 1 _ (6_15).1.5 1

(0.2)> =00911
Thefraction of the strengthened matches expected to

break is 1-0.911= 8.9% A
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4-4-2 Calculation of structures reiability when load
iIsdeterministic

Consider a system with a known load S and a distribution of
the strength as plotted in Fig. 4.12.

f5(6)
A

>
* O
S
Fig. 4-12 Interpretation of reliability - strength: variable, load: fixed

For a fixed S if the probability density function of strength
(capacity) is fs(6) and the CDF is F then the reliability of the

system (R) is the shaded areain the figure calculated as follows:
R=P(5>S) = f f5(8)ds =1 —Fy(s) (4—19)
S

Example 4-7

A component is subject to the fixed load of 4000N. The
strength is log-normally distributed with mean of 5000N and
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standard deviation of 400N. Calculate the reliability for single
load application.

Solution

To find the answer we have to calculate the parameters n&c

from the mean and standard deviation using Eq.1-22:

o =Infvar(X )/ E"(X ) +1] =
using MATLAB
o=sqrt(10g(4007 /50007 +1))=0.1

2
u=1nE(X)-G7=ln(5000)-0'—31=8.5122

R=Pr (5>5=4000) =

Pr(Ind>1n4000=8.294)=Pr(z> 8:294:8:5122 _ 5 155)— 9854

or using MATLAB:

R= 1—Pr(6 <4000) = 1 — logncdf(4000,8.5122,0.1) = 0.9854

End of Example A
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4-5 Interrelation between reliability(R) and
safety factor(SF): Strength(s) and Load(S)

independent and normally distributed

Two different methods were pointed out in this chapter to
cope with load-strength interference: the reliability-based and
safety factor (SF) methods. Are the safety factor and the
reliability concepts contradictory or they are interrelated? To

answer this question note SF = g therefore if the load(S) and

the strength(s) are random variables then sF would be a random
variable. The following 2 inequalities has been developed to
show the interrelation of random variable SF(having a mean of
N and coefficient of variation V) and the system reliability(R).
If s and R are independent and normally distributed, then (Dao-
Thein& Massoud,1974):

_ 1
i>—— (4-20)
1_Vn ﬁ

n?xvz
n2v2+(n-1)2

R=>1

(4-21)
where
R The system reliability

The mean of SF

=]

_ OSF
Yoo =W=Tr
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If Sand o are independent with mean and standard deviation
of (4,0.) & (u;,0,), Based on Egs. 5-12-1 ,5-12-3the mean and

variance of SF = ? could be approximated from:

ﬁ;—‘s[w Gf} (4-22-1)

o] 5] 5] e

Inequalities 4-20&4-21give a lower bound for 7 and R
repectively. The relationship between the reliability(R), V,, and
the lower bound of 7 isshownin Fig. 4-13.

18]

o

&

MEAN FACTOR OF SAFETY "'1
o

]

Vi

1 | ] ]

24 28 Vn(%)
Fig4.13Plotof n = — 1 versusV,for six levelsof R

R
1-Vn iR

(Dao-Thein & Massoud,1974)
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According to this figure the reliabilities of 90% , 95%, 97%
with V,, = 16% corresponds to the average safety factor of at
least 2,3 and 10 respectively.

It is worth mentioning that if the load and strength have
normal distributions S~N(z,05)and 0 ~N (u;,05)then
(Handbook Sharpe, 2008 page 271):

_fix
R=a, (u) (4-23)

Joi+a?

S

®, isthe standard normal distribution that could read from
Table C or calculated usin a softwares such as MATLAB.

Needlessto say n = 1resultsin Eq. 4.8. references such as
Lewis(1994)page 182 has more on SF and R.
Example 4-8-1

The safety factor (SF)of a structure is arandom variable with
a standard deviation of 0.8357. The mean of SF is at least
4.4626. Find thereliability of the structure.

Solution

From Fig. 4-21 the minimum of the reliability is 0.95.
using Inequality 4-21:

_ OsF _ 0.8357

T pge 46426

4.6426%%0.182
R=1- = 0.95.
4.64262%0.182+(4.6426—1)2

End of Example A




Chap. 4 Structural Reliability Analysis 262

Example 4-8-1
The reliability of a structure should be at least 0.95 . the
coefficient of variation is 18%. How much is the safety factor

on average?

Solution

1

1-18xsqrt(1oas)

Eq. 4-20= 71 > = 4.6426

End of Example A

4-6 Determining the structural reliability
bounds using nonlinear programming(NLP)

In the real world, it might be difficult to know the true
distributions over the complete range of the stress and the
strength random variables(K& L page 88); Therefore the reliability
cannot be calculated using Eg. 4-3i.e.

R=P(5>5) =5£Sf55(5,s)d5ds

or equivalently, in the case of independence of stress and
strength, the failure probability cannot be computed from:

R=P(S>0)=[ Ff.S)0s=] [1-FO)f ,(5)d5 (4-24)

Where

fs5(8,5) Joint pdf of the strength and stress(load)
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fs pdf of the stress(load)
R CDF of the stress(load)
F, CDF of the strength
f5 pdf of the strength
f,6) 1
and /;(5)
Stress Strength

Interference
Area

Fig. 4-14 Load- strength interference (K& L pagel23)
A procedure has been developed for these cases which

calculates a minimum and a maximum for the reliability. Note
that the reliability(R) depends on the interference of the two
random variables(stress and strength); hence only the local
information in the interference range is needed to compute R

(K&L page 88). In this procedure s_ and ¢, are determined

as the upper limit for S and the lower limit for § respectively

min

forming the interference interval [, .5, 1. s, and S ,are

either known from the pdfsof 5 and Srespectively or their
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values are estimated according to the accuracy desired(K&L
page 88); then a lower and upper bound is calculated for the
reliability according to the following agorithm which uses

nonlinear programming(NLP).

4-6-1 Thealgorithm for Reliability Lower & Upper
Boundsusing NLP

Step 1
Determine the load-strength interference interval [5m-n Smax]

in such amanner that the probability beyond the interval is
ignorable.
Now the system failure probability( R ) could be calculated

from:
R=Pr(s>5) = j:m_” F, (w)f, (u)du = L” [1-FsW)]f ,(u)du (4-25)
Step 2

Dividetheinterval [0, Sl intonequal subintervals:

@nin "-‘Il I ] o S ma

Step 3
Let the probabilities (P,,---P,) and (0,--G,) be defined as:
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p, =Pr(a, ;<S<a) i=1,..,n (4-25)

q, =Pr(a,_, <8 <a,) i =1,...,n (4-26)
Now it can be shown that Eg. 4-25 could be approximated
by(K&L paged9):

En(Ze ) Ea(Ee)) e

Step 4

pi and q; are the probability of occurring the load and strength
in an interval. To add more uncertainty, lower and upper limits

could be considered for them:

L,<p<U, i=1l..n (4-28-1)
Ly <6 <V, i=l.,n (4-28-2)
Therefore in this step determine a lower bound and an upper

bound for each of (Py,---P,) & (Q,--0,) . Some designers state

these bounds as P TP and G oG where « is a fraction

between zero and 1.
Step 5
Since(K&L page 89):

Pr(6<s.,)= Zn:qi , (4-29-1)

i=1
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Pr(s25) =3P, (4202)
i=1

and ) p, &0 ae 2 probability values, to add more

uncertainty, consider upper and lower bounds for them:
a, <> p <b, <20 D,
i=1 i=1

Therefore in this step determine bounds for D p; and > p,

One adviceisto locate the bounds 13 from > p, or > p; .

Step 6

Now we would like to use the above bounds in order to
determine the upper and lower bounds for R and for R=1-R. To
accomplish this the following 2 nonlinear models have to be
developed and solved:
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Max/Min R = Z;( P, (ki_lqk D - i: [qi (kZ Py j]

st.
L, <p,sU,, i=L.,n
L, <0, <U,; 1=L..n
a,<.p <b,

i=1
8, <20, b,

i=1

;=0 g, =0

Use the optimal values of the 2 objective functions as the lower

and upper bounds for the failure probability of the system(R ).
End of agorithm.

It should be pointed out that some researchers have used linear
programming to calculate bounds for reliability e.g. see Song &
Kiureghian(2003)

Example 4-9(k&L page 89)

The load on a structure is normaly distributed with mean
30MPa and standard deviation 3MPa(coefficient of variation
equal to 0.1). The strength has a Weibull distribution with CDF

()
F(t) =1—e B/ andparameters:

Minimum strengthA = 30MPa,B = 60MPa, C=20r3or4
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Find the lower and upper bound for the reliability of this

Structure.

Solution
Stepl [5mn Smax]:?

Onisset equal to A=30. If weset S, =50based on
Us +604 =48 the probability that the |0ad reaches an amount

greater than it isinfinitesimal (129x10°).
Step 2
Theinterval [0,;,=30,S,, =50 isdivided into ten subinterval

With length %: 2 and:

a,=30 a=32 ... a,=48 a,=
Step 3 Determining pi's & gi's
pi's based on the load distributioni.e. N(1s=30,6,=3):

32-30
3

p,=Pr(30<s<32)=Pr(0<Z < ) =0.2475
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p, = Pr(32 <'s <34) = normcdf(34.30.3)- normcdf32.30.3) = 0.1613
p3-normcdf(36.30.3)- normcdf(34.30.3)- 00685

p4 - normcdf38.30.3)- normcdf(36.30.3) - 0.0189
pS-normcdf40.30.3)- normcdf(38.30.3) - 0.0034

p6- normcdf(42.30.3)- normcdf40.30.3) - 39739x10*
p7-normcdf44.30.3)- normecdf(42.30.3)- 3.0141x10°

p8- normcdf(46.30.3)- normcdf44.30.3) -14824x10°

p, = Pr(46<s < 48)

= normcdf48.30.3)- normcdf46.30.3)= 4.7226x10®
p,, = Pr(48<s <50) =
normcdf50.30.3)- normcdf48.30.3)= 9.7350x10'°

Calculation of g's based on the strength distribution i.e. Weibull
with parameters A=30, B=60, C=2

0, = Pr(30< 6 < 32) = F, i (32) = b (30) =
32-30 30-30,2
=|1-ex —| 1-exp(———)“ [=0.0011
( p(60)]( p(eo)j

or

whlcdf (32-30,60,2) —wblcdf (30— 30,60, 2) = 0.0011
q, =Pr(32<5<34) =
exp(-((32-30)/60)"2)-exp(-((34-30)/60)"2) = 0.0033
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g, = Pr(34 < 5 < 36) = 0.0055
q, = Pr(36< & <38) = 0.0077
g, = Pr(38< & < 40) = 0.0098
g, = Pr(40< § <42) =0.0118
q, = Pr(42< & < 44) = 0.0138
q, = Pr(44 < 5 < 46) = 0.0157
q, = Pr(46 < § < 48) = 0.0174
Oy = Pr(48< 5 <50) = F,,,, (50) — F, oy (48)

50-30,2 48-30,2
=l1-ex —|1-ex =0.0191
[ p(60)]{ p(6o)j

eibul

Step 4

Suppose an uncertainty of +4 = +29% (K&L page90 )was
present in (Pp,--P,)and (0,--0,) caculated above; therefore

each of (P,,---P,) liesinthe interval [Lpi Up] where
Upi=pi+(0.02)*pi ; Lp=pi-(0.02)*p;

and g liesinthe interva [Lg Uqi] where
Ug=0+(0.02)*q ; Lg=q-(0.02)*q;

As sample calculations the bounds for (P, P,, Ps, Py) are:

Up,=0.2475+(0.02)* 0.2475 ; Lp1=0.2475-(0.02)* 0.2475:
Up,=0.1613+(0.02)* 0.1613 ; Lp2=0.1613-(0.02)* 0.1613;
Ups=0.0685+(0.02)* 0.0685; L p3=0.0685-(0.02)* 0.0685;
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Uplo‘ 0. 7350)(10 +(0.02)* 9.7350)(10_10 :
Lplo_g 7350x10%° - (0.02)* 0.7350x10™ ;

The bounds for (Chs--Cho) With = ( « = 29) are calculated from
Uqi=qgi+(0.02)*qi ; Lqgi=qi-(0.02)*qi  i=1,2,..,10
As sample calculation:

(;=0.0011;Ug,=0.0011+(0.02)*0.0011:L g;=0.0011-(0.02)* 0.0011
Step5  Caculaionof Y p, 5 g and their limits

> p =Pr(s>6,,) =Pr(Z> @) 0.5

0, =PI(6 <5,,) =1 expl-(0)2]=0105
2

Suppose an uncertainty of 1% was presentin » g, and >_ p,

calculated above(K& L paged0); therefore they liein the
following intervals (K&L page 90):

05(%) <0553 p <05+(%) 05

i=\

0105-(&) 0105<Zq, <0105+(%) 0.105

i=
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The following MATLAB code performs steps 3, 4 and 5:

format long

%input

r=[3050]; Y%input 1
n=10; %input 2
alpha=0.02; %input 3
%algorithm

a=alpha;% specify an appropriate value for apha
x=r(1):(r(2)-r(1))/n:r(2);
fori=1:n
%L oad

p(i)=normcdf (x(i+1),30,3)-normedf(x(i),30,3);
%Strength

g(i)=whblcdf (x(i+1)-30,60,2)-wbl cdf (x(i)-30,60,2);
end
p=p;
o=q’;
Up=ptp*a
Lp=p-p*a
Ug=g+g*a
La=g-g*a
Sigmap=normedf(min(x),30,3)
Sigmag=wbl cdf(max(x)-30,60,2)
Usimgap=Sigmap+a*0.5* Sigmap
Lsigmap=Sigmap-a*0.5* Sigmap
Usigmag=Sigmag+a*0.5* Sigmag
Lsigmag=Sigmag-a*0.5* Sigmaq
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Step 6 Lower and upper bound for failure probability (R ):

Step 6-1 The following model hasto be solved once for
maximization and once again for immunization to find the upper limit
for failure probability(R ).

The objective functioniis:

10 k =i
Max R=>|p, (quj
i=1 k=1
or

Max R = P10y + Po(Ag +d5) + P30y +dp +03g) +...+ P10y +Up +..+ 0y )

St.

The constraintsof type L ; <p; <U i =1,.,10 :

pt = pi

Lp1=0,2475~(0,02) x02475<p, < Up1=042475+(0,02) « 02475
0.1613-(002)x 01613 < p, < 0.1613.(002) 01613
0.0685-(0.02)x 0.0685 < P < 00685 (0.02)x0.0685
00189-(002)x 00189 < p, < 00189.(002)x00189

0.0034-(0.02)x 00034 < Py < £0,0034.(002)x00034

3,9739x10’4-(o,02)x 3973910 F <p. < 3.9739x10’4+(o.02)x3,9759x10’4

6

3,0141x10‘5—(o,oz)x 301411070 < p, < 3.0141x10‘5+(o,oz)xs,0141x1o‘5

1.4824><10H67(O,02)x 14824x10°° < £pg < £144824><IOH6+(O.OZ)><1,4824><IO~6

4,7226><10A87(O,02)x 47226x10°° < p, < 4,7226x10‘8+(o,02)x4,7226x10‘8

9

9.7350x10" 10 _(o,oz)x9,7350x10’10 <pg < 97350x10 10 +(o,oz)x9,735c>x10’1

The constraints of Type Lai <% <Uq, i=1..10 :

0



Chap. 4 Structural Reliability Analysis 274

Lq1=O.OOII_(O.OZ)x 00011<q, < Uq1=O,OOII+(O,OZ)x 00011
142-00033-(002) 00033 < d, <Uq2-00083, (002).00033
143-00055-(002)« 00055 < dg < Uq3-00055-(0.02) . 0.0055
144-00077-(002) 00077 < < Uq4-00077,(002) . 00077
Lq5-00098-(002) . 00098 < as < Uq5-0.0098: (0.02) . 00098
1q46-00118-(002). 00118 < dg < Uq6-00118.(002).00118
147-00138-(002) . 00138 < q., < Uq7-00138,(002). 00138
148-00157-(002) 00157 < dg < Uq-00157(0.02) 00157
149-00174-(002) 00174 < dg < Uq9-00174,(002). 00174

LqIO=0.0191—(0.0Z)x 00191<q,, < Uq10-00191.(002) 00191

Constraints related to z P & ZQi ;

a, < Z p, <b, =-5-(0.02/2)*0.5< p,+...+ p;, < 0.5+(0.02/2)*0.5

3, <), <b, =0.1055-(0.02/2)*0.105<(, +...+q, <0.105+(0.02/2)*0.105

0<p <1 O0<p <1
Softwares such as Lingo or GAMS give the following results for the

maximization and minimization :

The abjective function has the optimal values:

If minimized R_, =0.00704= thelower limit

If maximized R, =0.0076= the upper limit

Therefore for a = 2% and the Weibull shape parameter C= 2,
the failure probability lies in [ 0.00704 0.0076] and the
reliability liesin:[ 1-0. 0076 ~ 1-0.00704 ] =[0.9924 0.99295].
The following table shows the unreliability limits for other
cases(from K& L page 91).
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> Shape Parameter

[

g2 Cc=2 C=3 C=4

3 = —

8 |3min ﬁmax ern ﬁmax Rmin ﬁmax

o}
2 0.00704 | 0.0076 | 000123 | 0.00133 | 0.00024 | 0.00026
4 0.00677 | 0.00789 | 0.00118 | 0.00138 | 0.00023 | 0.00027
6 0.00650 0.00818 | 0.00113 | 0.00143 | 0.00022 | 0.00029
8 0.00624 0.00848 | 0.00108 | 0.00148 | 0.00021 | 0.00030
10 0.00598 | 0.00878 | 0.00104 | 0.00154 | 0.00020 | 0.00031

End of Exampled&

Appendix : Other definition of safety
margin(SM) and its relationship to safety

factor(SM)

As well as the definition given in Eqg. 4-7 for safety
margin(SM), SM is usually expressed as the allowable working
stress (frw) divided by the applied stress f minus 1(Ireson et
a,1996 page 18-13).

me
SM = I . (p)

Any negative SM value indicate that the structure will fail
because the applied stress of the allowable material strength.
This is only for unidirectional stresses ; biaxia and tri-axial
stresses require further analysis(Ireson et a,1996 page 18-13).

It is reminded that the safety factor(SF) which is a strength

design factor is defined by the ratio of acritical design strength
parameter (tensile, yield, etc) to the anticipated operating stress

under normal operating conditions((Ireson et al,1996 page 18-
12). For examplelet
6 denote the material strength and
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fmw denote the allowable working stress

Then the factor of safety becomes:

F=2
fI'TW
Therefore f S and:
SM =2 — (p-2) or
"~ SFxf p-2)
8
F= (SM+1)xf (p-3)

where
SM The safety margin or margin of safety
SF The safety factor
é The strength of the material
fw  Themaximum allowable working stress
f The stress applied to the structure.

Have a good opinion of God,
for whoever has a good opinion of God
He will treat him in the same way
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Exercises
In the following problems the stress and the |oad(stress) are independent.

1-(Problem 5 Page159 k&L) Thestrength § and the stress Sfor the
design of a component are logomrally distributed with the

following infonnation on § and S:

E(6)=750.00 Mpa o5 =50.00 MPa
E(S)=500.00 Mpa a5 =80.00 Mpa

2-(Problem 3Page159 K&L)A component isto be designed for a
specified reliability of 0.990. The stress and the strength
random variables are known to be lognormally distributed for

this component with the following information

E(5)=1100.00 MPa, E(S)=850.00, o5 =100.00 MPa

Determine the maximum allowabl e standard deviation of the
stress that can be be appliedto the component which will give
us the desired reliability.

3 -(Problem 9 Pagel60 K& L)The strength of a component has a
gamma distribution with parameters a=4, , 1;-1. The failure
inducing stress also is gamma distributed with b=2, A5_1.
Compute the reliability of the component.
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4-(Problem 10 Pagel60 K&L) In Exercise 3, assume that 15-4
and Ag = 2.5 . Compute the reliability of the component for this

case.

5-(Problem 11 Pagel61 K&L) A leaf spring for atruck isto be
designed for areliability 0.9995 based on the fatigue failure of
the leaf spring. The fatigue strength of the material out of
which this spring is made is Weibull distributed with the

following parameters:
A=500.00M Pa B=500.00M Pa C=3.0

The random loading of the spring induces stresses that are
assumed to be normally distributed with a coefficient of
variation of 0.08. Compute the permissible normal stress

parameters that would yield the specified reliability.

6-(Problem 13 Pagel60 K& L)The strength of acomponent is
lognormally distributed with a mean of 800.00M Pa and standard
deviation of 150.00 MPa. The failure governing stresses have
normal distribution with a mean of 600.00 MPa and a standard
deviation of 110.00 MPa. Compute the reliability of the

component.

7-(Problem 15 Pagel61 K&L)The stress acting on a component
isuniformly distributed over an interval{ 10,40]. Th« strength of
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the component follows normal distribution (35, 5)Derive an

expression for the reliability of the component. Find R

8-(Problem 16 Pagel62 K&L)The stress acting on a component
isuniformly distributed over [ 10, 30] The strength of the
component has a three-parameter Weibull distribution with
parameters A=20, B=30 and C=3. Derive an expression for the

reliability of the component and caculate its numerical value.

9-(Problem 17 Pagel62 K&L)The stress acting on a component
isuniformly distributed over aninterval [Spin©~ Smax]- The
strength of the component has gamma distribution with parar
tersn and A. Derive an expression for the reliability of the

component. Let

Smin=10 Sna=30 n=5 A=02

Find R.

10-(Problem 8 Pagel60 K&L)The strength of acomponent is
lognormally distributed with a mean value of 400 MPaand a
standard deviation of 50 MPa. The stress acting on the
component is normally distributed with a mean vaue of 250
MPa and a standard deviation of 50 MPa. Compute the bounds
on reliability for a equal to 5%
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11-(Problem 9 Page160 K&L)

The stress and the strength distributions for a component are
Weibull with the following parameters:

Strength: A=300 MPa, B=400 MPa, C=3

Stress : A=150 MPa, B=300 MPa, C=4

Compute the bounds on reliability for «=0.05

12- Find the a component reliability with exponentially
distributed strength with parameter A5 = 0.001 and normally
distributed stressN (u, = 35K pa, o, = 5Kpa) using the
following equation (Eq. 6-31K& L pl39)

52 Hs — /15265

R=g,(-£5)+ ap(%Ta—us%) x[1-¢,(-————)]

Os Os

normcdf(-35/5)+exp((.00122*5/2)/35-2*0.001)*(1-normcdf((-35+ (.00172*5/2)/5 -4))

13- Isit possible to derive Eq.4.9 from Eq.4-13 or 4-15 of this
chapter?
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5

On the combinations of random variablesin design ;
A glance at the tolerance concept

Aims of the chapter

This chapter is concerned with finding some properties of a
function of several random variables. The chapter also reviews
the concept of tolerance in designs quickly.

5.1 Introduction

The reiability of an engineering design is often a function of
several quantities. Variability is inherent in most of these
quantities; i.e. most of them are random variables(RVs). As an
example consider the design of a beam. Stresses in beams due
to bending is very important for an engineer; therefore he is
usually interested in computing the bending stresses. The
following formula gives the maximum stress in a beam due to
bending(K& L page 95:

(5-1-1)
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where
S = the maximum stress at the farthest surface from the neutral
axis (it can be at top or at bottom), kPa

¢ = the maximum distance from the neutral axis to the extreme
fiber (again, this can be to the top or bottom of the shape), m

| =the moment of inertia of the beam cross section about the
centroidal axis, m*

M = the bending moment along the length of the beam where
the stressis calculated, N.m

if the maximum bending stressis required then M isthe

maximum bending moment acting on the beam

The moment of inertia of a beam having circular cross

section with radius r meters and thickness of t meters is

MXxc

nr3t

I = r3t. Thus according to Eq. 5-1-1, .1, S =

gives the

maximum fiber stress in such a beam. |If the beam has a

rectangular cross-section of height a meters and width b
ba3 | . .
meters, then [ = % in m* and the corresponding stress is

calculated from S = 12 5w
ba
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M A%

ol

Iy |

a-20mm.b-60 mm, % =2500pe  Vield stress
I=rd’ = $5(20 mm)(60 mm)? =

7= 360 % 10° mm®* =360 xm%lj‘f: 360 X 107° m*
%=3I:Imm =003m 1EI

C =

a, = (%“ (250x10° Pa) =3000 =

My =3000Nm =3kNm 4

Fig.5.1 Bending moment on abeam- Aniillustration

£ ]t

It is worth mentioning that if yield stress(= oy) replaces S,
the external bending moment(M,) causing the beam to reach the

yield point is calculated as follows:

1
My = EO'y (5—1—2)
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Figure 5-1 illustrates this equation.

In real world, quantities such as M,c.b & a are random
variables. Hence to compute any property of a function of

these random variables such as g_Mx¢ | we need to know how
|

to combineasM .c b ya Now for thisreason we focus on how
to find certain properties of afunction of random variables.

5.2 Certain properties of a function of some
random variables

In this section, given random variables x4, ..., X,, we are to

show how to determine certain properties f (x4, ..., X,,) i.e. a
function of them which isin turn arandom variable(K&L p 96).
5.2.1 The pdf of afunction of onerandom variable

Suppose we are given Y=g(X) where X isarandom variable
with known density function(pdf) f(x) and we would like to find
the pdf h(y)for the random variable Y. h(y) is given bythe
following relationship(K&L p97):

ho) =[S x fk (52)
where

k(y) istheinverse functionof g i.e. k(y) = g 1(y) = x,
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|Z—';| represents the absolute value of the derivative of k(y)

with respect to y.

If x=g"1(y) has2answersx{,x, then
RO =[G x fa) + |5 x fG) (59

In generd, if theinverse function hasn roots x1, ..., X2, EQ. 5.3
will have nitems, one term for each root(K& L page97).

Example5.1

Random variable X is normally distributed with density
function(pdf) 1 4" and Y = e* . Find the pdf of Y.

—F€
O

Solution

Y =gX) =e”,

dk
pdfof Y = h(y) = || x kO], k) = g710)

d
Y:eX=>x=lny:k(y) dk _ 1
dy y
—(Iny—,u)2
e 20'2

f(k(y)= le

o

2
h() = [5] x flkI x e 0

This the pdf of lognormal distribution. This is well known in
statistics that if random variable X is normally distributed, e
has alognormal distribution.End of Exampled
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Example 5.2 (K&L p97)

The diameter(D) of the circular cross section of akind of rod
hes a normal distributionwith 1 5" . Find the
o2

probability density function of the cross section i.e. A = nDT .

Solution

DZ
A=mT— Dlz—l— ﬁ‘DZZ_ ﬁ’
4 \ 7 \ 7z

According to Eq. 5.3:
hO) =[] X £oe) + [T % )
y - dy fxl dy fo

Here y=A ,k=D x, =D,  x; = D; thenh(A),the pdf of
the cross section is calculated from:

LTI B R W I B 1
@ =[G\ W |
D:iA%\/E:|§KQ|:\/EX%xA%—1:>|d_D|: /i
T T dA Arx
2 2
EJ L (E
u u
h(A)=Fx1[exp(—( i g
Arx 0'\/5

2 )+ exp(- 2 )N

End of Exampled
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5-2-2 M ean of 2 random variables

If X ,Y are random variables( no matter whether continuous
or discrete, independent or not) with mean 4, u, then:

E[X+Y]=E[X]+E[Y] or p,,, = u, + i, (5-4)

Proof for continuous case(Ross, 1985 p46):

If X and Y are continuous random variables with marginal
density functions fx(x) . fy(y) andjoint pdf f(x,y), then

E[X + Y] = J f (x + 9)ftx, y)dudy

f f xfix, y)dxdy + f f vflx, ydxdy
-':f x(f flx, v)dy dx%f (J- fix, y)d

= f xfx(x)dx + J vi(y)dy

= E[X] + E[Y]

End of Proof Bl

5-2-3 Variance of sum and difference of 2 random
variables

If X, and X, are 2 random variables with variances 62& o2

and coefficient correlation p thenfor Y = X; + X,:
02 = 0 + 0% + 2cov(X,X,) = 0 + 02 + 2poy0, (5-5)
andforY = X; — X,:

Hy = U1 — U (5-6-1)

¢ = of + 0 — 2cov(X,X;) = 0f + 0% — 2poi0,.  (5-6-2)
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5-2-3-1 Variance of sum of 2 independent random variables

If X, and X, are 2 independent random variables with
variances 6£& o7 thenforY = X; + X,:

oZ = of + 0% . (5-7)

5-2-4 Approximating mean and variance of a
function of arandom variable

Suppose X isarandom variable with mean py and variance
o%. LetY beafunction of X, then (K&L p101):

E(Y) = E[6(0] = 6(u) + 26" (). (59)
and also(K&L p102):
Var(t) = [¢' oo}, (59)
Example 5.3(K&L pagel02)

The radius of a kid of a bar is a random variable with mean
ug = 2mm & standard deviation o, = — mm. Find the values
of the mean and the standard deviation of the bar cross section.

Solution

The cross section of the is caculated from:
A= G(R) = nR? G'(R) = 2nR G"(R) =2m
From Eq. 5-8:

2 2
E(4) = G(ug) + B 6" (up) = n(2%) + 25 2m) = 4.01n

2
From Eqg. 5-9:
Var(4) = [ 6'(up)]?0% = Var(4) = (2nx2x0.1)*= 0.1672

End of Exampled
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5-2-5 Approximating the mean of a function of some
independent random variables

If Xi,..,X, are independent random variables with means
Un, -, 4y @nd variances var(X,),..., var(X,), an approximation
of the mean of afunction of these variables Y = f(Xy, ..., X;,) is
given by(K&L page 103):

BV 2 £y oo t) + 350 325 o varxd - (5-10-0)

Or in vector form:
a2f
/aXZ |X u

E) = f(uqg, o\ ) +%(var(X1) var(Xn)) k ) (5-10-2)
62f

__/

Z)Xz |X n
by x = pitismeant to replace X; 'swith y; 's

5-2-6 Approximating the variance of a function of
someindependent random variables

LetY = f(Xy, ..., X;,) beafunction of independent variables
X1, ..., Xy having standard deviationsoy, , ..., o, then:

2

( \
| |

Va(y) = 40& X M % Xi=ty $ (5-11)
| Xz= Hz |

\ )

Xn =Hn

Example 5.4(K&L pagel04)
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Theload f acting on a bar in tension has amean value up =
10,000 N and a standard deviation o, = 1,000 N. The mean
value or the cross-section area A is uy =5.0 cml, and the
standard deviation of A is o, = 0.4 cm. Find the mean and

standard deviation of the tensile stress S on the bar.

Solution
s=L = fp, 8
_A - f ) )

According to Eq. 5-10-2:

0*f |
PN L=
EO) = fUpua) +5( 0 oD | 5o | .
o
a — ﬁ , m = E . W P:g;;wzooso - 53 -

5p=7 'ap2 =" flup,pa) = ——=

0
10000 104 0 (o)
E(S) = z + > =

E(S) = 2000 N/, =20000 KPa=20MPa

According to Eq. 5-11:
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Var(S) = [(% ‘ﬁz )UP] [ o |up )UA]

- o] + [ 04

= Var(S) = 65600 = o, = 256.1 N/

2

om2 = 2561KPa

Therefore a stress with mean 20 M Pa and standard deviation
2.56 MPa isacting on the bar.

End of Exampled

5-2-7Approximating the mean and variance of Y

Let X and Y be 2 independent random variables with mean

Uy s py and variance of and o. The mean of the quotient is

approximately :

E (ij =~ e \+(U—YJ (5-12-1)
Y i Hy

From Eqg. 5-12-1 it is concluded that:

E(ij ~ i 1+ (ﬁ}z (5_12_2)
Y) Hy Hy

X
Furthermore the variance of — |s approximated by:

¥ Y Y $
e o
Y Hy Hx Hy Hy
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Example 5.5
Repeat Example 5.4 using Egs. 5-12-1 & 5-12-3.

Solution

E(S)=E (g) = ﬁ{\ + {G—AJ - (@) . (1 + (?)3 =20128N /on?

Hp Ha
= E(S) = 20128KPa

¥ Y Y §
Var(s) =Var (EJE He (O-PJ +(O-Aj —[GAJ
A Ha Hp Ha HA

(10000)2 ( 1000 )2 N (0.4)2 (0.4)4 65436
= * R — - —
5 10000 5 5

0s = 255.8 N /o = 2558KPa.  End of Exampled

5.3 Statistical Tolerance

Sinceit isimpossible to make everything to an exact size, the
specification for design dimensions and variables is usually
given as anominal value plus minus anumber. For examplein
2.500* 0.003, 2.500 is the nomina vaue and * 0.003 is the

tolerance. Toleranceis the total amount a dimension may vary
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and is the difference between the upper and lower (minimum)
limits of the specification.

It is worth mentioning that tolerance is sometimes written as

a percent; e.g. 2500E 0.12%. By this notation it is meant that

toleranceis 22 x2.500=+ 0.003.

Next, after reminding the calculation of tolerance of linearly
and nonlinearly assembled parts, an example shows the
calculation of reliability when tolerance is given. Thought the
chapter it is assumed that the tolerance of a component or
assembly is £ko where o is the standard deviation of the
component or the assembly. k is a constant which is usually
equal 3.

5-3-1 Relationship of assembly tolerance parts
tolerance

Consider a product composed of n similar parts. Let the
dimension of each part be denoted by X;,i = 1, ..., n with mean

. 2 : .
and variance upgt and oy, . The dimension of the assembled
product is therefore X = X; + ... +X,. The mean and variance

of X denoted by t4m and ;: equals:
H SUM=N{Lp, ¢ (5' 13- 1)
Gé_jm = nGFZH’t (5'13'2)
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BN (5-13-3)

o =
o n

p

Let us denote the specification of each part by a+t and that
of the assembled part by b + A and tolerance limitsby U and L.

(U-L)part
2

(U-L)sum

Assuming = kopare, = kog,m 1.€. the tolerance

_ (U-L)sum

equals k x standrd deviation, then substituting og,m = —

and oqre = P in Eq. 5-13-3 results in:
g (5-14)
(U-L)_ = M
part n
Let A= (U-L)sum and t = (U—Lz)part then
A
t=- (5-15-1)
A= t\n (5-15-2)

Then the tolerance specification of a product assembled from n
similar parts with specification a + t would ben X a + A. If the

n parts have different specificationsa; + t; ...a; £ tj ...a, + t,

U-Lyi
2

would be Y)i; a; £ A" where:

A= Zt? . (5 — 16)

then if = ko; , the specification of the assembled part
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Example 5-6

Suppose 10 similar parts with specification 2.000 + 0.012
are assembled in a series configuration. What is the

specification of the assembled product?
Solution

The specification of the assembled part is10 x 2.000 + A

where A= tvn = 0.0124/10=0.0379 or: 20.000 + 0.0379.
End of Exampled&

Example 5-7

We would like to produce a product with specification 20.000
+ 0.0379 as an assembly of 10 similar parts. What should be

the tolerance of each part?

Solution

The specification of each of the 10 parts must be % +t

A 0.0379
wheret = — = =~= = 0.012 . End of ExampleA

Example 5-8
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A part with specification 2.000 + 0.012 isassembled with
another part have the specification of 3.000 + 0.016. What is

the specification of the assembly?

Solution

The specification of the assembled part is 2.000+3.000+A’

where A’ isgiven by Eq. 5-16 asfollows:

A= /¥ t? =/(0.012)2 + (0.015)2=0.020. Therefore the
specification is: 3.000+0.020 End of ExampleA

5-3-2 Tolerancein complex systems

In the previous section, tolerances for series configurations
were considered. In this section an example illustrates how to
calculate the tolerance of an assembly in which a nonlinear
function of the components exists. Thisis usually accomplished
by linearization of the function by Taylor’s expansion up to the
first order around the nominal dimensions.

Exampl e 5-9( Extracted from Bowker-Lieberman,1972 p94)

In the electrical circuit shown below, find the tolerance of the

output voltage E, = E; NK. The components have the following

specifications:
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Distribution nominal Value +

E,  normal Er-40 05 40405
1 1 1
N normal N-—— 1y —+001x—
2 2 2
K normal K*=3 2. 3+002x3

o
_ Amplifier
L= it woltage %é K

o o

Trandomer N

The mean of the distributions are equal to their nominal values.

Solution
Taylor series of a 3-variable function up to the first order is

asfollows:

f(xy,z)=f (a,b,c)+i;{(x—a)§(+(y—b)§/+(z —C)aaz}f (x,y,z)‘x Cay-broc +..

(5-17)

For the linearization of E, = E;NK, E, is expanded into a

Taylor series around the nomina values E;,N" K" with help of

the above relationship as follows:
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E,=E,/N'K +i[(E1—E1)N K" +(N =N")E;K" +(K —-K")E,N ]:>
E,=N'K'E, +E,K'N +E,N'K —2E,N'K"
This approximation is a linear combination of E,, N, K. Since random

variables E;,N,K have the means E;,N" K', therefore the

distribution of E, hasthe mean . calculated from:

* % * % *  * * _K* %
te, =EIN K E1+E1K N+E1N K —-2N ElK

Since the mean of the distributions of E;, N, K equal E;,N" K’

therefore the mean of Ej is:
e, =N K+ EJK W +E/K'N" —2N"KE;
or yEO=EI xN" x K’

The variance of E, ,denoted by aé , iIscalculated from the linear

approximation of indepenvent variables E;,N,K i.e

E =N'KE+EK'N+E'N'K-2N"E'K”
0- 1751 5 - 1~ =

- 2 . * 2 . * 2
Géo;(N K ) o-é+(E1K ) ol +(E1N ) ok (5-18)

No notice that under the following 3 assumptions
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a)During production, the dimension of each component can be
centered at its nominal values i.e. the magnitude of the variance
of each component is such that the natural tolerance limits
coincides with the specifications limitsa + b,

b)The distributions are normally distributed with means equal to
nominal values

c)For each component al but 100a% of the values will fall

within the corresponding a + b the largest value of the standard

deviation of the dimension denoted by 6_, . isgiven by(se
K& L pages93-96):
cTallowed = Z% (5_19)

2
where Z is the critical value related to normal distribution
given in Table D or by a software such as MATLAB; e.g. for
a=027/=  Z_ =273 =norminv(1-0000135)=3  and

N

therefore:
0.5 1,001 3x0.02
O =5 Oy - 2 00017, o, -2Z222.002

Substituting numerical values in the right hand side of Eg. 5-18
gives o =0512. E -EN'K =40<5x3=60 is the nominal value
of the output voltage. To write the specification of output
voltage e, as 60 + A note that the distribution of g, can be

approximated by a normal with mean equa to the nominal
value(60); therefore for a = 0.27% from Eq.5-19:
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A A A A
0512 =—= = =-=A=1536
Za  Z0.0027 2000135 3
2 2

1.536
E, :60+ 1536 orsince o =236/ = E, :60+2.56]

Therefore the output voltage E, is 60 volts+2.56%. A

Thefolowing example shows how tolerance affects reliability.
Example 5-10 (Based on K&L page 165)

A circular bar is subjected to atension load S, shown below.

b ¥ g
——_—*ﬂﬁuﬁwgwh%—_—-—*—__

Due to the nature of manufacturing, the diameter d of thebar is

arandom variable and due to various raw materials used the
ultimate tensile strength of therod isaso a random variable

with mean 1; =10000 psi and standard deviation 5000psi.

The random variable S has 15 =4000 lbandog =100 1b. If
the load and strength are normally distributed , the following
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equation’ is used to calculate the reliability of these kind of

bars:
R=P(S<0)=D,(z2) (5-20)
where
Ks
Mo~z
zZ = et = and
5 .

®,(z) isthe CDF of normal standard distribution.

The diameter of the bar hasamean of y =01263% inthes and its
specification is . +p%. Theload and the strength are normally

digtributed. To know how the variationsin the rod diameter affect the
rod reliability, conduct asensitivity analysis of therod reliability
with respect to therod radius.

Solution

The following table shows the reliability of the rod computed
using MATLAB from Eq. 5-20 for seven valuesof pin 1 +p%

and 1; =100x10°ps , 05 = 5%10°psi , 1 =4x10°Ib, 55 =1001b , ,, -0.12635

! For proof see K& L page 165
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p z R =®, (z) = normedf (2)
0 3.760 0.999915

0.5 3.756 0.999914

1.0 3.74 0.999908

15 3.72 0.999900

3.0 3.61 0.999847

5.0 3.37 0.999624

7.0 3.10 0.999032

If for example the specification of the radius of the rod is
0/12635+1.5% i.e. p=1.5, z turns to be z=3.72 and the rod
reliability would be 99.99% as cal culated below:
p=1.5;
z=(10"5-

(4000/(pi* (0.12635)"2)))/sqrt(5000"2+((100"2+((4* (0.01* p)*2)
/9)* 4000"2))/(pi~2* 0.12635"4))
R= normcdf(z)

End of Example. A

Exercises!

In the following problems assume all dimensions are normally distributed and the tolerance

rangeis 6 sigma(+3o)
1. The parts of acontact assembly for arelay are shown inthe
following figure . The dimension x represents the amount of

! Problems 1 through 7 are from Chap. 5 page 113 problems(1,3,5,7,9,11,13)
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intentional overtravel (called "wipe") of the upper contact that
would occur if the upper contact was clamped to the part at |eft.

Find the nomina dimension x and its tolerance.

x u 0052 : 0005
N

& £ é
0210 + 0.008
0.450 + 0.007 g . Np—
0.090 + 0.006

¥y - -
"*-'-'wl

2. A partially finished connecting rod is shown in the following
figure. Each radius has a tolerance of +0.002. The tolerance for
the distance L between the centers of the holes is +0.004. Find

the tolerance for the dimension h.
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I 0620 + 0002
R

f{é"n'@

4

""‘—-—-—IJ-s.muﬁ 0.004

3.A rectangular solid bar has the following dimensions:
X :2+0.002m .Y :1£0.001m,Z :4+0.008m . Find the

specification of V=XYZ.

4.The head of a screw is shown in the following figure. The
various dimensions are formed in such a manner that there is no
association between them; that is, they are mutudly
independent. Determine the tolerance for H, the depth of the

screw head. Thedimensions 9, D, and d and their tolerances are:

0:0°+20 D=0800+0.002in  d =0.400+0.001in
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0

9/-")

z
|L D
i_ T
1 H
¥
Fd )
|
aX1

5. Let random variable Y = R where a is a constant and the

2X3

N\

3 variables are independent and have the following properties.

Variable X, X, X3
mean 4 2 1
stand. devia 0.4 0.2 0.1

Approximate the expected value and standard deviation Of Y.

6. An automotive component is subjected to a fluctuating stress

_ Smax+Smin

with mean and the amplitude S,,cqn = SR Samp =

S —Smi ; i i i
=5, as shown in the following figure. The maximum

value of the stress ( Snwax ) IS @ normally distributed random
variable with mean= 600 kPa and standard deviation=40kPa.
The minimum value of the stress( smin) is @ gamma distributed

random variable with parameters n= 17 and L ookpa,
A
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S

EEEA I

Determine the value which the random variabl e Syean Will exceed
only 1.3% of thetime. Also determine the value which the
random variable Sanp Will not exceed 90% of the time.

Hint: For largish n a gammadistribution (n,A) could be

approximated with anormal distribution (u = % o= %) ;

becaue it be consisidered the sum of n inpenendent exponential

distribution with parameter (1),

7. The analysis of the loading of a component revealed aload

diagram as shown in the Following figure..

The four forces F1, F», F3, and F4 are random variables, the

distributions of which are given in the following table
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Force Distribution Parameters
F. Exponen. Y 26kN
2
F> Normal 1 =416kN , o =11.03kN
F3 Normal 1 =375kN, o =3.9kN
F,4 Normal 1 =39%N, o =10.07kN

Calculate the mean and the variance of the magnitude of the

horizontal resultant |oad.

Hint: The gammadistribution (n, 1) may be approximated by a

normal distribution with u = % ando = ?

8.(Example5-6 page 104K &L )

An electrical circuit hastwo resistances Ry, R, in paralel as
shown below. The value of seach resistanceis arandom
variable. We know that

p, =100Q, o =10Q, u_ =200Q, o =150,

Determine the mean and standard deviation of Ry.
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Ry
AN\~
— g =1000, & =100 o
R R
RJ
AN
po=2000 o =150
R_\ R'|
RT -

Answer isgivenin K&L page 105.

9. A kind of beam has a rectangular-shaped cross-section. The

dimensions of the cross-section, denoted by a & b, are random

variables with mean Hy = 20mm, Hiy =60mm and standard

deviation o, = 0.02mm, O = 0.1 mm. A stressis applied to the

beam. The bending stress is a random variable with mean
2000Nm and standard deviation 10Nm. Find an approximate
value for the maximum bending stress(S). The dimensions are

assumed independent.

Anyone pursuing his goals honestly
does not dip up

and if he does, he can seek a way out
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6

Estimation of Mean Lifetime &Reliability and
Related Experiments &Tests

Aims of the chapter

This chapter deals with the estimation of 2 statistical
measures related to a product i.e. reliability and expected value
of products lifetime. Some standard experiments and statistical
tests of hypothesis are aso mentioned, and some acceptance
sampling plans based on the lifetime are introduced. The
emphasis is on the products whose lifetimes are exponentially
distributed.

6.1 Introduction

The problem of estimation of the lifetime and the reliability
of products is a common problem in the control of products
quality. When we have the lifetimes of a random sample of the
product, one obvious way to estimate the mean lifetime is
calculating the sample mean. Another way is performing special
life tests on the sample and then calculating the mean. A third
way of life testing is caled accelerated life testing which

involves the acceleration of failures to quantify the life
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characteristics of the product at normal use conditions; in other
words it involves capturing product life data under accelerated
stress. These 3 ways are pointed out in this chapter. The present
chapter a'so mentions some statistical tests hypothesis and some

acceptance sampling plans related to lifetime.
6.2 Estimation of product mean life given a lifetime

sample of sizen
Suppose a random sample is taken from a product and the

products in the sample are tested until all of them fail and the

lifetimes x; ... X, isobtained. The following equation gives an

unbiased estimate for the mean lifetime (8)of the product:
6=2X_% (6-1)

n

This equation could be used for any product with any lifetime
distribution.
6.3 Tests for Estimating Mean Life

Consider a life testing where n items are simultaneously
placed on test. The purpose of the life tests here isto calculate a
point estimate and sometimes interval estimates for the product
mean life. It often occurs that we need to discontinue the life test
before all the elements in the sample fail. In such cases, we say
that the test has been “suspended,” “censored,” or “truncated”
.Censoring schemes employed during the life test make the
inspection as a cost effective one. Time censoring (Type 1),

failure censoring (Type Il) are 2 common types of the censoring
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schemes employed in life tests. Each of these 2 types might be
performed in 2 ways:

1)Censoring schemes with replacement.

Replacement during a life testing means that once observing
afailure item, it is replaced by a new or repaired one. In other
words, the total number of inspected items during the test

remains constant n.

ii)Censoring schemes without replacement

6.3.1 Time censoring (Type-l)

In a time censoring scheme, n items are simultaneously

placed on the test and the test terminates at some specified time.
6.3.2 Failure censoring (Type-I1)

In a failure censoring scheme, n items are simultaneously
placed on the test and the test continues until particular number
of failures, say r ,occurs.

To summarize the above discussion: it often occurs that we
need to truncate our life test before al the elements in the
sample experience the failure. Two common types of truncation

or censoring are :
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with Replacement

( - ) {
| Type I:Time censoring | ..p o0 Replacement

Censoring

with Replacement

L Type II: Failure censoring {without Replacement

6.4 Estimation of mean life
List of Symbols

n Number of units of product placed on life test
r Number of failures
t* Predetermined amount of time for alife test

T The total operation time of al test items
X; Timeto failure for product no. i

xg ~ Timetofailurefor i failure

X(r) Timeto falurefor failureno. r

0 Mean lifetime of the product

—~

0 Estimate of 6

The mean life (8) or MTBF of productsis estimated from the

following general formula:
=" (6-2)

where
T = the total operation time of all items placed on test including
those failed,

r = total number of failures occurred during the life test



315 Reliabilty Engineering

Needless to say if the lifetime of a product is exponentialy

DR

distributed with pdf f(x) = %e . Eq. 6.2 estimates the
parameter of this diminution.
Note that;

To verify "that an exponential distribution fits the life data”
atest of hypothesis such as Bartlett's test (see K& L page 239) or

Q_Q plot with following MATLAB command could be used:
X=[....data]; pd=makedist('exponential’, mean(X));qqplot(X,pd).
Example 6-1(K&L page 251)

A truck was shaken on asimulator for atotal time of'245 hours.
During thislife test 20 failures occurred. The time between
failures can be well approximated by an exponential
distribution(see page 240 K&L). Estimate the mean life

parameter.

Solution

MTBE = é = 245 = 12.25 hr End of ExampIeA
20

Calculation of T for MTTF = MTBF = 0 = %

To calculate T for estimating , let us distinguish the following

cases for discontinuing our tests:

-Type | tests(time truncation) with replacement
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- Type | tests(time truncation) without replacement
-Type Il tests(failure truncation) with replacement

-Type |l tests(failure truncation) without replacement
6-4-1 Typel censoring lifetest

In type-l censoring a a predetermined time, say t*, the life
test is terminated. The test could be performed without or with

replacement.
6-4-1-1Type I censoring life test with replacement

In time —truncated tests with replacement, in fact al n items
work until the predetermined time t* and the total operation
timeg(T) of al items placed on test including those failed
is:T =nx t*; therefore:

hoL M (6-3)

r r

Wherer > 1 isthe number of failures dung the test timet*.
An application of thisequation is, for example, when we have
where we have n test stands, and we cycle each
test stand for 7 cycles. As items fail they are replaced. Where a
truncation time is specified thisis called Type | censoring. Here
we have(K& L page 252)
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D>
Il

(6-4)

Example 6-2xample 1012 k&L page 252 based on Example 10-3 page 241)

Nine stands are used for testing the life of a kind of switch.
As items fail they are replaced. Each stand was cycled 20,000
times, and a counter recorded the cycle number at which failures

occurred. The following table containsthe data. Estimate MTBF.

Standno. | 1 | 2 | 3| 4|5, 6|7 8|9
N
H
les at S z z
Cycles o 5 8 5
which | 2 81 B 802 8 & 8 s
failure S| o| 5| o 8| | | © QE_’
Q =
occurred '8:9 S o o
a1
o

Counters were not reset when a new switch was placed on
test. Thus counts are continuous from zero. Total test is 20,000

cycles per stand with replacement.
Solution
T= N7t =9x20000= 180000 cycles

Ten failures occurred during the test duration i.e. r=10,
therefore :
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. ~ ~ T 180000
MTBF =0=60=— =

= 18000
r 10

This means that on the average, each switch could be
cycled 20,000 times before failure. A

Example 6-3(Lewis 1994 page240)

A chemical plant has 24 process control circuits. During 5000
hr of plant operation. The circuits experience 14 failures. After
each failure the unit isimmediately replaced. What isthe MTTF

for the control circuits?

Solution

T =24%x5000=120,000 hr

*

- - T nt' 120000
MTTF =0 === === 85710 ot oA

6-4-1-2Type I censoring life test without replacement

In type | censoring the test is terminated at some
predetermined time; in nonreplacement case the number of

fallures 1<r <n and MTTF is estimated from (Lewis, 1994page
239,Mann,1974 page 173):

T (n—r)t*+2x(i)
0:—: i=1 (6‘5)
r r
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where

r  number of itemsfailed
T  total operational time for the n units tested
t*  duration of life test

n  number of items placed on life test

. .th £
Xy timeof thei failure X ;) <Xy <...<Xgy <...

Example 6-4:

20 units of a kind of gyroscope were placed on a 30-day life
test without replacement. 9 units failed a the following
times(indays) 14.4, 5.1, 27.7, 29.1, 23.6, 20.00, 10.5, 13.5, 27.4.
Estimate MTTF .

Gyroscope Spin axis
frame

Gimbal Rotor

Solution

X=144.,%=2714 > x=1713

t*=30days, T =(n-rt" + > x T =(20-9)x30+171.3=501.3
1=1

MTTE =g =1 - %:55_7 days .End of ExampleA
r
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6-4-2 Type-ll censoring lifetest
In Type Il or failure censoring, the test is discontinued after

occurring a predetermined number of failures ( r ). This type

might be performed with or without replacement.
6-4-2-1Type Il censoring life test without replacement

In thiskind of experiment n units of a product are placed
simultaneously on life test and failed units are not replaced.
When the number of the failure reaches the predetermined
number r (1< r <n), the test isterminated. The estimate for

MTTF iS(K&L page252, Lewis, 1994 page239):

A T (M=-1)xp+ii—q X
f=-= OSi= (6-6)
T T
Xi i" value in the sample containing failure times
X(r) Thetime of ther™ failure
T Total operation time of al items placed on life test
: : Total operation time of failed items
Xi = 2.%0)
i=1 i=1
(n —7)xe operation time of the functional items at the end of the test

References such as Mann(1974) page 164 provide some
descriptions on the proof of EqQ. 6.6 .

It is obvious that:
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1. If thetime of thelifetest is such that all nitemsfail then
r=nand Eq. 6.1i.e. 6 = % is obtained.
2. If X coincidesthetesttime t* the equations of Sec

6-4-1-2 & 6-4-2-1give the same result.
Example 6-5

The director of a laboratory, place 20 units of a kind of
gyroscope on life test and decides to stop the test whenever the
tenth failure occurs. At time41.2 the tenth failure occurs and the
experiment terminates. The time of the other failures are:

14.4 51277 «29.1<23.6¢20.0 <10.5¢13.5¢14.4. Find
the MTTF of the gyroscope.

Solution

T=(N-1)X, + 3% = (20-10)x41.2+27 4+.. +14.4+41.2=624.5

Then according to EQ. 6-6

~ ~ T 6245
MTBF =60 = T =62.45days . End of Example A

6-4-2-2Type Il censoring life test with replacement

In thiskind of experiment n units of a product are placed
simultaneously on life test; when aunit failsitisreplaced. The

test is terminated when the number of failures reaches a
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predetermined number . in other words the test terminates at

time X(). The estimate for MTTF i S(Lewis, 1994 page239):

0 :% (6-8)

n The number of items placed initialy on the life test

Xy Thetimewhen the r'" failure occurs

Description of Eq. 6-8:

The experiment ends at time X,,; r = 1 and r could be less

or greater than n. during the experiment time totally r failures

occurs for all the n units, therefore each unit on the average

A X
fails% times and the mean time to failureis 0=%.Hencewe
n
have the following estimate for MTBF:

~ ~ Nnx
MTBE =4 =1 -0 (6-9)
r r

Example 6-6(lewis, 1994 page241)

Six units of a new high-precision pressure monitor are placed
on an industrial furnace. After each failure the monitor is
immediately replaced. However, the eighth failure occurs after

only 840 hours of service. It is decided that the high-temperature



323 Reliabilty Engineering

environment is too severe for the instruments to function
reliably, and the furnace is shut down to replace the pressure
monitors with a more reliable, and expensive, design. Assuming

that the failures are random, estimate the MTTF of the monitors.

Solution
T=nxpy n=6 r=8 x4 =840
A ~ T 5040
T =6 x 840 = 5040 hr MTTF:Q:T:T =630hr A
Tests Summary

Table 6.1 summarizes the relationships related to the above life
tests:

Table 6.1 Equationsfor estimating MTTF or MTBF(= 0)

Type of Eq. ~ T nt
Experiment Replacement |\ 0= Pk
Time-terminated | With 6-3 o
(Type-l Replacement T (n—r)t" + z X
censoring) H=—= i-1
r r
Without 6-5 R n—1)x + 57 x
Replacement b = ( Yy + X1 %
r
Failure- Without 6-6 I
terminated Replacement Q=—0
(Type-ll r
censoring) With 6-8 . *
Replacement 0 = 1 — ﬂ
r r

6-5 Onthe Accelerated Life Testing(ALT)
At the end of the subject of experiments, it is worth

mentioning that there are some life tests called accelerated life
tests for quick obtaining of lifetime data.
Conventional way for preparing the lifetime data of a product

is to place some units of it on life test under normal use

conditions, until all fail. This procedure for obtaining TTFs is
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difficult and sometimes impossible. Some experiment methods
caled Accelerated Life Tests have been developed to expedite
the test and save time and cost during the design and
development validation phase in many industries. ALT perform
the life test a a high level of a parameter or a variable. The*
results obtained at high levels of the accelerating variables are
then extrapolated to provide information about the product life
under normal use conditions.

In accelerated life tests, place a sample of the product on life
test under elevated working conditions (temperature, voltage,
pressure, rate, vibration, humidity and so on...) in order to
accelerate the failure mechanisms. The results are then used to
extrapolate to usual operating conditions.

Many referencesincluding Cabarbaye(2019), Tobias&
Trindade (2012) discuss ALT. Softwares such as Minitab
perform data analysisfor ALT.

6-6 Confidence interval for mean lifetime-

Exponential distribution case

Whenever a sample is taken from a population, different
estimate for a parameter of the population is obtained. To
modify this difficulty on could construct a confidence interval

for the parameter. Suppose x,,...x, IS arandom sample from a

1Pascual et a,2006 Accelerated Life Test Models and Data Analysis, In
book: Springer Handbook of Engineering Statistics (pp.397-426)
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distribution with unknown parameter 0, the interval [G;, G;]

where G;, G, are function of x,,...x, is caled a 1- « confidence
interval (Cl) for 0 if :
P (G <0<G,)=1-a (6-10)

Next the confidence interval for the mean of exponentialy
distributed lifetimes. To do this consider a life test of a sample
taken from exponentialy-distributed-life product ,terminated
after time T during which the number of failed items has
reached r. assuming zero-minimum life, 1 —a confidence

interval for the mean of an exponentialy-distributed —life

product is(K&L page 253): | 2T 2T

2

Z o % a

2r,— 2r1-—
2 2

This confidence interval (Cl)which could be written as:

Pr <0< =l-a (6-11)
Z a Z a
2 T2

Is based on the assumption the lifetime of the product is
~ T

exponentially distribute d with mean 0 estimated from 6 = -

21
The proof relies on the fact that random variable 7 has a Chi-
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squared distribution with 2r degrees of freedom(Appendix 10.D
K&L page 281).

This Cl for example, is suitable when we have n test stands
where items are replaced as they fall and the test is discontinue
d at a predetermined time. Or when we might drive vehicles
over e.g. a 40,000 km test schedule and elect to count failures
rather than failure intervalsS(K& L page 254).

Example 6.7

8 leaf springs were tested to failure . The results, in cycles,

follow:

X<1> >(<2> X<3> X<4> X<5> X<6> X<7> X<8>
8712 | 21915 | 39400 | 54613 | 79000 | 110200 | 151208 | 204312

a)Estimate the mean lifetime 6

b) Suppose the lifetime is exponentially distributed, find a

95% confidence interval for 6
c) find a 95% confidence interval for the spring reliability if
vibrated 4000 cycles.

Solution

a)The point estimate for the mean life(6) is:6 = ~

r
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r 8
T=(n-0)X +Y % =(8-8)X g+ X, =
i=1 i=1

8
X, =) X,;,=669320

8
i=1 i=

T =

Yoo X@) _ § 669320

0 = = = 83665
8

b)If the lifetime of the spring is exponentialy
distributed, the Cl for ¢ isgiven from EqQ. 6-11:

2T 2T
— < 0< >
er,g er,l-E
2 2

r=n=8 a=5% . From Table E or MATLAB:

Yosoors = chi2inv(.025,16) = 6.91,
Yoo oo = chi2inv(0.975,16) = 28.85

2T 2T  2x669320 2%669320
<0< = <0<
X; . xi o 28.85 6.91

0,=46400 <0 <193725 cycles=0,

c)ClI for reliability function , if thelifetimeis
exponentially distributed:

-t -t ot ot
e " <R(t)<e ¥ or e ®OR(t)<e 197
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for t=4000 cycles, Cl is:

. 400 . 400
e %40 < R(4000) < e %975 =

0.9174=91 74%< R(4000) < 0.9796=07.96% 4

Example 6.8:

The elements of a random sample a of a kind of electronic
circuit were placed on life test without replacement. The result
was r=20 failures and mean of MTTF =6 =5000. Find a 95% CI
for MTTF. Assumethelifetimeis exponentially distributed.
Solution

According to Eq. 6-11:

Pr| 2L <0 <21 |=1-q T=rx0=20%5000, 1-0=0.9
er,f 2,(1-7)

From Table E: Xa0006=55-76, Yag0e=26-51

Substituting the numerical values yields:
Pr(1793.4<0>3772.2)=0.9 therefore a 95% CI for the

mean lifeis.  (1793.4, 3772.2). End of Exampled&
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Example 6.9" for r=1:

Suppose the life time of a kind of product is exponentialy
distributed . Due the fact that the product is

1) expensive anditslifetest isdestructive or

2) expensive and asmall quantity of itisavailable

Thefailure on only one unit of it for lietesting is affordable.

n=5 units of the product were placed simultaneously on life
test and when the first failure occurred at 15. 5 hr the test was
terminated. Find a 95% confidenceinterval for MTTF.

Solution

Thetest isof Type Il without replacement, therefore:
T=(n- r)x(r) + Z X, r=1,X(l) =155,

r
T=(NN)X y + DX =(M-1)X gy +X, =(MFD)X gy +X gy =NX
i=1

From Eq. 6-11:
2nx 2nx
22T <0< 22T =8 <p<— 0
X o X o X o X
2r,— 2r1-— — 21—
2 2 2

Y from ttps://web.cortland.edu/matresearch/CensorDatSTART.pdf
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1-0=0.95 = 0=0.05,
MATLAB=

Yaoors=chi2inv(0.025,2)=0.0506,
Yogers= chi2inv(1-0.025,2)=7.3778
2x5%15.5 2x5x155

n=5,x,,=155= —_——<0<

—— =21<0<3063
7.3778 0.0506

End of Exampled

6-6-1 Lower-bound confidenceinterval(Cl) for mean
of exponential distribution
After alifetest, the lower-bound 1 — a Cl  for the mean of
an exponentially distributed lifetime could be calculated from
(K&L page257):
0>L=- (6-12)

Where T istotal test scheduleand r the number of failures
occurred during the test

6-6-2 The confidence interval for thetime during which

fraction p of exponentially-distributed-life productsfail

Sometimes we would like construct a confidence interval for
the time or the kilometer or the temperature or...denoted by t,,

up to which the fraction of the products fail. t,,, in other wordsis

such that R( tp) = 1 — p where R(.) isthe reliability function.
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Suppose the lifetime distribution of the product is exponential
t
with mean @ thene™ ¢ = 1 —port, =20 xln(ﬁ) and if the

estimate for @ is denoted by A then we have the following

i =0 1
estimate for t,,:t, = 6 X In (1_p)
If we have a 1-a Cl such as 6, < 8 < 6, for the mean

lifetime, then the following interval would be 1-a Cl for ¢,,:
0, xIn (=) <t, <6y xIn () (6-13-1)
6, xIn(2) < tg < Oy X In () (6-13-2)
where
t, = tg is when (the time or the kilometer or the temperature
or...) that fraction p of the working product fail or fraction R=1-p
of them do not.

Last part of problem 6 of this chapter exercises uses Sec.
6.6.2.
6-7 Reliability Acceptance Sampling Plans

During the past years severa researches have been done on
the subject of sampling from alot of products to accept or reject
it based on product lifetime.  Single, double and multiple
sampling plans have been developed in this regard which are
called Reliability Acceptance Sampling Plans (RASP) ,utilized

to inspect the quality of alot for acceptance.
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Among the first researches for life testing based on samples
taken from populations whose life follow exponentia
distribution is the reference H108 Handbook*

This 88-page handbook is primarily concerned with three
different types of life test sampling plans and includes a number
of accompanying tables. These plans are

1) test terminated upon the occurrence of pre-assigned
number of failures,

2) test terminated at a predesigned time, and

3) sequentia life testing plans.

Also provided are a set of 90 operating characteristic (oc) curves
applicable for the above three test plans. Some descriptions of
the sampling plans of this handbook is given in the author's
quality control book?.

Table 6-2 of this chapter is a sample of the handbook tables.
This table helps to determine single sampling plans for
inspecting lots.

Here single sampling plans are schemes in which a decision
to accept or regject an inspection lot is based on the inspection of
a single sample. A single sampling plan consists of a single

sample of size n placed on life test for a time T hours, with

'H108., Quiality Control and Reliability Handbook (Interim) Sampling
Procedures and Tables for Life and Reliability Testing (Based on Exponential
Distribution),, in (Supply and Logistics)

2 https://opentextbc.ca/oerdiscipline/chapter/industrial-engineering  or
https.//archive.org/detail s/stati stical -methods-august-2020-bazargan or
https://opentextbc.ca/oerdiscipline/chapter/statistics/
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associated acceptance and rejection number(r). Note that during
the test time failed items are replaced with new ones unless the

number of items has exceeded r-1.

6-7-1 Typel&ll errorsof Sampling plans

The Inspection of a lot for accepting or regecting using
sampling plans have might encounter errors. These inspection
errors are classified into two categories: Type | and Type II.
Type | error results in the rgection of a conforming lot, while
Type Il error causes the inspector to accept a defective lot. Here
(in a single sampling with parameters n and ¢) The type | &Il
errors could be described as follows:

When the lot posses a conforming reliability such as R;,and

the plan reects it Type | error ( regecting conforming lots)

occurs with the following probability.

c

n n—x _
a=1—;(x)(1—R1) R, (6 — 14)
When the lot posses a nonconforming reliability such as Ry,
and the plan acceptsit, Type Il error ( accepting nonconforming

lots) occurs with the following probability:

p=) ()a-RyR"™  (6-15)
x=0

6-7-2 Design of single plansusing Table 6-2

Given the test time T, type-l error probability(a) for the
desired meanByand type-Il error probability(f) for the

undesired mean 6,,calculate % &91. Read the plan indices
0 0
( sample size n and rejection number r ) from Table 6-2.
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Example 6.10

Design a plan whose test is of type "life tests terminated at
pre-assigned time" in such a way the test time does not exceed
T=500 hr . The plan is wanted to accept 90% the lots having
mean life 8, =10000 hr (o = 0.10), and to reject 95% of the
lots with mean life 6; = 2000hr (B = 0.05). The life is
assumed to be exponentially distributed.

Solution
6, 2000 1 T 500 1
8, 10000 5 6, 10000 20



Table 6-2 Acceptance Sampling Plans for some «, B,elo&g—i with a test

terminated at pre-assigned time with replacement (Table 2C-4 in H108 Handbook)
T1/6, T1/6,
1 1 1 1 1 1 1 1
3 5 10 20 3 5 10 20
01017 In n n n |, n |n n n
10 a=0.01,8 = 0.01 a =058 = 0.0.01
2thirds  [136 [ 3 551 1103 220 9 23 397 795 1501
1half |46 |9 158 317 634] 3 72 120 241 483
ithid |19 |3 51 103 206 1 25 38 76 153
ififth |9 |1 17 35 70 |7 9 16 32 65
Ttenth |5 |4 6 12 25 |4 4 6 13 27
a=0.01.8=0.05 o =0.058=0.05
2thirds  [101 | 2 395 790 158 ] 6 16 270 541 1082
1af |35 |6 113 227 454 2 47 78 157 314
ithird |15 |2 37 74 149 1 16 27 54 108
Lfifth 8 14 29 58 | 5 6 10 19 39
ltenth 3 4 8 16 |3 3 4 8 16
a=0018=0. a=0058=01
2thirds |83 |1 316 632 126 5 13 216 433 867
lhaf |30 |5 93 187 374 1 37 62 124 248
Lthid |13 |1 30 60 121] 8 11 19 39 79
Lfifth 7 11 23 46 | 4 4 7 13 27
Ttenth [4 |2 4 8 16 |3 3 4 8 16
a=0.018=025 a=0.058 =025
2thirds |60 |1 217 434 869 3 77 129 258 517
lhaf |22 |3 62 125 251] 1 23 38 76 153
Tthird |10 |1 20 41 82 |6 7 13 26 52
ififth |5 |4 7 13 25 |3 3 4 8 16
ltenth [3 |2 4 8 |2 1 2 3 7
a=01:8=0.01 a=0258=001
2thirds |77 |1 329 659 131] 5 14 234 469 939
1haf |26 |5 98 197 34 1 42 70 140 281
Ithid |11 |2 35 70 140] 7 15 25 50 101
ififth |5 |7 12 24 48 |3 5 8 17 34
ltenth [3 |3 5 11 2 |2 2 4 9 19
0= 0.18 = 0.05 o« =025.8=0.05
2thirds |52 |1 214 429 859 3 84 140 280 560
1haf |18 |3 64 128 256 1 25 43 86 172
1third 1 23 46 93 |5 10 16 33 67
Lfifth 5 8 17 4|2 3 5 10 19
ltenth 2 3 5 10 |2 2 4 9 19
0=018 =01 a=025.8=01
2thirds |41 |9 165 330 660 2 58 98 196 392
lhaf |15 |3 51 102 205] 8 17 29 59 119
ithid |6 |9 15 31 63 | 4 7 12 25 50
1fitth |3 |4 6 11 2|2 3 4 9 19
ltenth |2 |2 2 5 10 |1 1 2 3 5
o=0.18 =025 o« =0.25.8=025
2thirds |25 |5 94 188 376 1 28 47 95 190
Thaf |9 |1 27 54 108] 5 10 16 33 67
ithid |4 |5 8 17 34 |2 2 4 9 19
1fith |3 |3 5 11 2 [1 1 2 3 6
Ttenth |2 |1 2 5 0 |1 1 1 2 5
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T 106, 1 0.10
—_— = — —=-a=0. ,
6o 20’06, 5’

Table 6-2 givesn=34 & r=4 from with
& B = 0.05. That isarandom sample of size 34 istaken from the

lot and its items are put on life tested simultaneoudly; unless the
number of failures before 500 hr is equal to r=4 if before the end
of 500-hr test, afailure occursit isreplaced by anew one, and

the total number of failuresis updated. End of Exampled

6-7-3 The operating characteristic (OC) curve of

single sampling plans

Remember that in quality control the so called OC curves for
an acceptance sampling plan plots the probability of accepting a
lot MTBF or the reliability of the products. An application of
the OC curve which is plotted for single, double and multiple
sampling plans is providing easy comparison (Pa) versus a
parameter related to the lot such as MTTF or of plans. What
follows next is plotting the ocC curve for single sampling plans.

6-7-3-1 Operating Characteristic curve for single sampling

plans (Pa versus Reliability)

In a single acceptance sampling plan, we take a sample of
sizen from our lot and place al the n products on life test for a
period of time T as prescribed by the plan. If the reliability of
the products for the time T is R, the failure probability is p=1-R.
The probability that a large lot is accepted in a single sampling
plan of size n and acceptance number c is calculated from:
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Pa=Pr(X <c)=Y5-0(3) A —R)*R"™™ (6-16)
This equation, which gives the probability of the failure of at
most ¢ products during the test, could be used to to plot OC

curve (Paversus R).

Example 6-11(plotted versus R) OC curve:Pa

A plan with n=10, acceptance number c=2 and T=100 is used
to accept or rgect alargelot.

a)Plot the OC curve of the plan in such a way that Pa be
plotted versus the product Reliability.

b) If the lifetime of the products are exponentially distributed
with mean 950 hours. Find the probability of accepting a large
lot of this product.

Solution
a) The following table shows the values of Pa for 11
values of R calculated using Eg. 6-16 or MATLAB
command binocdf.

R/001/02 03|04 05/06/07/08]09]|1

P,/ O O | ooo1| 00016 | 0012 | 0055 | 017 | 039 | 068 | 093 | 1

and the following MATLAB commands plot the OC curve
(see Fig. 6.1) R=0:0.1:1; Pa= binocdf(2,10,1-R); plot(R,Pa).
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Fig. 6.1 OC curve for plan n=10, c=2

b)the lifetime is exponentially distributed then for T=100=

—100

R = e 950 = 0. From the curve or the table Pa=0.93.

6-7-3-2 Operating Characteristic curve for single sampling

plans (Pa versus mean lifetime)

The following example illustrates how to plot the OC curve
an acceptance sampling plan for inspecting a lot. If the sample

meets a specia criterion, the lot will be accepted.

Example 6-12 (OC curvePaplotted versus mean lifetime)
(based on Grant& L eevenworth,1988 page 585)
Consider the following acceptance sampling plan to be

taken from a largish lot and plot its OC curves using various
MTTF. The plan is as follows:
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Take a random sample of 22 units from the lot of product,
and apply life test. Whenever an item fails, replace it with
another item selected at random from the lot. If the test
continues for 500 hr with no more than 2 failures, accept the lot.
If 3 failures [ or more] occur before 500 hr of testing. Terminate
the test and reject the lot.

Solution
We suppose simultaneous testing of 22 units for 500 hours
or 110 units for 100 hours or 11000 units for 1 hour give the

same results. To plot the OC curve, note that totally we have 22x

500=11000 item-hours with acceptance number c= 2. Assume
the failure probability is the same for al 11000 unit-hours.
Define the problem as a single acceptance sampling plan with
n=11000,and c=2,|et:

X = number failures in 11000 unit-hours during 1 hour test,

then P, =Pr(X < 2| given The probability of failure of one unit in an hour,

or
the failure rate of one unit per hour or the failure probability of one unit-hour

or

the proportion of binomial distribution p'

= Pr(X < 2| given mean of number of failuresin asample of 11000=110004 = np')
Here Ahas a value less than 1 and is interpreted as the
probability of the failure of one unit in an hour.

The failure rate A takes the place of fraction nonconformities
(Grant & Leavenworth,1988,page 586). Then the probability
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that a unit failsin an hour isA. To plot the OC curve, the exact
value of lot acceptance probability corresponding to a particular
p' could be calculated from: Pa=binocdf(2,n=11000,p'=A).

In MATLAB, the approximate probability for various np’may
be calculated from Pa=poisscdf(2,np’).

As stated earlier, in chapter 10, Pa were plotted versus p'.

But in this chapter the horizontal axisis either the product mean
1

life (6= - ) or the product reliability. Table 6-3 shows the

probabilities for some values of 6. Figure 6-2 shows the

corresponding OC curve.

Table 6-3 Acceptance probability of in Example 14.15 for
various mean lifetimes (Grant Leavenworth,1988,Page586)

Caculation of OC curve for acceptance sampling plan requiring 11,000 item
hours of life testing with an acceptance number of 2. Calculation assumes
that the failurerate A isindependent of the age of the item tested

Failurerate |Mean life Expected average number of | Probability of acceptance
per hour, o= lhours failuresinl 11,000 test hours (probability of 2 or less
A=p A (hp'=110004) failures) from Pois. Dist.

0.00002 50000 0.22 0.999

0.00005 20000 0.55 0.982

0.00006 16667 0.66 0.971

0.00008 12500 0.88 0.939

0.00010 10000 11 0.900

0.000125 8000 1.375 0.839

0.00015 6667 1.65 0.770

0.00020 5000 22 0.623

0.00025 4000 2.75 0.480

0.00030 3333 33 0.360

0.00040 2500 44 0.185

0.00050 2000 55 0.088

0.00060 1667 6.6 0.040

0.00080 1250 8.8 0.007
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To know how Pa is calculated , suppose 4 = 0.0003; since
n=11000 then np'=110004 =3.3. The approximate value for
Pa from Poisson CDF table : P, = Pr(X <2)=0.359=0.360 .
The exact value of Pais calculable from MATLAB :

Pa = Pr(< 2) = binocdf(2,11000, 0.0003) = 0.3594.

The following MATLAB commands plots the OC curve.
p=1/17000:.00001:1/1000;Pa=binocdf(2,11000,p);plot(1./p,Pa)

1

(WR=]

oer

07r

O&Gr

o0&}

Ha

04t

02¢

ozt

(s

lo

a 1 1 1 1 1 1 1 1
o] 2000 4000 G000 S000 10000 12000 44000 16000 45000

Fig. 6-2 OC curve for Example 14.15
(acceptance probabilityversus mean life).

End of exampleA
6-8 statistical hypothesis testing on mean and

minimum lifetime

In life testing, situations frequently arise where it is important
to determine if a new system meets a design goa or an
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established standard. This leads to the area of dtatistical
inference called hypothesis testing(K&L page 263). Chapter 1
introduced Bartlett's goodness of fit test for the assessment of
the hypothesis that the distributional form was exponential. Here

2 testson the mean and the minimum lifetime are presented.

6-8-1 Test of hypothesison minimum life of an
exponentially distributed lifetime(K&L page263)

To ded with the following hypotheses on minimum life( o )
of an exponentialy distributed lifetime, H,:6=0 H,;:6>0
given significance level(Type | error probability ) of «,

Take arandom sample of size n, and

Place dl of the n products simultaneously on life test, without
replacement,

Continue the test until the time that r™ failure occurs(r < n isa
predetermined number).

Prepare an ordered sample of the failuretimes: X (1), X 2),.... X (1) .

Calculate the mean lifetime from

(n=r)X, _X(l))+2(x(i) ~X)

r-1

NxX g

6'= ;calculateF, = A

Using Table A at the end of the book or MATLAB command
finv(\-«,2,2r-2), find F, ,, ,, the criticd value of F

distribution for the given « .
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nx
I:0 = w > Fa,2,2r72 (6_17)

Hois rejected if 5

Notethat if Hyisreected, the mean lifetimein thiscaseis

estimated by 6'. The minimum life is estimated from

A, _@
5= X —%and therelabity is estimared from e ¢ (k&L page258-9).

Example 6-13 (&L page 263)

The data in the following table represents cycles to failure
for throttle return springs. Twenty springs were tested under
conditions similar to those encountered in actual use. The test
was truncated at the time of the tenth failure. Can we conclude

with 95% confidence that the minimum life(d ) is greater than

Zero?
failure
_ 1 2 |3 4 |5 6 7 8 9 10
no. (i)
Cyclesto
= N N A al o = = = N
. [{e] N ~ w w N o o N o
failure Y & 3 N 2 & & o N oy
w (o) o [{e] o o w [§)] w [
~ w ol o0 o o (@) N o [(e]
X(i) ~ o] W ©
Solution

Hy,:0=0
H,:6>0
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10
NN (X, -X . )+ > (X, -X
A,_( )X %) ;( 0 Xw) _ (15-10)(2099199-190437)

0
r-1 10-1
=1908762
(190437-190437)+(245505-190437)+... +( 2099199-190437+)
= 0'=2767421
10-1
nx
FO - A(l) - 15x190437 -1.03
0' 2767421

The critical value of Fisnotin Table A, Using MATLAB:

Fooo2 05015 =fIMV(0.95218)=35546 R <R, 5513

02,262

Ho is not rejected i.e. it is not concluded minimum life(d ) is

other than zero. End of exampled

6-8-2 Test of hypothesis on mean lifetime and failure
rate concer ning exponential distribution(K& L page263)

To test the following statistical test of hypothesis on mean
lifetime(6) of an exponentialy distributed product with

significance level of a

H,:0<6,
H,:60>6,

Perform the following steps:
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1.Take arandom sample of size n, and

2.Place all of the n products simultaneously on life test, without
replacement

3.Continue the test until thetimethat r™ failure occurs(r < n is
a predetermined number).

4.Prepare the ordered sample of the failuretimes: X (1), X 2. X ().

5 Estimate the mean lifetime fromg - (" =M%+ 2. %)
p

2ro
00

6.Calculate 7 =

7.Using Table E at the end of the book or

MATLAB command chi2inv(e, 2r), find x°_, ,, i.e. the critical

value of chi-squared distribution for the given « .
8. Rgect H, if

26
Zg =5 >Zza,2r (6-18 )
00
The criteria of the above test is applicable for performing the
test on the failure rate( 4 ) of exponentially distributed products

e Hy:A<4, H:A>4,.
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Example 6-14

A random sample of certain exponentially-distributed-life
product was placed on alife test without replacement. The test
was terminated when the tenth failure occurred. Other data are ;

n=15, X, =18217915X ,, = 2099199 .

Perform the following test of hypothesis with o = %50n the
mean lifetime(6):

H,:0 <0,=10°cycles

H,:6>0,

Solution

, 20

Xo r=10, n=15a=5%
00

Thetest is of non-replacement failure-terminated type, therefore

according to Eq. 6.6

~ n-r)xX,.,+ ) X
U N (2)(10);5)?71391) .
r

Table E or MATLAB command chi2inv(0.95,20) Yyields:
Xoso =3LAL. 32> 42, = H :0<8,is strongly rejected, &

H,:0>0, is not rejected A
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6-8-3 Comparison of two designs

An engineer would like to compare 2 designs of a product.
From Design 1 arandom sample of size n; and from Design 2 a
random sample of size n; istaken and placed on life test. The
tests are terminated when " failure occurs in the sample of
Design 1 and r,*" failure occurs in the sample of Design 2.

rn <n; andr, <n, ae predetermined truncation points.

Supposethefailuretimesare S; = {xl(l), X1(2)s s X1(r1)},

Sz={xzu),xz@)»---»xz(rz)}- For simplicity S; will be
assigned such thatx; (1) < x5(1). If the lifetimes are
exponentially distributed, to compare their mean lifetimes

6,,0, i.e. performing the following test:

H,:6,=0,

16,#0,

1{@<@
The statistic under the null hypothesisis ka.L p265):
F, = ::j X C (6-19)

where

Ny Sample size taken from Design 1

N, Sample size taken from Design 2

I Truncation point of the test of Sample 11; < N4

Terminate the lifetest when r; t" failure occurs
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2 Truncation point of the test of Sample 11, < N,
Terminate the lifetest when r, " failure occurs
X.I(rl)‘ X2(r2) Occurrence time of rlth & rzth faillurein Design 1 & 2 respectively
%) %) The occurrencetime of first failurein Design 1 & 2 respectively
X1y X 20 Elements of the samples
F%,2r2—2,2r1—2 %-significa‘lce-level critical value of an F distributions
with 2r, — 2, 2r; — 2 deg of free.
Obtainable from Table A or MATLAB command
finv(1 =7, 2r, = 2,21, - 2)
C S
(n, — rz)(Xz(rQ) - X2(1)) + Z ()%(j) - X2(1))
C= =
(M= 1) (e = X))+ 2 (X ) ~ %)
i=1

Regection Criteria:

Reect H, if F_ isoutsde
For Hl . 91 * 92 9 0 ?

|: I:1—%,2r2-2,2r1-2 F%,2r2—2,2r1—2 j|
For H:6,<6, | RdectH, if K >Fa,2r1—2,2l'2 2

To test if the failure rates of the 2 designs are significantly
Ho: A =
different or noti.e. = ° A ﬂz,the above test could be used.
Hi4#4,
It isour duty to act in such a manner
that can beuniversalized i.e.
we would want everyone else to act

in asmilar manner
(Kant)
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Exercises!

In the problems, if the type of distribution is needed and not specified,

exponential distribution is assumed

1. The weather radar system on a commercia aircraft has

an MTBF of 1,140 hours. Assume an exponentia time to
failure distribution and answer the following questions:
(@) What is the probability of failure in a 4-hour flight?
(b) What is the maximum length of flight such that the
reliability will not be less than 0.99? (Assume that the

system is in continuous operation during flight.)

. The MTBF of a kind of tank is 810 kilometers.

Assuming an exponentia distribution:

a) What is the maximum mission length such that there
will be a0.98 chance of the tank returning?

b) What is the probability of the tank returning from a
160 kilometer mission?

¢) How many tanks should be sent out

on the 160 kilometer mission to obtain a probability of
0.99 .that at least five tanks will arrive at the target area
(assume 80 kilometers to target).

. Ten engines of a new design were each driven the

equivalent of 50,000 kilometers. Odometer readings

were recorded whenever an unschedul ed maintenance

1 Exercises 1 through 8 are from Chap. 9 K&L page 269 problems
1,2,3,4,6,8,9,10 g P Pad P
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action occurred. The odometer readings for each vehicle follow:
Motor .
Odometer readings
no.

1 220 11970 | 21397 | 27766

2 45270 | 48836

3 25695 | 25989 | 30980 | 32769 | 47459

4 4200 | 14672 | 21831 | 29187 | 31964 | 36535 | 44004

5 3900 | 29147 | 31613 | 37524 | 43601 | 45208

6 1275 | 21183 | 23649 | 33348 | 40907

7 3730 | 6300 | 11840

8 22565 | 22710 | 28301 | 31628 | 45784 | 47213

9 12759 | 14548 | 19539 | 41108 | 44550

10 12212 | 18727 | 41854 | 42169 | 47996

a) Can the data be represented by the exponential distribution? (@=01)

b) If answer to part (@) is yes, estimate the MTBF.

4. Thefollowing data represent kilometers to failure:

43000
27000
68000
46000

27200
4100
40500
2600

10600

200000
109000

2400

12400
18200
14200
24500

a) Assess the feasbility of using the exponentia
distribution to model this

situation. Assuming that the exponentia is applicable:
b) estimate the MTBF;
C) set a 90% lower confidence limit on the 10%failure

kilometer.

d) With 90% confidence, quote the 2,400 km reliability.
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5. An automobile was driven over a 120,000 kilometer test
course. The following represent odometer readings at

which a particular type of failure

4123 27720 63582
4497 28496 66057
10506 40887 100763
12317 48323

Assuming an exponentia distribution as representative, is there
any evidence that the failure rate in the first 40,000 km is different
than in the last 80,000 km? (a=0.1).

6. For a test vehicle, mgor eectrical failures occurred at

the following kilometers

63 17393 23128
114 18707 24145
14820 19179 33832
16105 22642 34345

The vehicle was driven atotal of 36,000 kilometers.

(a) Estimate the MTBF.

(b)Determine the 90% two-sided confidence interval for
the MTBF.

(c) Estimate the reliability function.

(d) Determine the 95% lower confidence limit for the
1,200 kilometer reliability.

(e) With 90% confidence estimate the kilometer at which
10% of the population will fail.

7. In 600,000 test kilometers accumulated on 6 vehicles, a

total of 69 failure occurred. Assuming an exponential

failure distribution:
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a) Estimatethe MTB

b) Find the 90% lower confidence limit on the MTBF.

¢) Find the 90% lower confidence limit on the reliability function.

8. A transmission valve operated for 9,276 cycles before
the test was discontinued. The test was stopped because
an oil pump failure caused the valveto burn out.

a) Set a 90% lower confidence limit on the MTBF.

b) A second valve of a different design failed a 19,460 cycles.
Management would like your recommendation as to which
valveisbest. What would be you answer?

9. (k&L pp239-240) A device was placed on 245-hr lifetest had
20 failures occurred on the following times:

Failuretimes during 245-hr lifetest
21.2 747 108.6 1574
499 76.8 112.9 164.7
59.2 84.3 127.0 196.8
62 91 143.9 2144
74.6 93.3 151.6 218.9

Ignoring the repair times, could we say that Time Between
Failure(TBF) follows an exponential distribution?

Hint: At first compute the TBFs which are the following values

Time between failures

212 0.1 153 5.8
47.9-21.2=26.7 21 43 73
11.3 75 141 321
28 6.7 16.9 17.6
12.6 32 1.7 4.5
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10. Plot! the OC curve (P, versus MTBF) for the following
sampling plan:

Twenty units are randomly taken from alargish sample, and

simultaneously placed on lifetest. Whenever an item fails, it

is replaced with another item selected at random from the

lot. If the test continues for 500 hr with not more than 2

failures accept the lot. If 3 failures occur before the 500 hr of

testing, reject the lot and terminate the test.

! Solution on Page 586 Grant & Leavnworth(1988)
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Chapter 7
Dynamic
Models,
Avallability,
Application of
Markov Chain to
Reliability
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v

Dynamic Models+ Availability, Application of
Markov Chain

Aims of the chapter

This chapter deals with time related reliability models or
dynamic models. Series systems and two but types of parallel
redundancy, namely active redundancy and standby redundancy
are introduced. Some system attributes such as maintainability,
serviceability as well as availability are defined. The chapter
also points out the application of Markov chains to reliability

analysis.

7.1 Dynamic Modelsin Reliability
Dynamic models (time dependent) are important, realistic,

and more appropriate than static models which were covered in
chapter 2. Incorporating time into static models , this chapter
deals with series, weakest link, active pardlel, standby
parallel (perfect switching and imperfect switching).

7-1-1 Series Systems

Series systems are thosein which all components are

required to be in a state of functioning for the system to be
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functioning. If a system is assembled of m components in series,
itsreliability(Ry;) is:
Rsys (t) = {11 Ri (t) (7'1)

whereR;(t),i = 1, ..., m arethereliabilities of the
components.

Proof No.1

n0=m=® RO =[[RO=][1-F O]
ws(t) t=1 t=1

R,.(0=3| . O] [R (t)J——i LOLR O

] # i

Therefore
i[f.(t)HR (t)]
Ry ' =
th(t)z - RS}’ (t): m =
> [IR®)
L), .0 _HHO 3
h. ()= .t
RO RO ZlR 200
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Proof No.2
—Th(r)d‘: o d
R(t)=e® = Ih(r)dr:—InR(t), h(t):—EInR(t)

Rgys (1) = Ry(1) x...x Ry (1) = In Rgug () = TInR; (1) =

le t) Zle(t) n21h
—1In = —InR; = H
dt s dt ! izll(t)

e ©) = SHNR,. 0 = -[-30, ©]= h,. )= 3 )

End of proof B

Now Suppose the failure rate functions of m independent
components of asystemare: h;(t) =1 + Citk, i=1,2,...,m
where  C; <A; sk constant values.

Thenusing Eq. 1-14-1

t _A.t_C.tki
R;(t) = e_fo hi(dr _ p=Ait=Cigyg

Andusing Eq. 7-1

m tk+1 m
Rsys(t) = exp (_tzi:1 A — Tr1 &i=1 C; ) (7-2-1)

+1

Let A* :Zﬁl/li ) c* =Z§Z1Ci , T:tzzilli:l*t
then (K&L p39)

* * o k+1
TSNV S O D i
1 t+l*><k+1>< P )

Rsys(t) =€
For large mit could be shown that :

limy,o Rgys(t) =77 = e~ 2214 = g tA' (7-2-2)
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That isthe time between faillure of aseries system, with largish
number of components with failure rate function
hi(t) = A; + C;t*, isexponentialy distributed with parameter

m
i=1/1i-

Notethat if h;(t) = A; Eqg. 7-2-2 holds regardless of the value
of m. By substituting C; = 0 in Eq. 7-2-1 this fact could easily
be verified.

Example 7-1

The fallure rates of an n-component series system are

constant values A;,l =1..N . The components are independent.

Find the failure rate function, the reliability function and MTBF
of the system.

Solution
The failure rates of the components are constant i.e. the

lifetime distributions are exponential. The lifetime of a series
configuration equals the lifetime of the component that has the
minimum life among the components. On the other hand the
minimum if some exponentially distributed random variables
has an exponentia distribution. Therefore the distribution of
this system is exponential with the following functions:

According to Eq. 7-2 ,the system failure rate function (h, ) is

Ny (t)=z h, (t)=z A,=constant
i=1 i=1
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Then thereliability functionis:

sts(t)—e (7-4-1)
The mean lifetime of this series systemiis
1 1 1)
MTBF = —— =— =Y = (7-4-2)
;\‘_ 1 i=1 Qi
~"' S MTBF

where MTBF, =6, :%. End of Example A

Mean lifetime and reliability function of a series
system of identical componentswith failurerate 4

Consider a series system having n independent components
whose lifetimes are exponentially distributed  with mean

1
MTBF,, :Z , then according to Eq. 7=4-1&2 mean time

between failures of the system and the reliability function the
system are:

_ -nAit
R(t)=e (7-4-3)
MTBF
MTBF =L = 4 St (7-4-4)
nA n

7-1-2 Series Chain Modéd or Weakest Link M odel

A chain-model system works like a chain. A chain is not
stronger than its weakest link.
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The series chain moddl is a series system in that if anyone
component fails the system will fail; however, the concept of
how a component fails is different. As an example of this
concept of failure, consider a circuit composed of n identical
components, and this circuit is subjected to thermal stresses. Let
us assume for simplicity that the thermal stresses are the main
cause of failure. In this situation the one component having the
least resistance to the thermal stresses will be the first to fail.
Then, in this case, the system reliability will be(K&L page 214):

Rgys = min(R; .1, ...,n) (7-5)
where R; is the reliability of the i"" component and describes the
component's resistance to failure from thermal stresses.

Calculation of a component reliability (R))

If the strength of a component and the stress applied to the

system are random variables denoted by &§,Sthe chain will

break if the applied stress exceeds the strength of anyone link.
Hence to compute the component reliability, their joint density

function should be integrated over § > s (see Fig 7.1):
R =P(6>9)=[[;_ f,s(65)dds (7)

With the assumptionthat 5 and s are independent:
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ee)

Tfs(s)“ fg(ﬁ)dﬁ}dS:.[:fs(s)[l— F,(s)]ds (7-7)

=S

R,

W

N

s ,

Fig 7-1 The region where the strength is more than stress

o

<8 <8

<8 <8

Let 6. betherandom variable representing the strength of the
n-link chain. Thiswill be:

5o =ming

where & isthestrength of thei™ link.

According to Eq. 1-42 in Sec. 1-12 on the minimum of a
random sample of size n from a continuous distribution F,(a), if

X ;) denotes the minimum we have:

Few(¥)=1-[1-F (y)]" (7-8)
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In the above chain model if the cumulative distribution function

(CDF) of the strength of each the nlinksis F;(y), then the CDF

of the chain strength, G(y), equals:

G(y)=Fyu(y)=1-[1-F;(y)]"
Where

F.(Y) isthe CDF of each link of the chain

Fs0(Y) isthe CDF of the strength of the weakest link.

On the other hand according to the concept of Eq. 7-7 i.e.

R = j:f .(S)[1-F;(s)]ds and the equation

1-F (y)zl-{l- [l-Fa(y)]"} we could conclude that the reliability

of the n-link chain which equals R.=P,(5>s) is obtainable from:

R = | fsG)[1-F;(s)]"ds (7-9)

Where
Re Thereliability of an n-link chain

F(;()/) The CDF of the strength of an individual component.

fs(s) Thepdf of the stressacting on the system

Note the similarity of Eq. 7-7 with Eq. 7-9 for n=1.
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Example 7-2

A system is exposed to heat stress whose vaue is
exponentially distribute with mean 500 °C. The system isa 10-
link series chain. The strength of each link is exponentialy
distributed with mean 600 °C. Find the reliability of the chain.

Solution

The probability density function(pdf) of the strength of each
link:

L b ot
fgpm(t):%e 600 F . (t)=1-e 600,

S

The pdf of the stress applied to the systemiis f _ = %Oe“m

According to Eg. 7-9:

Ry = |, f O)[1-Fyps ®)]'ds  n=10

s s 10
Ry, = :aloefm [e 600} ds =
56S
Rws = i sio 7%ds = i X —3000 = E
500 500 56 56

End of Example A
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It is worth mentioning that in this chapter the subsystems
(components ) of a system are assumed to be independent of

each other unless specified something else.
7-1-3 Parallel systems

A padlel system is one that will fail only if al of its
subsystems fail. Three models related to this kind is studied
here: active parallel redundant, standby parallel redundant and
shared load parall€l.

Definition of Redundancy

In reliability engineering, redundancy may be defined as the
duplication of the components of a system with the intention of
increasing reliability of the system and an aternative to failing
condition. Two types of commonly applied redundancy are
active redundancy and standby redundancy.

Active((Hot) Redundancy Definition

Active redundancy does not require the external components
or devices to perform the function of detection, decision and
switching when an element or path in the redundant structure
fails(Based on Li,2016). The redundant elements are aways in
operation to share the load of the system. This redundancy is
also called hot redundancy(Shooma,2002 page 336)

Standby Redundancy Definition

Standby redundancy is defined as the redundancy that

requires the external elements or devices to detect, make a

decision and switch to another element or path as a replacement
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for afailed element or path(Li,2016). In thistype extraunits are
not brought into use until the main unit fails. It is the primary
consideration in determining whether cold, warm or hot standby
isto be used(Lewis, 1994, p263).
Definition of cold & warm standby redundancy”:

In cold standby the secondary unit is under no stress.

In warm standby the secondary unit is under a stress less that
of the main unit and more than that of cold standby.

It is worth mentioning that if nothing is said about the
coldness or warmness of the standby components in this book,

they are assumed cold.
7-1-3-1 Reliability in active redundancy

In aparale system with active redundant, all subsystems are
working and if the components are independent, its reliability is

derived from:

R, ) =1-[1-R )][1-R,(t)]..[1-R, ()] (7-10)
Pr oof

Let X, denote the lifetime of the system, and X;, i=1,..n
denote the lifetime of the subsystems. Then in an active
redundant system:

' From: , Lewis(1994) page 263, Grosh(1989 )page169,Li(2016)and
https://www.weibull.com/hotwire/issue21/
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Pr(X; <t) = Primax(Xy,..,X,) <t]l=Pr(X; <t ... X, <t)
Assuming X;, i=1,..n areindependent:

PriX, <t ... X, <t) = Pr(X, <t)..Pr (X, <t
Pr(X,<t)= Pr(X; <t)..Pr(X, <t)
=

1- Rsys(t) =[1- Rl(t)][l - Rz(t)] w1 = Rn(t)] =

Rsys(t) =1- [1 - Rl(t)][l - Rz(t)] [1 - Rn(t)]

7-1-3-2 Reliability and MTBF in active system with exponentially-

distributed-lifetime components

In an active parale system whose components failure rates

/LI i =1..,nare constant(or the lifetimes are exponentially

distributed), the reliability of each component is calculated from
R(t)=e", t>0, and the system reliability is calculated from

Ry (t) =1—11[(1—e‘”* ) t>0 (7-11)

The Proof issimilar to that of Eq. 3-2.

Note that Eq. 7.11 implicitly shows that the lifetime of active
systems in not exponentially distributed.

Two- component active parallel system

For n=2 from Eq. 7-10 we could write:
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Rsys(t) =1- (1 - Rl (t))(l - RZ (t)) or

Ry ) =RO+R1)-ROR,()

If thefailurerate of the components are constants A, , 4., then from

172
Eq. 7-11:
Rsys(t) =1- (1 - e_tal)(l —e- t/lz) —
e-ﬂit + e—ﬂzt _e—t(ﬂﬁz?) t>0 (7-12-1)
If 4y, areequal (A=h,=2) then:
—oa M 2At "

Ros()=26" -7 =1-(Le™)’ (7-12-2)

The system mean lifeis:
] 1 1 1
(MTBF),_ .= tdt=—+———"— (7-13)

Three-component active parallel system

For n=3 from from Eq. 7-10
Rsys(t) =1 = (1 = Ry (1))(1 = R2(1))(1 — R3(1))

If thefailurerate of the componentsare constantsﬂ.l, /12, /13

then
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Rys®=1-(1—-e™M)(1—e 2)(1-e ) (7-14-1)

and the system mean lifeis:

MTBF,, = j R, (t)dt =

1 1 1 1 1 T-1-2)
— +
A, Dty Aty Ay thg AjA, A,

1 1
+—+ -
A, Ay

Mean lifetime and reliability for active parallel systems
having components with constant failurerate A
If al n components of an active parald system are

independent and their lifetimes are exponentialy distributed
with parameter A and mean lifetime ¢ then(based on
Garosh,1989 pagel35):

=0

k=1

MTBF

SysActive

(7-15)

x|

Table 7-1 gives the values of zki -
k=1

Eq. 7-15 could be verified for n=2 from Eq. 7-13:

n=2 MTBF =—+>--—=—=S¢
AL 22

and for n=3fromEq. 7 — 14 — 2:

=3 MTBE,=>3x 1+ -1 g
22 3 6 6
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The reliability of the above n-components active parallel system

IS
Rgys(l)=1-(1-e)n (7-16)

Table 7-1Valuesof M, = ¥r_,- for
n=1,...,32 (Grosh,1989 p136)
n| M, [n M,
1 11 17 [ 34295
2 |15 18 | 3.4951
3 118333 |19 [35477
4 120833 |20 |35877
5 122833 121 [36453
6 | 24500 |22 37343
7 125928 123 37343
8 27178 |24 [37759
9 129289 |25 [38159
10 129289 |26 [ 3.8544
11130198 |27 [3.8914
12131032 128 [3.9271
1313.1801 |29 [3.9616
14132515 |30 | 3.9950
15133182 131 [4.0272
16 | 3.3807 |32 | 4.0585

It is seen from Table 7-1 that "for a system to have double the

mean life of a single component, it must consist of 4

components. To triple the mean life the system must have 11

components. Theoretically, there is no limit to how much the

system mean life can be extended but the cost of extending life

through mere redundancy is usually prohibitive. Redesign

should be performed to excessive redundancy” (Grosh,1989 p 135).

Given the reliability function of an active paralel system,

R.aive (), the failure rate function is obtained from:
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& Renel®)

hactive(t) == m

(7-17)

7-1-3-3 Reliability of standby parallel system

Consider the standby parallel system shownin Fig 7.2. In the
n-unit system only one unit works and when it fails the one of
the n-1 standby units replaces it by the help of a switch. Upon
failure, this active unit is replaced with another standby unit.
The process continues until no more standby redundant units is

—Q/ 2

Switch

available.

n

Fig. 7,2 A standby parallel system
The switch could be an operator or a device such as a
hydraulic valve or eectric relay or a contractor. Let the
probability of successful operation of the switch for replacing
the unit be denoted by P.. If Psis 1 the caseis called perfect
switching; if less than one, the case is caled imperfect

switching.

Case 1. Perfect switching
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"Perfect switching means perfectness of a detection and
switching mechanism used to detect failure of a component and
to activate a redundant component"*. In other word
Perfect switching is a situation where the reiability of the
switch when needed to perform its function is 100% (Ps=1) i.e.
no failure is assumed for the switch when needed to perform its
task. Below the reliability of systems having one active unit and
n-1 standby redundant (backup) units are analyzed.

Perfect switch : Two-component paralle system

with an active unit and a standby redundant unit

Consider a system with one active subsystem(unit) and one
standby (backup) unit which replaces the active upon failure by
the help of a switch of 100% reliability (Ps=1). The reliability of
this system is(K&L page 219):

2 —_— - t _ r i r l:
R, 07RO jo R,(t t){dt, Rl(t)}dt 15

=R, O+ 'R, (tt)f, (1)t

Where

Reliability function of a system having one

;UN

standhy active unit and n-1 standby redundant units.

. Pradip Kundu & Asok Nanda, Redundancy Allocation in a System: A Brief Review
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Rl(t) Reliability function of the main unit
F\’z(t) Reliability function of the redundant unit
f. (1) Pdf of the main unit

For proof, interested readers could refer to Lewis(1994) page
255 or K& L page 219.

Example 7-3-1

A system has one active unit with failure rate 1, = % and

one standby redundant unit with failure rate A, = 110 When the

active unit fails a perfect switch replaces it with the other unit.
Calculate the reliability of the system.

Solution

The constant failure implies that the life time is exponentially

distributed ; then R, (t)=e™",R, (t)=e™ . According to Eq. 7-18:

|§slandby (t):Rl (t)_-“ot R2 (t_t') |:% Rl(t,) i|dt '=

e—)ﬂt _I te_ﬂlz (t) ilei;lltl '—=

0 dt
ot [t T e A i [ et gy
=€ +.[oe [;Lle }jt =€ +/1le .[oe dt'=

2
R ()=e™ +re™ 1 (e -1)
standby Ay -Ay
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j'1:2% /12:%

R " (20)=exp(-20/10)+(1/10)* exp(-20/25)* (exp(20/(1/25-1/10))-1)/(1/25-1/10) = 0.8842
stan

End of Exampled

Perfect Switch : Two-component parallel system
with identical active and standby units(failure rate= A1 )

Assume that the main and standby units are identical, each

with a constant failure rate A and the switch is perfect. Then:
2
Rys(t)=e"(1+4t) t>0 (7-19)
Pr oof
Since Ry(t)= Ry(t)=e ** then according to Eq. 7-18:
R (0)=R,®0)-['R,tt) LR, 1) dt=
gy DFRIO-[ Ra(t0) | SRy (1) =

e’ - L:efwft [-ae Tt dt=e M + AteH =e ! (1+ At)

End of Proof . W
Example 7-3-2
Caculate and compare the reliability of two configurations

of a two-unit system (active parallel and standby parallel). The

failurerate of the unit is 5%.

Solution
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Since the components failure rate is constant, the lifetime is
exponentially  distributed. The reliability for standby
configuration is calculated from Eq.7-19.

2
R ()=e”(@+A4) t>0
mb,() (1-+At)

The reliability for active configuration is calculated from
Eq.7-19.

Rsys(t):l—f[(l—e_”*) t>0 4=4=21

Thenfor t =10, A=15

2 2

R =91%, R =845%

sandhy adive
2 2

for t=100, 1=2,R  =4%, R =13% A
standby active

Perfect Switch: Three-unit standby system (1 active
& 2 standby)

For the reliability of athree-unit standby system the
following relationship holds (K& L p 220)

3 2 t t-t;
Ry 07RO RO, RGREL)LAG (7-20)

where
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S The reliability of 3-unit standby system
2 The reliability of 2-unit standby system

fi  Thedensity function of active unit
f Thedensity function of standby unit No. 1
R;(t) The density function of standby unit No. 2

If the 3 units are identical and their lifetime is exponentialy

distributed with parameter A then:
2 (1)’
R (t)=e™|1+At+ 5 t>0 (7-21)
sys

Example 7-4

The reliability of the water supply system of a city is a
concern of the city council. The council would like to ensure
the inhabitants that the system will work for 20 years with a
reliability of 95%. At the time being the water is supplied by a
reservoir and a river ( with mean lifetime of 25 and 10 years
respectively) in paralel. The water is then disinfected in a
building that has an active unit for disinfection and 2 standby
backup units. Each of the disinfection units is designed for a
useful life of 25 years. After disinfection the water goes to
distribution subsystem, which is 99% reliable. The council isto
decide whether to allow the municipality to add a deep well to
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the water supply subsystem or not? What do you suggest?.

Assume al life times are exponentialy distributed.
Solution

The RBD of the system of the Proble3m is as follows:
Disinfection

EReservor [ 1 1 l[—
_|_—:_ Distribution
— 2 1

River —{ 3 }—

Fig 7.3 The RBD of the wateter supply system of Example 7-4

1 1
Data: ¢t = 20 ’ AReservoir = }\Disinfection =
25 25
A = — Rpistributi = 0.99
river = 15 Distributionynijt — “°

The reliability of the first subsystem (reservoir+ river) is
calculated from EQ.7-10, assuming the reservoir and the river
are both active:

RO =1-(1-ex)(1-€ex)
=1—-(1-0.4493)(1 —0.13532) = 0.5238

The 20-year reliability of the second subsystem
(disinfection unit) is calculated from Eq. 7-21:
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2 22
R(t)—e’“{1+ﬂt+@} R(20)=e— (14+ =+ 252) 0.932

The entire system reliability is currently:

Rgys = 0.5238 x.932 * .99 = 0.4833
Suppose the permission for awell of reliability of R' isissued by
the council; then the system reliability would be:
Rsys =[1-(1-.4493)(1-0.13532)(1-R)]*0.932*.99
It is evident the if even if R' has its greatest value i.e. 1 the
system will have areliability of [1-(0)] *0.932*.99= 0.9227.
The council cannot issue the permission because is interested
in 95% reliability. End of Exampled

Perfect Switch: n-unit standby system (lactive & n-1 standby)
Consider an n-component system has 1 active unit and n-1

standby units whose lifetimes are exponentially distributed with

parameter A . If the switch is 100% perfect then(O'Connor 2003
page 167,K&L page 221):

n S oy
R, O=e ¥ (7-22)
standby ()= R o (t) (7-23)

Rstandby (9]
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Comparison of Two 2-component parallel
configurations (active and standby)

Figure 7.4 shows "both the reliability and the failure rate for
[2-component] active and standby parallel systems, aong with
the results for a system consisting of a single unit with the
assumption that the lifetimes are exponentially distributed. At
intermediate times the failure rate for the standby system is
smaller than for the active parallel system. Thisisreflected in a
larger reliability for the standby system(Lewis, 1994 page 256).

-__'Slandhy
parallel

Active parallel _ Active parallel
-

h(t)

Rt

—__Standby

edr—""
paratlel

At AT
(2) (b}

Fig 7-4 Properties of two-unit parallel systems(Lewis, 1994 page 256):
a) instantaneous failure rate b) Reliability function

Failure rate and mean lifetime of active & standby

parallel systems having similar components

In this section active and standby configurations of a parallel
system having similar subsystems are considered and their
mean lifetime and reliability functions are mentioned.
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2-& 3-component active and perfect switch standby

systems

Failurerate function of 2-component systems:
a)The instantaneous failure rate function of an active parallel

whose two active components have exponentially-distributed

lifeis given by:
hactive (t) == 1 dRactive (t) =
Raot) at
1_efﬂvt
hactive (t) =1 [1_ ol&,m J (7_24)

b)The instantaneous failure rate function of a paralel system
with 1 active and 1 standby component and a perfect switch
whose 2 components have exponentialy-distributed lifetime is:

L 4R t)=

M) =2~ D

At

hstandby t)=4 (mj (7-25)

Mean lifetime of 2-component system

The mean time to failure(MTTF) of a system could be
calculated from integrating its reliability function over(o ):
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MTTF = jw R(t)dt . (7-26)

If the mean lifetime of a component((MTTF,,, ) is given.
The mean lifetime of an active parallel 2-component systemis:

MTTF, . = SMTTF,,  (7-27-1)

active — 2
And that of astandby paralel 2-component system is:

MTTF gy =2MTTF, (7-272)

Mean lifetime of 3-component standby system

Given the lifetime of each component , MTTF ina3-

part !
component standby system whose switch is perfect i.e. p,=1

and has 1 active and 2 standby independent components, the
system mean lifetime is given by:

MTTF gy =3MTTF (7-27-3)

Mean lifetime of n-component standby system-perfect switch
Given the lifetime of each component, MTTF_,,, inann-

component standby system whose switch is perfect i.e. p,=1

and has 1 active and n-1 standby independent exponential-

lifetime components, the system mean lifetime is given by:

MTBFgandbyz%:n xMTBF,,,  (7-27-4)
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Where 2 isthe parameter of the exponential distribution of the

lifetime of each component .
Pr oof

The lifetime(X) of a system having 1 active unit,n-1
redundant standby components and a perfect switch is the sum

of the lifetimes(X; i=1,..,n) of its components:

Xstandby = D=1 Xi — E(xmw)zE(in)ziE(xi):ZMTBFi

E(X gay) = EXX )= Y E(X, )= Y MTBF
If X;isexponentially distributed with parameter A then:

1
MTBF,, = ZZ (7-27-5)

If 2 =..=4,=Athen MTBFMW:%:anTBFW and the

proof iscomplete. n
Example 7-5

A system has 1 active unit , 1 cold standby unit and a
perfect switch. The failure rate of both units is 1 failures per
1000 hours. Calculate 100-hr reliability of the system.

Solution
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t=100, 2=0.001, according to Eq. 7-19

2
R ()=e™(1+Art) =0.99532
standby

Noticethat if both units were active the according to Eq. 7-10:

2

R_ (100)=1-(1-€™)*= 0.9909 .A

Reliability function and lifetime pdf of n-
component standby system-Perfect switch

This section deals with the probability density function of the
life time and the reliability function of a system having 1 active

unit and n-1 cold standby units.

Life pdf & reliability for Perfect switch: 2-component
standby system

A single unit is put in service. A perfect switch replacesit by
a cold backup unit as soon as a failure occurs. The density
function of the lifetime of this system is derived from the
following convolution(Grosh, 1989 p164):

fe®=] L@, t-2)k (7-28)

where
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f.  The pdf of system lifetime(T)
f, The pdf of the main device lifetime(T,)
f,  Thepdf of the backup lifetime(T,)

Special case: Constant failure rate & perfect switch(P, = 1)

If both devices have constant failure rates 5 ), and P, = 1, the

lifetime pdf of the system isasfollows:
foys(£) = 7272 (e 742t — =t (7-29)
5ys A1=2;

Pr oof (Grosh, 1989, pagel166)
t
fos(t) :L:Ofl(z)fz(t —z2)dz =

t t
fiys(t) = f A e ™MZ),e (=D qy = ) ,e et f e~ =%)2) g
0 0

_lllze_lzt _(Al_AZ)t _ Allz _Azt 1112
T A, [1 € ]_/11—126 +/12—,11

e—llt =

A1z

2t _ ,-2t\ B
T (e e )

fsys t) =

Theréliability function in this case iS(Grosh, 1989, p166):

“at it
Ry, (1) = fe_ o j:e_ z (7-30)
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Pr oof:

According to Eq. 7-18:

R, (H)=R l(t)+_[; R, (t-t)[f,(t) dt'=e ™ + J.; g2t [ﬂle’“' ] dt' =

_ e ae”
&S(t) - 21_/12 " }“2 _ﬂ'l

Noticethat for ; = 1, = AuseEq. 7-19i.e. R (t) —e M 1+ At) u

Life pdf & reliability for Perfect switch: 3-component
standby system

A single unit is put in service. A perfect switch replacesit by
acold backup unit as soon as afailure occurs. When the backup
fails, it is replaced by the other back. The density function of
the lifetime of this system isderived from (Grosh, 1989 p165):

=] [ fwne-wi -2 T

The mean lifetime of this system and its reliability function is

derived from :

Ry (t)=] f,, ()i

MTTF,, = Lioxf 4 (X)dX = j:’R%(t)dt

(7-32)

(7-33)

where

f The pdf of the system lifetime(T)

sys
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f, The pdf of the main device lifetime(T,)
f, The pdf of the 1% backup lifetime(T,)

f, The pdf of the 2™ backup lifetime(T>)
In the above discussion it is assumed that the backup units

are cold i.e. they are under no stress when they are in the
standby mode.

In this three-components system if al units have the same
constant faillure rate A , the reliability function is calculated from

2
Eq. 7-2lie R (t)=e™ {1+M+%} :
sys

Reliability of n-component standby system : Perfect Switch

Consider a case where 1 unit is active, n-1 components are
cold and in standby mode and the switch is 100% reliable. If the

units have constant failure rates A,...,4, , the rdiability

function of the system would be(Garosh,1989pagel69):

n

n n ﬂ,
R t)=)e*][—— (7-34)
sys( ) 'Z:l: 111 A=A

j#i
If A, =...=A, =Athen(Grosh,1989 p167):
n-1_—-Axt
N (At)"e

R (t)=e ™ +ite ™ +....
sys (n —1)'

(7-35)
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n

4 1
Remember as proved earlier MTTF ¢ = ZMTI'E = ZZ gives
i=1

=1

the system's mean time to failure and for 4, =...=4, =4

MTTF, =

~|S

In the above discussions it is assumed that the backup units
are cold i.e. they are under no stress when they are in the

standby mode.
Case 2: Imperfect switching

In this case the switch has a rdiability of less than 1; i.e.
failure of the detection and switching mechanism is probable
and therefore the standby unit cannot replace the failed unit. Let
Ps denotes the probability of falure of the detection and
switching mechanism. Ps could be estimated as follows
(Billinton & Allan,1992)

P =

w|>

(7-36)

where

A =the number of times the switch works when required

B =thetota number of timesthe switchisrequired to perform

its function
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Imperfect switch ,2-component standby system:

Reliability function and life time pdf

Let R(t) denote the reliability function of a system having 1

active unit and n-1 redundant standby units with an imperfect

2
switch(Ps<1). R(t)isobtained from(K& L page 221):

R Q=R FORCOX (7-37)
where

2
R(t) Reliability function of 2-component standby system
s

R () Reliability function of active unit

R,(t) Reliability function of standby unit
Notice that
- Although it is probable the standby unit does not work when

required to replace the active unit, this probability has not been
taken into account.
- Substituting P; = 1 into Eq. 7-37 yields Eq. 7-18.

2-component standby , constant failurerate

| mperfect switch with reliability Py
Consider a system which has 1 active unit with constant

failure rate A;, 1 redundant standby unit with constant failure

rate A, and an imperfect switch having reliability PS =1-p<I.

2
R(t)is obtained from(Lewis, 1994 page 340,341):
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R ()=e + L= P A gu g 7-38
ny ) ( ) (7-38)
Let theunitsaresimilari.e. 4 =4,=4 then:

R (O1(1pale” —*1+PA)  (7-39
Sys

where

p = the failure probability of the switch when required
to perform its task

P =1-p =switch reliability

2-component standby , constant failurerate

I mperfect switch with reliability function R¢(t)
Consider a system which has 1 active unit with constant

failure rate A;, 1 redundant standby unit with constant failure

rate A, and an imperfect switch having reliability function

2
R<(t). Inthiscase R(t)is obtained from(K&L page222):

sys

n=2 R O=RO+[ LORORE-OX a0

where
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2
R(t) Reliability function of 2-component standby system
s

R () Reliability function of active unit

R,(t) Reliability function of standby unit
R. (1) Reliability function of switch

f pdf of main unit lifetime(T,)

Special case: Constant failurerates

Let failure rates of the active unit, the cold redundant standby

unit and the switch is constant and equal 4,,4, & /”LS then:

MTTFsys=ftF23 (t)at = 2 * .
0 sys Ai (ﬂ,l—ﬂuz‘l‘ls)(/ll'i'/ls) (/,{’1_124_//{’3)/12
or
MTTR,, =—+— 2 (L . 1) (7-41)

P R M Y N

Furthermore if ﬂl = /12 =A then:

1 Y -1 1
MTTF, =—+ +—-)=
yoseny 2 /1—/1+/15(/1+zs 7

For asystem with 1 active, 1 standby unit and imperfect switch

1,1 * (7-42)

MTTF - —
ysstandby 5 Ay A (A+A)

where

A =thefailurerate of both units
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ﬂ“s =the failure rate of the switch

Eq. 7-40 for this case yields(K& L p222):

2 -At
R (t)=e A {ui(l_e s ﬂ t>0  (7-43)
sys A

S

The mean timeto failure of is calculated as follows:

TR P P A PIAL
M'ITFS/S_'([R%(t)dt—E[e {1+&(1e )}]\:

MTTF,, =1+i—# whichisEq.7-42.
2 Ay A (A +A)

Using Eq. 7.39 for the rediability function of a 2-component system

whose active and standby units have the same mean time to failure

1
MTTF =zand the switch isimperfect with reliability P, :

1+P,

<2
T L T
0

Notice;
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2
-Substituting P ;=1in the above relationshipsyields R (t) and
Sys

MTTF, for perfect switching which we saw earlier.

-The reliability function of a two-component system having similar
active and standby units with the same failurerate A is:

Cdculated fromEq. 7-43 i.e. R (t) e‘“{u ( ﬂstj given
A

7\3 asthe switch failure rate

Or is caculated from Eq. 7-39i.e.F22 t)=e™(L+Pt) if the
sys

reliability of the switch is given as a constant value Ps.

Example 7-6"

A system is composed of 1 active unit A, 1 redundant
standby unit B and a switch S. The lifetime of the units is
exponentially distributed with 1 failure/1000hr. The key has a
constant rate of failure per 10000 hours. Find 500-hr reliability

of the system and its mean lifetime.

SWITCH

! From Dr _Eshar‘ghs pamphlet, Faculty member of Sharif University of Tech
, Tehran. FigurefromK & L p
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Solution:

Eq. 7-43 givesthe reliability function:

2.=10° failure/ by =1x1000™, /g =1x10000™* =10 t =500

2

R (t)=e ™ {1+A (1—e_ﬂSt ﬂ: 90.2%
¥s s

Eq. 7-44 givesthe reliability function:

— L =1909.9hr End of Example A

L
A A (A +7)

1
MTTF,, ==

Example 7-7 (Ebrahimi, 1992, p 267)

The failure rate of a device is constant and equa to 500
failures per 1 million hours (4 =5s00x107%). To enhance the
reliability another unit is used as standby redundant which
replaces the device upon failure by switch having 97%
reliability. Find 1000-hr reliability of this system. Solve the

problem again for a perfect switch.
Solution:

Eq. 7-39 givesthereliability function. For Py = 0.97:

2

(t) = e (1 + Pg X At)
Rsys
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2

g (1000) = e %5(1 4 0.97 x 500 x 10~° x 1000)=0.9007
Sys

ForPs =1 fromEq. 7-19:

2

r_ (1000) = ™ (1 +4t) = e~*5(1 + 0.5)=0..9098
Sys

At =500 x 107% x 1000 = 0.5 is the mean of the failures of
each device per 1000 hours. End of Example A

Comparison of reliability function of active and

standby systems-imper fect switching
Egs. 7-43 &7-45 give the following 2 apparent different

relationships for 2-component standby system-imperfect switch:

oy et |1, A (g AL
12y|:2(t)—e {1+/1(1 e ﬂ t>0

S

2) sé(t) =e " [1+(1-p)At]=e* @+PAt) t=>0

if the failure rate of the switch( A ) is given the former relationship is

used, if the reliability of the switch( PS) isgiven the latter isused.
Question: Arethese 2 relationship equivalent?

Answer: Suppose they areequdl i.e.
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e {1+%(1—e_’15t H —e " [1+(1-p)it]=e " (1+Pat) =

e Al

° At

This the switch average reliability. That is they would be
equivalent if P, is calculated as the average of its reliability

function (¢! )of constant- failure- rate switch over period(0 t):

J e_;lStdt l_e_ﬂst

switch average reliability = Ps =2 (7-46)
t-0 Ad

2-component standby system with similar units,

imperfect switch and warm redundant unit

Consider a system that has an active unit and a standby unit.
both the main and the secondary units have the same failure rate
A but the secondary unit has A* as failure rate while is standby
mode. The switch isimperfect with the failure probability p=1-Ps.

The expression for the reliability function of this system is

(Lewis, 1994 p262):
R )= H|1+P, xj“—+(1—e‘“) (7-47)
sys

The system mean time to failuresis calcul ated as follows:
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t t_ A a7
MTTFgs :jo Reys et :Le M- p)Fa-e 27 |dt =
1+ 1 Psl 1+ 11_f
+4- +4-
MTTF,, = L= 2 7-48
o 7 7 (7-48)
Where
Y Switch failure probability
P.=1-p Switch reliability
A Failure rate of each unit whilein active mode
At Failure rate of secondary unit while in standby mode

Example 7-8

Consider a 2-component standby system in which the switch

for replacing the units is imperfect and its lifetime is

exponentially distributed The main unit and the secondary units

when becomes active fail at the constant rate of 1 . We know

that:

Given the failure rate of the switch(As),the reliability of the
system is calculated from EqQ. 7-43 i.e. (from: K&L p222):

'2?% t)y=e* {1+ %(1_ oAt H

S
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If the failure rate of the secondary unit while in standby
mode is A" then given the value Ps for the reliability of the
switch, the reliability of the system is calculated from Eq. 7-47
i.e. (from: Lewis p262):

2 +
R t)=eX|1:p 2 et
s A

a)Specify a condition under which these two expressions
identical if 21+ =4 .

b)If in Example 7-7 1+ = so0x10~® under which condition do

the 2 relationship give the same result?
Answer :a)

Substituting 2+ = 2 in second relationship and equating the 2

expression we would have the following result:

Therefore e is expanded as follows:
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e =142 (e X0)4 ...

1!

Thereforee ™t =1 — At or

1e My (7-49)

Therefore we must have

_ _ C oAt
1_e ﬂ“st Xi_ 1_e //Lst B J.O e dt
p) FTEEY. t

That is under the condition that the value given for the switch

reliability( P,) equals the mean of reliability function of

exponential- distributed —lifetime switch over period(0 t) the 2

expression give the same results.

Answer: b)

Since the specified 1+ equals A in Example 7-7, therefore if

AL /A x1000
P, =167 or 0.972187
At A x1000

or = 61 * 107° the 2 relationship
give the same result.

End of Example A

Therefore the following expressions for the reliability of atwo-

component standby system ( imperfect switch warm standby )

2 +
R ®)=e M|110- p)j—+(1—e_’“)
sys
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2 _
R —e” [1+ i(1—e At ﬂ t>0
sys y)

S

R t)=e"[1+@-p)it]=e* @+PAt) t>0

Givethe sameresultsif thefailurerate of the redundant unit
while in standby mode equals the failure rate of the active unit
(2+ =2 ) and the given reliability value for the switch(Ps) equals
the value obtained from Eq. 7-46.
Example 7-9( Lewis 1994 page 262)

An engineer designs a standby system with two identical
units to have an idealized MTTF of 1000 days. To be
conservative, she then assumes a switching failure probability of

10%(p=0.10 or P,=0.9) and the failure rate of the unit in

standby of 10% of the unit in operation i.e. A"=0.10A.
Assuming constant failure rates, estimate the reduced MTTF of
the system with switching and standby failures included.

Solution

The system has n=2 components (1 active 1 standby). Since
the failure rate of each component is constant; therefore the
distribution of the lifetime of the units are exponentialy
distributed .

Let 1 = the comstant failure rate of each unit in operationi.e. when is

active. If the standby unit were cold, according to Eq. 7-27-4 for the
idealized case:



399 Reliability Engineering

MTTFSVSZZX% = 1000= 2x% = 1= 0.002 per day.

In imperfect switching according to Eq. 7-48 with p =0.1&

At =0.101:
1. 1P 1-01
1+L 1+
MTTFgs = #— 1+01 - gpggays
2 0.002

End of Example A

The relationships for 3-component standby systems could be
studied in K&L pages 221-222. The interested readers in the
reliability function and the MTTF of the general case n=n, could
refer to Niaki & Y aghoubi(2020).

7-1-4 Shared load parallel configuration®

Up to now when analyzing redundancy, independence was
assumed among the units within system. In other words, it was
assumed that the failure of a unit does not affect the failure rates.
In this section , the load-sharing systems are considered, where
the assumption of independence is no longer valid. When units
in a system fail one by one, the total load of the system is
redistributed among the surviving units, resulting in an increased
load shared by each surviving unit. For an example of load

sharing consider a section of a machine which has severa

TK&L page 222, Lewis(11996)page 260&chapterll
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screws When a screw break, the total load is redistributed
among the surviving screws.
Here analysis will be limited to the case of two units. In this

load sharing case the reliability function of the system is(K&L
p224):

R.0)=[R,®)] + 2j; 9L)R, )R (¢ —t )t (7-50)

Where

g(t) The pdf for TTF under half load
f(t) The pdf for TTF under full load

Rl 1Py
R (t) =5 (s

For the proof refer to K& L page223.

For many probability density functions, calculation of Eq. 7-
50 is difficult. As an easy example constant-rate-failure is
considered.

Special case:

2-component shared loading: constant failure rates

Consider a load sharing system that has 2 identica
components. The failure rate of each is constant i when both
units work. The failure rate increases to another constant

e o At At
when one unit fails. substituting gt)=A,e ° ,R,()=e ° and
R, ()=e™ ' in Eq. 7-50 gives the system reliability function
for this case as follows(K& L page 224)
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t

_ 21
R, ()=e" ' R (1) =& to € —e?y (751

g
Where

A¢ Half load failure load
A Eull load failure load

Example 7-10

Consider a 2- component load sharing parallel configuration
in which the failure rate is 1x 1073 per hour under partial load(
haf load here) and 4x 10~3 under full load. Calculate 1000-hr
reliability of the system.

Solution

Ag = 0.001 per hour ,A¢= 4 x 1073 per hour

According to Eq.7-51:

22,

R, ()= +—2 (e -e™)
22, — 4

Rgys(1000) =

—2X0.001x1000 + 2x0.001 ( —0.004%x1000 __

2 x0.001 - 0.004
Using MATLAB

=exp(-2*0.001* 1000)+2* 0.001* (exp(-0.004* 1000)-exp(-2* 0.001* 1000))/(2* .001-0.004)
= Rgys(1000) = 2524%  End of Example A

e

e—2><0.001><1000)
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7-2 System Effectiveness Measures

Reliability is not the only index used to characterize the
performance of an engineering system. Some other features are
serviceability, maintainability, operationa readiness and
availability described below.

Serviceability

Serviceability is the measure of the features that support the
ease and speed of which corrective maintenance and preventive
maintenance can be conducted on a system. In a smple
statement we could say serviceability is used to present the
degree of the difficulty with which equipment can be repaired.
When it is said equipment 1 is more serviceable than equipment
2, it ismeant that the better Serviceability the shorter the active
repair time.

Thisindex is difficult to measure on aratio scale; however it
can easily be measured on an is usually expressed as ranking.

Serviceability is difficult to measure on a ratio scae;
however, it can easily be measured m ordinal scale by a
specificaly developed rating and/or ranking procedure, which
requires that systems be compared and ranked according to the

ease of serviceability (Handbook of industrial Eng’g edited by Gavriel Salvendy ).
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Maintainability

In MIL-STD-721C, maintainability is defined as follows:

The measure of the ability of an item to be retained in or
restored to specified condition when maintenance is performed
by personnel having specified skill levels, using prescribed
procedures and resources, at each prescribed level of
maintenance and repair(Ireson, et a, 1996 page 15-3)

While the reliability engineer is concerned with many
physical characteristics that affect system components, such as
temperature, humidity, shock, and vibration, the maintainability
engineer will be concerned with the physical partitioning of a
system into repairable items; the accessibility, weight, and
volume of these items; the skills and training of maintenance
crew; and the availability of the appropriate tools and equipment
for conducting maintenance activities(lreson, et a, 1996 page 15-3).

The maintainability index of a machine is the probability that
it restores to working status within a specified period. Notice by
the term "down time" used sometimes here it is meant all the
time period the machine is out of service. This time period
includes the time necessary to detect the failure, the repair time,
administrative and logistic times.

Maintainability function

Maintainability function for a device, denoted by M(t), is the
probability that the maintenance task considered will be
successfully completed before a specified timet:
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M () = Pr(T oy <t) (7-52-1)
where random variable Tyepair 1S
Trepair = The time required for completing the service,

maintenance, replacing new units. ..

If m(t) denotes the probability density function of Tpepair then:

M (t) = j; m(x )dx (7-52-2)

Therefore the maintainability  function for a device,
represents the probability that the device restores( gets out of
down state) successfully within a specified time. It is worth
noting that exponential, log-normal distribution Weibull are 3

distributions frequently used for service times.

Example 7-11

The total service and maintenance time of adive has
the pdf ., 1)=,-vt , find the maintainability function
of the device.

Solution

t
M (t)=1-e7 =1-e ? End of Example A

It is worth mentioning the term dependability has been
introduced to cover all important aspects of a device to function
satisfactorily including reliability, availability, maintainability,
quality and safety. Interested readers could refer to references
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such as Standards IEC 60050-192 & I1EC 60300 , Eusgeld et a 2008)
and Martha et al (2022)

Mean time to repair(MTTR)

A widely used maintainability parameter isMTTR . For an n-
component system it is calculated from(lreson, et al. 1996 page
15-6):

SAMTTR)
_i3 _ % (7-53)
MTTR = = MTTR
> 2[24 J( K
where
A Failure rate of thei™ repairable component

MTTR Mean time to repair i™ repairable unit

n number components in the system
A A fraction of failures per unit time related to
Zl‘ -th t

i uni

It might be useful for some readers to know that some
references such as the manual of MIL-HDBK-472 standard
deal with MTTR in details. Thismanual is comprehensive
design tool for maintainability prediction analysisincluding
caculating MTTR.

Operational readiness(OR)

"The term operational readiness(O.R.) is defined as the
probability that either a system is operating or can operate
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satisfactorily when the system is used under stated conditions.
Operational readiness is more encompassing than the term
availability" (K&L page 225).

3 time periods are used in the calculation of OR(K& L p 226):
operating time+idletime

— —— , (7-54)
operating time+idletime+down time

OR.=

Example 7-12(K&L p226)

The following figure shows the status of a machine over a
time horizon graphically. Suppose the total operating time of
the machineis 8 time units, the idle time and the downtime is 6

time units each. Calculate the operationa readiness of the

machine
i“* ~~——— Time horizon ﬁ
2 £ £ : £
s (B EE |32 i olzl &
@ £s s H
: | B |
£ -1 g H
L‘Dmnn lime‘y-!
Fig 7-5 A Machine status over atime horizon(K&L p226)
Solution
ing time+ideti +
OR = operating time+idletime 8+6 070

- operating time-+idletime+down time - 8+6+6
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This mean that the machine is ready to perform its function 70%
of thetime. End of Example A

7-3 Availability

Availability asameasure of system effectiveness is defined
"as the probability that an item will be available when required,
or the proportion of total time the item is available for use"
(O'connor,2003 page 300). At first availability is studied for
the case where different times(operating, down..) are fixed and
not variable. Here availability is denoted by A . Availability
which excludes free(idle) time would be estimated from(K&L
page 227)

A operating time

=1 : (7-54-1)
operating time-+down time

7-3-1Intrinsic Availability

Intrinsic availability index(A4,) of amachine does not include
administrative time and logistic time in the down time of the
machine. In other words , it ignores administrative delays( such
as the time it takes to find a repairman, spare components,
tools...) and uses only operating time and actual repair time .
Therefore A, is computed from(K& L page 227):

operating time
A= . . (7-55)
operating time +a.r.t

where ar.t. isthe actual repair time shownin Fig 7-5.
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Example 7-12:

The down time in one complete cycle of a machine is 6 time
units and its operating time is 8 units(See Fig 7-5). Find the
machine availability (A).

Solution

A=

operdling Tme____ p -8 —g57-570
operating time+ down time 6+8

End of Example A

Example 7-14 In Example 7-13 if the administrativetimeis
one time unit , and the logistic timeis also one time unit. Find

theintrinsic availability.

Solution
A = operating time
= operating time +ar.t
ar.t.= total down time- administrative& logistic times=6-2=4.
— — — 0,
AI_8+4—0.69—66AJ
Examples 7-13& 14 show that by eliminating the administrative

and logistics time in the repair cycle, the current availability of
0.57 can be increased in the limit to the intrinsic availability of

0.66. Thereisapotential for a 9% improvement in availability.
End of Example A
7-3-2 Availability function

The availability , like the reliability ,is time dependent. The
above reationships for avallability give fixed vaues

independent of time.
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The reliability function for reparable systems A(t), is
defined as the probability that the system operates at time t
irrespective of its past history of breakdown and repair(Grosh,
1989 page 268).

Assuming specific models for both the failure and downtime
(repair time)distributions, the maintainability and availability
functions could be derived. Considering the simplest possible
case (using the exponentia distribution with parameters A and u
respectively for timeto failure and repair time) yields a
differential equation for availability function of this ssmple case

dA(t)

(K&L page228): e =—(A+p)xAlt)+u

The availability function for repairable systems -time to

failure (TTF)and repair time :exponential

The following solution of the above differential equation is
the availability function for a system with exponentialy
distributed TTF and downtime (repair time) having parameters
A& respectivel y(Grosh, 1989 p 270, K& L 280)

Alt)=—H—+ _ A At

(7-56)
u+A A+u
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7-3-3 availability function for nonrepair able systems:

exponential lifetime

For a system which is not repairable 4 =0. If the lifetime of

the system is exponentialy distributed, from Eqg. 7-56 it is
concluded that its availability equalsitsreliability at timet:

nonrepairable system A()=R(t) (7-57)

7-3-4 Steady state availability

A fraction of thetotal time that the deviceis ready to perform
its duty in the long range is called steady state availability
dented by A, If the operating time (TTF) of the machine is

exponentially distributed with mean MTTF:% and the down

time has the mean MTTR:E as an index of maintainability,
U
then(K& L page 228):
— 1 - _* _58-
A =lim;,, A(t) = 7 (7-58-1)
1
or A= (7-58-2)
_+ —
LA

Needles to say that A has a value between O and 1.Notice
that:
-If only the life time isin exponentia form and the down timeis

not exponentially distributed, the relationship for the steady
state availability is the same as Eq.7.58. and more generally
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according to Ross(985) page 402 : If the on & off distributions

are arbitrary continuous distributions with respective mean

}l\ &ﬁ then it follows from the theory of aternating renewal

process (see page 287 of Ross,1985) that A(t) in the long range

I

approachesto A =

+
I

1
M

Therefore we could say if the operating time and the repair
time have continuous probability distributions with mean MTBF
and MTTR, the steady-state availability would be:

_ MTBF
MTBF+MTTR

(7-59-1)

Fig.6.7 shows a nomogram (abaque) for this relationship
between availability and MTBF(a measure of reliability) and
MTTR(a measure of maintainability). That is draw aline which
connects the given MTBF on the MTBF scale and the given
MTTR on the MTTR scale. The intersection of thisline and A
scaleis value equal to what isresulted from Eq. 7-59.1.

Itisreminded that
- if the life time and the repair time are not random variables
use Eq. 7-54& 55 for calculating availability.

-A device can have low availability, high reliability and vice
versa

- Index A could be used for comparing two types of a device

that have the same reliability.
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A
-+ 0.998990
+-0.999985
T 0.99998
+ 0.99997
+ 0.99996
+ 099995
TR sl 1 0.99994
10.0 + 0.99992
8.0 T 099990
g;g + 0.99985
40 MTBF sl 1 0.9998
Aal F 10.000 + 0.9997
2.0 - 5000 + 0.9996
_______ O, PSSR R————. 4 .
’ T 0.9994
1.0 1 + 0.9992
08 - S + 09990
06 T 500
05 I + 0.9985
0.4 1 0.998
. T +0.997
0.2 ¥ 50 +0.996
1 0995
+ 1 0.994
0.1 1 0992
W T 0.990
0985
0.98
A-__MTBF
N T MTBF +MTTR 0.97
0.96
0.95
0.94
0.92
nan

Fig. 7.6 anomogram form of Eq. 7-59-1 (Ebrahimi,1992 p331)
Example 7-15

It is desired that a machine which has an exponentialy
distributed lifetime with mean 3000 hours to possess a steady-
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state availability of 99.95%. What should be the mean time to
repair(MTTR)?

Solution

Using Eq. 7-59-1:

= MTBF =0999%5=——"""—
MTBF + MTTR 300+MTTR

= MTTR=16 hr

Using the nomograph of Fig 7-6
The line connecting 3000 on the MTBF scale to b0.995 on
ScaleA , givesMTTR=.6 on MTTR scale.

7-3-5 Intrinsic availability in long rage

The intrinsic availability in steady state can be calculated
from (K&L page 228,Stapl, 2009 p 344):

_ MTBF
') MTBF +mart.

(7-59-2)

Where m.ar.t isthe mean of actual repair time.

Notice that

-Actua repair time does not include logistic and administrative
times as has been shown in Fig 7.5 for adeterministic case.

-The nomogram of Fig. 7-6 could be used for this relationship.
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Example 7-16

A series system has 2 subsystems. One the is a compressor
with 80.37 failures per 10° working hours. The average of its
actua repair timeis 89.3 hr. The other subsystem failure rate is
4.78 failures per 10° working hours and the actual repair time
on the average is 890.3. Calculate 26280-hr reliability of the
each subsystem , their steady state intrinsic availability
Solution

Constant failure rate A implies that the life time distribution
-t
is exponential with mean 6 =% and reliability function e®.

therefore

For compressor:

2,=80.37 x 10" ° =

0, orMTBF;=1/80.37* 10"-6=12442.4

Ry (£)=exp(-(t/6,))

R, (26280)=exp (-26280*80.37* (10"-6))=0.1210

_ MTBF1 124424
T MTBFl+m.artl  12442.4+89.3

A = 0.9929

For other subsystem
A, =478 x 107°
0, or MTBF, =1/4.78* 10"-6= 209205 hr

R, (26280)= exp(-26280* 4.78* (10"-6))= 0.8819

_ MTBF2 _ _ 209205
4,

~ MTBF2+m.ar.t2 ~ 209205 +890.3=0'9958A
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7-3-6 Mission Availability

The average of reliability function, A(t), over time period T
in some references is denoted byA'(T) and named mission
availability or interval availability. Given the availability
function over aperiod (0 T), A'(T) iscaculated as follows:

AT = Tl L A (7-60)

Al:t:l [ /—\
AT w
—> t

€ >

T
Fig 7.7 Theaverage of atypical availability function

Figure 7-7 shows this integration graphically.
Since for a non repairable system its availability equals its
reliability at timet :A(t)=R(t) therefore(Lewis, 1994 p301):

A*@):Tl (RO (761

That isthe mission availability and the average of the reliability

function related to the sametime period are equal.
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Example 7-17

The lifetime of an non-repairable switch with known MTTF
is exponentially distributed with parameter Ag.
a)Calculate the parametric average of the reliability function of
the switch.
b)(Lewis 1994 p301)
The system mission availability must be 0.95. Find the
maximum design life that can be tolerated in terms of the
MTTF.
Solution

a)For this switch which is non-repairable, A’i.e. the mission

availability equals the average of the reiability function(Ps) .
R 1,7 _
Ps=A (r):T—jO R(t )t TTF ~exp(1) = R(t) =™

1-e~'
AT

Ps ZEJT e dt =
T Jo
Since the Taylor expansion of f(x) about ais;

f (x)=f (a)+%(x _a)tf ’(a)+%(x —a)f"(a)+..

Then the expansion of € " about &=0 :

(10

2l [_}\’s (_?‘s)e_XST ] ’TZO To.=

g T-0
— (0 AT
es =e ()"'T(‘Xs)e =0

g’ :1-xST+%(XST)2+%(xST)3+....

AT 1
Then for AT <<1, approximately € S ;1-kST+E(KST)2 and:
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1
ar LIRT-Z(OT)
p=l€ . 2" 1 hiream)

AT AT 2

b) A*(T) = 0.95 then
09521307 = T=—— =T =0.1xMTTF
2 10
S
End of Exampled

7-3-7 System Availability in terms of components
Availability

As stated earlier according to Ross(985) page 402 :
"If the on & off distributions for component i are arbitrary

1,1 .
—&— i=

continuous distributions with respective mean n &
i i

1,2, ..., n then it follows from the theory of aternating renewal

process (see page 287 of Ross,1985) that A;(t)in the long

range approaches to
1
7\_1 n

. (7-62)

i M

Ai(t) — A; =

>)|p—\

Where % is the mean lifetime of component | and iis the

1

mean of its downtime.

Consider a system composes of n independent components
with reliabilities Ry, ..., R,, . Let T (R Ro) denoted the system
reliability function. The steady state availability of the system

A, is calculated from( according to examples on page 402 Ross1985):.
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A= f(Aq, .., Ay (7-63)
where
c The reliability function of n-component system
such as Eq. 2-1 or Eq.2-3.
}\l The steady-state availability of component i which

A=T T |replacesR; inf(Ry, s Ry

Ai + i

1 The average lifetime of component i

A

1 The average downtime of component i

i
Example 7-18

The lifetime and downtimes of n independent components,

1 1. e
on the average, are = and ;,|=1,..,n and their reliability are
i i

4

R4, ..., R,. Cdlculate the parametric expression for the steady
state availability of the system in both series and paralel
configuration.
Solution
For series configuration: Rgys = fi(Ry, ...,Ry) = Ry X .. X Ry,
Therefore according to Eq. 7-63 the steady-state availability

of the series configuration of the n componentsis:

1 1
— - M An
Aseries = f1(A41, ""An)‘—iJri X, X 185

A1op1 An  Wn

For parallel configuration:
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Ryys = f,(Ry, ., Ry) = 1= (1 — Ry) X..x (1 — Ry)

1 1

A= f(Ag e, Apy=1— (1 — Lili)'" 1-2)A
A1 ou1 An  pn

Example 7-19

A 2-unit system fails when either of its units fail. The units
have the steady state availability of 0.9958 and 0.9929.
Calculatethe steady state availability of the system.

Solution

The configuration is series.

Rsys = f(R1,Ry) = Ry X R,

A=f(A,Ay) = Ay X A, A=0.9929*0.9958=0.98874A

7-3-8 The steady-state availability in Preventive

M aintenance

From O'connor (2003 )page 402:

"Maintainability affects availability directly. The time taken
to repar fallures and to cary out routine preventive
maintenance removes the system from the available state. There
is thus a close relationship between reliability and
maintainability, one affecting the other and both affecting
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availability and costs. In the steady state, i.e. after any transient
behavior has settled down and assuming that maintenance

actions occur at a constant rate" (O'connor,2003 page 402):

MTBF y C
MTBF + MTTR C+T

(7-64)

where
C= Preventive maintenance cycle[ e.g. every 1000 hr]

T=Tota time required to perform preventive maintenance tasks
7-3-9 Definition of Unavailability Function

The unavailability is the event that at a point of time a system
or a device does not perform its duty under specific conditions.
If the value of steady state availability is A the unavailability in
steady state would be 1-A.

Unavailability Function: Lifetime Exponential

In a specia case where the lifetime and downtime are
exponentially distributed, the Instantaneous unavailability
function would be (O'Connor, 2003 pagel68):

uy=1——H L g A g ATy (765
U+A A+u A+u
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7-4Application of Markov Chains to System
Reliability Analysis

In this section we would like to have a glance at the
application of Markov chains to the reliability analysis of
repairable or nonrepairble systems whose lifetime follow
exponential distribution. For other distributions Monte Carlo
simulation is applicable. See references such as Chap. 8 of
Smith(1993).

If each component has approximately an exponentia failure
law, the complete system can be described approximately by a
Markov process and to predict the future state of the system,
knowledge of the history of such systems contains no predictive
value( extracted from Barlow & Proschan,1996 pagel19).

Figure 7-8 shows the state space of a 2-unit critical system. In
this system two identical computers A & B are connected in
paralel in such away that both are operating although only one
is in actual service. At atime of a computer failure, repair is

done readily. Preventive maintenance for a specified computer is

scheduled after tohours if one computer is active and the other
ison an operating standby basis. If the first computer fails and
the second fails during the downtime the first one the

consequences could be catastrophic(Barlow & Proschan,1996 p120).
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Fig 7-8 shows a diagram of the state space of the critical
system. The possible states are denoted by symbols such as A,

(Computer A isactive) , B, (Computer B isin standby mode)

A.Ba—:! -iqu'a

A,-Standby
A ,-Active
Ay-Repair ArBp-4
Ap-Preventive
maintenance

B,-Standby
B, -Active
Br-Repair
B,-Prevertive /
maintenance \
AgBr-7 ArBg-5

A, B,-6

ApB,-8

ApBg-1 AaBy-0

Fig. 1.1. State space for two-unit system,

Fig7-8 The9 possible statesof atwo-unit system
(Barlow and Proschan , 1996p120)

The state space has 9 states |abeled O through 8. For example
state o0 indicates that computer A is used actively while

computer B is operating and standby. If no failures occur in a

time interval of length tO, measured from the moment the
system enter State O, preventive maintenance is performed on

computer A and State 1 begins. If no failure occurs, the state
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passes around the perimeter of the square. ... States 4,6 & 8 are
unfavorable. (Barlow and Proschan , 1996page121).

The user of this system may be interested in such information
as the mean system down time during a specified time interval,
the probability that the system is down more than x minutes at
any one time. Under certain reasonable assumptions on time to
faillure(TTF) , the time to perform repair(TTR), etc. The
operation of the system can be described by a semi-Markov
process to get the desired information. Chapter 5 of Barlow&
Proschan(1996) deal with this system in detail.

As another example consider a system having 3 components
or units a, b, ¢. To use a Markov chain the states of this system
are defined as combinations of operating and failed components.
As the following table shows the system, depending on the

operation or failure of the components(o=operating X= failed),

has 8 states(L ewis,1994page 326):
unit State
1 2 3 4 5 6 7 |8
a 0 X o] o] X X o X
o] 0] X o] X o] X | X
C 0 0] 0] X 0] X X | X
o=operating X=failed

Chapter 11 of Lewis(1994) deals with Markov analysts of 3
configurations related to this case and it is worth mentioning
that many references deal with the application of Markov
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process to reliability theory; e.g. Dhillion(2006) pages 49-54.
Barlow & Proschan(1996) page 120 and pages 192-197.

Exercises

1. A system composing 20 independent components, each
having failure rate 0.0001 + 0.0005t , fails when one its
components fail. Calculate the system failure rate and its
reliability for t=10.

Hint: Use Eq. 7-2 for calculating the failure rate.

2. A standby parallel system has identica active unit and
redundant standby unit with constant failure rate A. Show
that the instantaneous failure rate function for the system

A%
is: h t)=—,
standby( ) 1+ﬂt

3.Derive Eg. 7-51 by the help of 7-50 i.e. prove that in a
two-component load sharing paralel system with pdf

g(t)=kge_7Lgt under shared load and pdf f(t)=r fe'7Lft under full

, YA i
load, Ry (t)=e "™ +——=—( "' -e™™") would be the
YAy — A
system reliability.

Helping one person might not change
the whole world,but it could change
the world for one person
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8

Enhancement, Optimization & Allocation of
Reliability

Aims of the chapter

Due to the importance of the design phase in setting the
reliability of products, this chapter deals with how to enhance ,
optimize reliability and to allocate reliability to each component
in the system to have a more reliable design.

8-1 Enhancement(Improvement) of system
reliability

There are two conventional approaches to improve the
reliability of a system(based on Shooman,2002 page 335):
1)Enhancing the reliability of the system components
2)Active(or hot) redundancy and standby redundancy

These two approaches are described below.

8-1-1 Improving Component reliability

An approach for enhancing the reliability of a system is
improving the reliability of the basic elements, R;, by allocating
some or all of the cost budget to fund redesign for higher
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reliability.( Shooman,2002 page 335) Figure 3-3 and 305 could
help to clarify this approach.

Example 8.1

The series system shown in Fig. 8.1 is composed of k=3
identical components with areliability of 0.80 each.
X, X, Xy
O > O Ee O+ v v Oe——()
Iy I's r
Fig. 8-1 A k-component series system.

a) Calculate the current reliability of the
system.

b) What do you suggest for the reliability of
each component in order to enhance the
system reliability to 0.95?

Solution
a) R=0.83=0.512.

b)  The enhancement requires that each component has the
reliability of /0.95 . End of Example A

8-1-2 Active(Hot) and standby redundancy

Another approach to enhance systems reliability is to place
redundant components in parallel with the operating components

either in active(hot) or standby status.
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8-1-2 Active redundancy

In this way of enhancement components are placed in parallel
with the subsystems that operate continuously (see Fig. 8.2) This
isordinary parale redundancy(hot redundancy).

R, n, R,, n, R, n,

%
il ' -

Fig. 8-2 The k-component system with active redundancy.
(Shooman,2002 p336)

8-1-2 Standby redundancy

This form of redundancy places components in standby
parallel with k subsystems and switch them in when an on-line
failure is detected(Shooman,2002 page336). Figure 8.3 shows
this case. The redundant components of the system shown in the
figure are cold. On the figure A denotes the failure rate of the

operating unit and A, dentoes the failure rate of the redundant

unite in the standby mode.
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b =0

Fig. 8.3 A standby redundant parallel system

A combination of active and standby redundancy is shownin Fig. 8-4

required units

' - munits n total
. —
-

L -
o 0
A "‘nn =) n-m cold
L standby units
L
L]
L)
-_/—' A::!f n v '

Fig 8-4 Combination of active and standby redundancyl.

1
https://reliabilityanalyticstoolkit.appspot.com/standby_redundancy_integrate
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8-2 Reliability Optimization

Optimization play a distinguished role in system design, Its
objective in reliability subject is to help developing a more
effective and safe design that works within existing constraints.

Two conventiona reliability optimization problems are:
maximizing system reliability with cost constraints or
minimizing system cost subject to the constraint that the
reliability be greater than a given minimum. As an application
you know that adding redundant components in paralel to a
system improves the system reliability. However this approach
enhances the cost, weight and volume of the system. Therefore
an optimization problem has to be presented and solved in such
away that the optimum design considers the constraints as well
as maximizing the reliability.

To write a general model, let X= (X4,..., Xx) be the decision

variables; the model could be written as follows;
Min/ Max f(x)

s.t. gix)<0 i=12,...m
&) =0 j=12,..,p

x>0

f could be a cost function, the reliability function in the system
(series, paralel, structural load-strength systems...) or the

average lifetime.
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As an illustration consider the following series-parallel
system shown in Fig 8-5.

R, R R
R X, R,
] 'RI 3 R_’ﬁ T Rkvﬁ B
i § |
i i
R, R, Ron

Fig.8-5 A series-paralle system(Faghih,1996 p102)

k
Total number of components in the system is > 'n, . If we
i=1
suppose the components in  Subsystem i are identical, each
having reliability R, , then
The reliability if 1% subsystem=1—-(1-R)™,
The reliability if 1% Subsystem | =1-(1-R)™.
Thereliability of the entire system is:

ﬁ[l— 1-R)" ] (8-1)

i=1

Rys

where

k number of subsystems

Ri The reliability of each component in Subsystem i
n; Number of components in Subsystem i

Now let

k = Maximum budget available

Ci = Thecost of each component in Subsystem i
Then:
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Kk
> nC <C; (8-2)
i=1

And given specified values of R;, i=1,2,....,k, the problem
would be determine nj, i=1,2,....,k in such a way that the
reliability of the system is maximized and the constraints be
satisfied. The model could be written as:

Max R, =f (nl,...,nk)zﬁ[l—(l— R)" ]

i=1
st.

Zk:niCi <C
i=1

O0<R <1 i=1..k
n. >0  n, =Integer

Another sample model could be the following:

Max R :fﬂl—(l—Ri ) }

st.

k

an<b =12k j=12.m
i=1

O0<R, <1
n. >0 n, =Integer

where

a  Amount of jth material used for components of i
Subsystem

bj Amount of jth material available

k  Number of subsystems
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m  Number of materials

n, Number of componentsin i" subsystem

Cost function and MTTF or MTBF could be the objective

function .The following model which determines the optimum

valuesof N ,i =1,...,n such that the cost is minimized and

ensures that the system reliability will not be lessthan R, :

k
MinZ =>'nC,

i=1
s.t.

Rys = ﬁ[l— 1-R)" | 2R,

O<R <1 i=1..,k
ni >0

n. = Integer

To maximize the system mean lifetime of the system in Fig
8.5 and ensuring that the system reliability exceeds R,, the
following model could be used:
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MaxZ = (MTTF)g, = Min{MTTF,,i =12,...,k}

st.
K

H[l—(l— R ) }z R,

i=1

O<Ri <l i=12,...k
n, >0

n. = Integer

Remember that if an active parallel configuration has N,

exponentially-distributed-lifetime components with identical

parameters 6, =--- =6, =0 , then according to Eq. 7-15
ni

MTTF, =6> &
h=1

To know more about reliability optimization, the reader could
read references such as Chap 6 of Barlow& Proschan(1996).

8-2-1 Methodsfor the solution of The above problems

There are several methods and softwares for solving
reliability optimization problemsincluding(Yi-Chic,2002):

1.Exact methods (such as Brach and bound agorithm,
dynamic programming, Cutting plane algorithm, Surrogate
constraint method). This methods are time consuming for large-
scale problems. Kuo and Prasad (2000) provides a good
overview of the methods that have been developed since 1977
for solving various reliability optimization problems.
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2.Heuristic methods, Artificial intelligence(Genetic algorithms,
Simulated annealing, Artificial neural networks , Tabu search,..)
and other methods such as Lagrange multiplier technique,
geometric programming, Random search; some of these
methods give approximate solution.

Notice that:
-For application of optimization to structural reliability see

references such as K& L page 423and Xie, Zhai(2021)
-If we have simultaneous objective functions such as

(fi. ... fy—1 ) which are to be maximized and (f'y.... f'1_1{)

subject which are to be minimized subject to constraints
(81 8m) =,<,=0; multi-criteria decisson making (MCDM)
techniques could be used. A mathematical model of an MCDM
problem could be written as follows:

MaX{f1 (X)I fZ (X), ) fN (X)}

Min{f{ (%), f3(x), ...,f(X)}

st.

gx){g,=2=2}0 i=12,...,m

where X is avector including the decision variables

8-3 Reliability Allocation?

In the subject of reliability there is a problem called
reliability alocation in which it is discussed how much the

reliabilities of all or some of the components or subsystems

! The refrence of this chapter ismainly K&L, Chap 14.
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(R1,R,, ...) of agiven system should be to achieve a specified
overal system reliability (R,). This process requires solving the
following inequality(K&L page 404):

f(Ri, Ry, .....,R,) =Ry (8-3)

Where

R; Theunknown reliability of component i
R, Therequired reliability for the system
f  Thefunctional relationship between the components and
the system
Time and cost could be included in the problem , i.e. R;'s be
time-dependent and total cost be minimized.
The solution procedure is not difficult for series, paralel and
k-out- n configuration; however the solution for complex

configuration is not mathematically easy.

Most of the basic reliability allocation models are based on
the assumption that component failures are independent, the
failure of any component results in system failure (i.e, the
system is composed of units in series), and that the failure rates
of the components are constant. The independence assumption

leads to the following equation

F(Ry, Ry, s Ry) = Ry(D) oo . Ry(D) = Ro() (8-3-1)
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Let A;= constant failure rate of the ith component. The system
has a series configuration. Therefore the lifetime of the system is
the minimum of the component lifetimes which are of
exponential form; therefore the lifetime of the system is
exponentially distributed. As a special case of Eg. 8-3-1, if the
goa value of the failure rate of the system is 4, ,then Eg. 8-3-1
becomes (K&L p 407):

eMt et > gt (8-4)
or
A+ A+ A, < A (8-5)
Theoretically, the above equation has an infinite number of
solutions, assuming no restrictions on the allocation. The
problem is to establish a procedure that yields a unique or
limited number of solutions by which consistent and reasonable

reliabilities may be allocated”. Some of these procedures are:

Equal Apportionment Technique
ARINC Apportionment Technique
AGREE Apportionment Technique
Feasibility of Objective apportionment
Repairable System Apportionment
Minimum Effort Algorithm

N o g s~ w D PRE

Growth apportionment

1 From: http:/reliabilityanal ytics.com/blog/2011/10/09/reliability-allocation/
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8. Dynamic Programming
Thefirst 3 methods are described below
8-3-1 Equal Apportionment Technique(ETA)

This technique allocates equal reliability to the n components
of the system to achieve the system reliability requirement.
When no information on the system is available, other than the
fact that n components are to be used in series or parallel , equal
apportionment(R) to each subsystem would seem reasonable.
Furthermore allocation of the same rdiability(R) to all
components of a k-out-of-n system is usual.

For series configuration, n™ root of the system reliability

requirement(R,) would be apportioned to each subsystem:
Ry=R; XR, X..XR, = Ry =R"
Ri=R="/R, i=1,..,n (8-5-1)
For active parallel configuration, according to Eq. (2 — 3 - 1):
Ro=1-(1-Ry) (1-Ry) .....(1-Ry)
R, =R i=1,...,n=
Ry=1-(1—-R)" =1-R, =1-R=/(1 - Ry) =

R=1-"(1-Rp) (8-5-2)
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And for k-out-of-n configuration, according to Eq. 2-5 (Chap 2):

n—-k

Ro= (1) -Rr®™

x=0

GivenR,, k and n, R has to be determined in such away that
226 () (1 = R*(R)™™ = Ro)=0.
This could be done using a software.

Example 8-2

The reliability requirement for a 3-component series system
IS Ry, = 0.8573. Find the reliability of each component using

equal apportionment technique.
Solution

According to Eq. 8-5-1:
R="R, n=3 R, =0.8573

The reliability of each component is;
R = 0.8573 =095 A
Example 8-3

The reliability of a 3-component active paralel system is
required to be R, = 0.8573. Use ETA to determine the

reliability of each component.
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Solution
According to Eq. 8-5-2:
R=1-"/(1-Ry) n=3 Ry, = 0.8573 =
R=1-3/(1-08573) = 047744
Example 8-4

The reliability of a 3-out-of -5 configuration is required to
have the reliability of R, = 0.99144. Caculate R, the reliability

of each of the five components.
Solution

According to Eq,2-5 in Chap. 2, R is derived from:

n—k

Ro= ) (0)a—Rmrmm

x=0

(5) (1 — R)*(R)5~* — 0.99144 = 0
4 X

=
1l

The following MATAB commands yields R = 0.9.
f=inline (‘binocdf(5-3,5,1-R)-0.99144"); R=fzero ( f,0.5). A
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8-3-2 The ARINC apportionment technique for series system

with independent subsystems having exponential lifetimes

The ARINC allocation method was developed by a research
center associated with Aeronautical Radio Incorporation. This
method is applicable to a series system whose subsystems have
constant failure rate(4;) and their mission times equa the
system mission time. Let

A7 Theallocated failure rate to the it" subsystem

Ao Thedesired failure rate given for the entire system

The ARINC method triesto choose A;such that(K&L p 407):
A+ 4 < A

Steps of ARINC apportionment technique are(K& L page408):
I. Determine the subsystem failure rates (4;,i = 1,2, ...) from
the past data, observed or estimated.

1. Assign a weighting factor (w;) to each subsystem
according to the failure rates determined in step I, where w; is
given by

Ai

>4
i=1

Wi

(8-6)

[11. Allocate new subsystem failure rates (A]'s) calculated from

the following relationship( assuming A1 +.... A, = Ao);
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A = wi Ao (8-7)
where A, isthe desired failure rate for the entire system.
Example 8-5(based on Example 14.2 K& L page408)

Consider a series system composed of three subsystems with
constant failure rates. The mean lifetimes are 200, 333, and 1000
hours respectively. The system has a mission time of t=20 hours.
A system reliability of 0.95 isrequired(R, = 0.95). Use ARINC
method to find the reliability requirements for the subsystems.

Solution

Since the failure rates of the subsystems are constant, their
lifetimes are exponentially distributed and the lifetime
distribution of this series system is also exponential. Therefore

the ARINC method could be used:

1 1
1, =—=—=20.005, A, = 0.003 ,A, = 0.001
179, 200 ST '3

A=wide W, =414
i=1

B 0.005
"~ 0.005 + 0.003 + 0.001
ws = 0.111

To find the required failure rate() for this exponentialy-

W1 = 0555, Wy, = 0333 B

distributed-lifetime system we could write:

Ry(20) = e72%% = 0,95 = ¢720% = ), = 0.00256 per hour
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The required failure rate for each subsystem is calculated

from EqQ. 8-7i.e. 4; = w;A, asfollows:
A1 = (0.555)(0.00256) = 0.00142
5 =(0.333)(0.00256) = 0.000582
A3 =(0.111)(0.00256) = 0.000284

Since the lifetime of each subsystem is exponentialy
distributed, the allocated reliability for them to ensure a 20-hour

operation of the system are:
R;(20) = 2041 — —20(0.00142) — ()97
R5(20) = e720%2 = 098, R;(20)=0.99 A

8-3-3 The AGREE allocation method for pseudo-series

system with independent exponential-lifetime subsystems

A method of apportionment is outlined by the Advisory
Group on the Rdiability of Electronic Equipment (AGREE)
takes into consideration both the complexity and importance of
each subsystem. In this method for each subsystem a factor
caled importace index is introduced to express the degree of
impotance between the system failure and the subsystem. It is
assumed that the subsystems have constant failure rates.

The method applies to any unit that can be decoposed into a
series ofindependent subsystems(Grosh,1989 pl149); some of
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which are taken out of the system before the end of the mission
time considered for the system. Notice that the total system
under consideration is not truly a series system unless all of the
importance indices (w;'s) equal unity and the mission time of all
subsystems ((ti's) are equal (Grosh,1989 p150).

To reach a target MTBF for the system, this method uses
Equation 8-8 which caculates an approximate value for the
MTBF of each subsystem(Grosh,1989 p150).

_ (N (t) . 3
MTBF; = - Inko (D] i=12,.. (8-8)

Thisisequivalent to
the following failure rate for the subsystem(K& L p409):

_ nil-InR*(©)]
Ai o Nw;t;

i=1.2,.. (8-9-1)
or

the following reliability for the subsystem

Ri (t) = ™Mt (8-9-2)

where

n; Number of components of in the ™ subsystem

N  Total number of componentsin the system: N= ) n,

A failurerate of i™ subsystem
R,(t) Therequired system reliability for amission timet
R:  Therdliability allocated to i™ subsystem
t System mission time
t; The mission time for i™ subsystem; the time period

required for the i™ subsystem to operate from the
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beginning of the operation of the system and the
subsystem is not needed any more(o < t; < t)
w;  Importance index for the i™ subsystem; probability that
the system mission failsif i"™ subsystem fails.
w; isthe following quotient(Grosh, 1989 p149)

__ number of mission failures owing to i*! subsystem fails
number of ith subsystem failure

w; = 1 states that for the successful operation of the
system, the i subsystem must work successfully.
The more w;'s closer to 1 the better the results. Small
w;'s causes poor results by the AGREE formula.
The reliability allocated to the i subsystem is calculated from:
R} = et (8-10-1)

or

R; =1 — Ro@IN (8-10-2)

Example 8-6(ké&L page 410)

A system consisting of four subsystems is required to
demonstrate areliability level of 0.95 for 10 hours of continuous
operation. Subsystems | and 3 are essentia for the successful
operation of the system. Subsystem 2 has to function for only 9
hours for the operation of the system, and its importance factor
is 0.95. Subsystem 4 has an importance factor of 0.90 and must

function for 8 hours for the system to function. Solve the
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reliability allocation problem by AGREE method using the data

Given below:
i ti Wi Tli
1 10 1 15
2 9 0.95 25
3 10 1 100
4 8 0.9 70
sum N=210
Solution

Data: t=10 N =3Yn;=210, R, (10)=0.95
According to Eq. 8.8 the required mean lifetime for each
subsystem is:

MTBF, = — Wili
L ni[—InRy(t)]

The equivalent faillurerate is; = X
MTBF;
2101 %10

MTBF), = —————
17 (15)(~1n0.95)

= 27294

1

= = = (). = X 1 -8
A MTEF, ~ 27294 0.00036638 = 36638 x 10
MTBE, = 22 +095+9 1400.2 A, = 0.0007142
27 (25)(~1n0.95) — I
210+ 110
MTBF; = =409.41 A3 =0.002442

100(—In0.95)
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MTBE, = ~10*09%8 _ i1 A, = 0002374
* T (70)(~In0.95) ~ 7 L

Eqg. 8-10-1&2 allocates the required reliability to each subsystem:

1— [Re(D)]N

Rf=1-
Wi

15
1 — (0.95)210

Ri=1
L 1

= 0.99634
or R} = e Aifi = ¢=(0:0007142)(9) = (. 99634
similarly
25

1 — (0.95)210

0.95 = 0.99359

R; =

or R; — e—/litz — e—(0.00036638)(10) = 0.99359

R;(t) = 0.975870,
R;(t) = 0.98116

These four reliabilitiesresult in areliability of

R} X R; X R3 X R3=0.94788=94.79 % for the system which is
dlightly less than the system reliability requirement 0.95. Thisis
aresult of the approximate nature of the AGREE formulaand

that w, and w,are less than unity.End of Exampled

The readers interested in AGREE method for parallel

configurations could refer to references such as Grosh (1989).
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Exercises

1. We would like to design an active parallel system of n
identical subsystems. The lifetime of each subsystem is
exponentially distributed with average lifetime of 100 hours.
Prepare a mathematical model to determine n in such away that
the system reliability is greater than 0.95 and the average system
life time in maximized. For calculating the reliabilities of

subsystems use mission time of 100 hours.

2. The monthly failure rates of the subsystems of a series system
are constant and their estimates are 150 x 1075,18 x 1075,2.3 x
1075,5.6 x 10~5 failure per month. Use ARINC technique to
assign reliabilities to the subsystems such that the system
reliability would be 0.98 for 36- month mission time.

3. (From K& L page433) A system consists of five subsystems
in series. The system reliability goal is0.990 for 10 hours of

operation. The necessary information for the subsystem iSgvenbeiow

Number of Operating
Subsystem No. (i) subsystems time

ni Wi ti
1 25 1.00 10
2 80 0.97 9
3 45 1.00 10
4 60 0.93 7
5 70 1.00 10
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4. (K& L page 436) Consider the design reliability problem
when both the stress(s) and the strength (&) are normally
distributed. The reliability goal for the component is0.99. The
cost functions and the constrains for the 4 parameters are:

parameter | Theterms of the cost function | Constrai ntSunitsin MPa)

s 0.0002 x (us)™35 | 30000 < pg < 75000

os 800 x (05) 0475 1000 < o5 < 10000
s 8997 x (u,) 0513 10000 < g < 68000
o, 366 X (0,) 0358 500 < o, < 7500

Formulate the model of this problem to determine the values
of ussls, 05,05 in such a way that the sum of the terms in

second column is minimized and the constraints given in the
table are satisfied.

5. Solve Example 8-1 of this chapter assuming k=3 active
parallel components.

6. A system consists of four subsystems having constant failure
rates. The system will fall if a subsystem fails. The current
lifetimes of the subsystems are estimated to be

250, 142.75, 12 and 20 hours. Assign required reliability to
ensure the system will have a reliability of 0.99 for a mission

time of 50 hours.

Y ou can never satisfy people by your
property. So, you can attract
their satisfaction by your behaviour
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TABLES



Table A

Crtical values of F distribution Fmn( Mood et al,1974 ) Example Fg131 = 53.6

a ! 2 3 4 5 6 7 8 9 10 12 15 20 30 60 120 o
10 399 |495 |536 |558 |572 |582 |589 |594  |509  |e02  |60.7  |6L2  |6L7  |623 |628 |631 |633
05 161|200 [216 [225  [230  [234  |237  |239  |241 |22  |244  |246  |248  |250  |252 |53 |254
025 648  |800 |864  |900  |922  |937  |948  |957 |963  |969  |977 985  |993  |1000 |1010 |1010 |1020
0L |1 [4050 [5000 |5400 |5620 |5760 |5860 |5930 |5980 |6020 |6060 |6110 |6160 |6210 |6260 |6310 |6340 |6370
005 16200 [20000 |21600 |22500 |23100 |23400 |23700 |23900 |24100 |24200 |24400 |24600 |24800 |25000 |25200 |25400 |25500
10 853 |900 |916 [924 [929 |933 |935 |937 |938 |939 |941 942 |944 |946 |947 |948 |949
05 185 (190 [192 [192 [193 [193 |194 (194 [194 [194 [194 [194 [195 [195 [195 |195 |195
05 |, [85 [%00 (392 [392 393 (393 394 (394 [304 (394 [304 |394 (394 305 (395 [305 |395
01 985 |90 |92 [992 |993 |993 |994 |994 |994 |994 |994 994 |994 995 |995 |995 |995
005 199|199 [109 [109 |109 [109 |199 [199 [199 [199 [199  [199  [199  [199 [109 [199  |199
10 554 |546 |539 |534 |531 |528 |527 |525 |524 |523 |522 |520 |58 |517 |515 |514 |513
05 101 [955 [928 |912 |901 |894 |889 885 |88l |879 |874 |870 |866 |862 |857 |855 |853
025 |, [i74 [160 154 (1561 |14 [147 [146 [145 [145 [144 [143 [143 [142 (141 (140 [139 [139
01 341|308  |295 |287 |282 |279 |277  |215  |27.3  |272 |271  |268  |267  |265  |263  |262  |261
005 556 |498 |475  |462  |454 |48 |44 (441|439 (437 (434 (431 (428 |425 |421 |40 |418
10 454  |432  |419 [411 [405 |40 [398 [395 (393 [3%2 [390 (387 |33 [382 |379 (378 [37
05 771|694 |659 [639 |626 |616 |609 |604 |600 |596 |591 |586 |580 |575 |560 |566 |563
025 122 |106 |998 |960 |936 |90 |907 |898 |890 |884 |875 |866 |856 |846 |83& |83l |8.6
0L |4 [2L2 [180 (167 160 (155 [152 |150 [148 |147 |145 [144 [142 |140 (138 [137 [136 [135
005 313 |63 |243 |232 |25 |20 |26 |214 |211 |220 |207 |204 |202 [199 [196 |195 |193
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Table A -continued

.10 4.06 3.78 3.62 352 3.45 340 3.37 3.34 3.32 3.30 3.27 324 321 317 314 312 311
.05 6.61 5.79 541 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.50 443 4.40 4.37
025 5 10.0 8.43 7.76 7.39 715 6.98 6.85 6.76 6.68 6.62 6.52 6.43 6.33 6.23 6.12 6.07 6.02
01 16.3 133 12.1 114 11.0 10.7 10.5 10.3 10.2 10.1 9.89 9.72 9.55 9.38 9.20 9.11 9.02
005 22.8 18.3 16.5 15.6 14.9 145 14.2 14.0 13.8 13.6 134 131 129 12.7 124 123 121
.10 3.78 3.46 3.29 3.18 311 3.05 3.01 2.98 2.96 2.94 2.90 2.87 2.84 2.80 2.76 2.74 2.72
.05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 381 3.74 3.70 3.67
025 6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.37 5.27 517 5.07 4.96 4.90 4.85
.01 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.23 7.06 6.97 6.88
005 18.6 145 12.9 12.0 115 111 10.8 10.6 104 10.2 10.0 9.81 9.59 9.36 9.12 9.00 8.88
.10 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 267 2.63 |259 2.56 251 249 247
.05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 357 351 344 3.38 3.30 3.27 3.23
025 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.67 4.57 4.47 4.36 4.25 4.20 414
01 7122 9.55 8.45 7.85 746 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 5.99 5.82 5.74 5.65
005 16.2 124 10.9 10.1 9.52 9.16 8.89 8.68 8.51 8.38 8.18 7.97 7.75 7.53 731 719 7.08
.10 3.46 311 2.92 281 2.73 2.67 2.62 2.59 2.56 2.54 2.50 2.46 242 2.38 2.34 231 2.29
.05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.08 3.01 2.97 2.93
025 7.57 6.06 542 5.05 4.82 4.65 4.53 443 4.36 4.30 4.20 4.10 4.00 3.89 3.78 373 3.67
.01 8 [113 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.20 5.03 4.95 4.86
005 14.7 11.0 9.60 8.81 8.30 7.95 7.69 7.50 7.34 721 7.01 6.81 6.61 6.40 6.18 6.06 5.95
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TabIeA 'Contl num Fm’n eg :F0.005‘3,12 = 713

(04 i 112 3 415 (6 |7 |8 |9 |10 (12|15 |20 (30 |60 {120 |wo
i 10 3.36 [3.01 281 ({269 |2.61 (255 251 (247 |2.44 |2.42 |2.38 |2.34 [2.30 [2.25 |2.21 [2.18 2.16
N/ 512 |4.26 |3.86 [3.63 |3.48 |3.37 |3.29 |3.23 |3.18 |3.14 |3.07 |3.01 |2.94 (2.86 [2.79 |2.75 2.71
025 721 |5.71 |5.08 [4.72 |4.48 |4.32 {4.20 |4.10 [4.03 |3.96 |3.87 |3.77 |3.67 |3.56 [3.45|3.39 3.33
01 9 10.6 {8.02 |6.99 |6.42 |6.06 |5.80 |5.61 |5.47 |5.35 |5.26 |5.11 (4.96 |4.81 |4.65 |4.48 |4.40 431
005 136 |10.1 (872 |7.96 |7.47 |7.13 |6.88 |6.69 |6.54 |6.42 |6.23 |6.03 |5.83 |5.62 |5.41 |5.30 5.19
. 10 329 (292 |2.73 |2.61 |252 |2.46 (241 |2.38 |2.35 |2.32 |2.28 |2.24 |2.20 (2.15 [2.11 |2.08 2.06
05 496 |4.10 |3.71 |348 |3.33 |3.22 |3.14 |3.07 |3.02 |2.98 |291 |2.84 |2.77 |2.70 |2.62 |2.58 2.54
N28 6.94 546 (483 447 |4.24 |4.07 |3.95 |3.85 |3.78 |3.72 |3.62 |3.52 |3.42 (3.31 |3.20 (3.14 3.08
01 10 10.0 {7.56 |6.55 [5.99 |5.64 |5.39 |5.20 |5.06 |4.94 |4.85 |4.71 |4.56 |4.41 |4.25 |4.08 [4.00 391
005 12.8 |19.43 |8.08 |7.34 |6.87 |6.54 |6.30 |6.12 [5.97 |5.85 |5.66 |5.47 |5.27 |5.07 [4.86 |4.75 4.64
10 318 (281|261 [248 (239 |233 (228 (224 {221 |2.19 (215 |2.10 |2.06 {2.01 [1.96 |1.93 1.90
05 475 |3.89 [349 |3.26 [3.11 |3.00 {291 {285 |2.80 |2.75 |2.69 |2.62 |2.54 |2.47 |2.38 |2.34 2.30
025 6.55 |5.10 [4.47 [4.12 |3.89 |3.73 |3.61 |3.51 [3.44 |3.37 |3.28 [3.18 |3.07 |2.96 [2.85|2.79 2.72
M 12 9.33 |6.93 |5.95 |541 |5.06 [4.82 |4.64 |4.50 |4.39 |4.30 [4.16 |4.01 |3.86 [3.70 |3.54 [3.45 3.36
005 118 |851|7.23 |6.52 |6.07 |5.76 |5.52 |5.35 [5.20 |5.09 |4.91 [4.72 |453 |4.33 [4.12 |4.01 3.90
. 10 3.07 |270 |249 (236|227 |2.21 {216 |2.12 {2.09 |2.06 |2.02 [1.97 |1.92 [1.87 [1.82 |1.79 176
N/ 454 1368 (329 |3.06 (290 |2.79 |2.71 |2.64 |2.59 |2.54 |2.48 |2.40 |2.33 |2.25 |2.16 |2.11 2.07
025 6.20 [4.77 |4.15 |3.80 |3.58 [3.41 |3.29 |3.20 |3.12 |3.06 [2.96 |2.86 |2.76 |2.64 |2.52 |2.46 240
01 15 8.68 |6.36 |5.42 [4.89 |456 |4.32 [4.14 |4.00 {3.89 |3.80 |3.67 [3.52 |3.37 [3.21 [3.05|2.96 2.87
005 10.8 |7.70 |6.48 |5.80 |5.37 |5.07 |4.85 |4.67 |454 |4.42 |4.25 |4.07 |3.88 |3.69 |3.48 |3.37 3.26
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Table A -continued
10 297 |259 (238 225|216 |2.09 |2.04 |2.00 [1.96 |1.94 |1.89 |1.84 |1.79 |1.74 |1.68 |1.64 161
08 4.35 |349 |3.10 |2.87 |2.71 |2.60 |2.51 |2.45|2.39 |2.35|2.28 |2.20 |2.12 |2.04 |1.95 |1.90 184
025 5.87 |4.46 |13.86 |351 |329 |3.13 [3.01 |291 |2.84 |2.77 |2.68 |2.57 |2.46 |2.35 |2.22 |2.16 2.09
01 20 8.10 |5.85|4.94 |4.43 |4.10 |3.87 [3.70 |3.56 |3.46 |3.37 |3.23 |3.09 |2.94 |2.78 |2.61 |2.52 242
005 9.94 |6.99 |5.82 |5.17 |4.76 |4.47 |4.26 |4.09 |3.96 |3.85 |3.68 |3.50 [3.32 |3.12 |2.92 |2.81 2.69
10 288 |249 1228 214 |2.05 |198 [1.93 |1.88 |1.85 |1.82 |1.77 |172 |1.67 |1.61 |154 |1.50 1.46
05 4.17 |3.32 |2.92 |2.69 |253 |242 |2.33 |2.27 |2.21 |2.16 |2.09 |2.01 |1.93 |1.84 |1.74 |1.68 1.62
025 5.57 |4.18 |3.59 |3.25 |3.03 |2.87 |2.75 |2.65 |257 |251 |241 |2.31 |2.20 |2.07 |1.94 |1.87 179
01 30 7.56 |5.39 |4.51 |4.02 |3.70 |3.47 (3.30 |3.17 |3.07 |2.98 |2.84 |2.70 |2.55 [2.39 |2.21 |2.11 2.01
.005 9.18 |6.35|5.24 |4.62 |423 |3.95 |3.74 |3.58 |3.45 |3.34 |3.18 |3.01 [2.82 |2.63 |2.42 |2.30 2.18
10 279 239|218 [2.04 |1.95 |1.87 (1.82 |1.77 |1.74 |1.71 |1.66 |1.60 |1.54 |1.48 |1.40 |1.35 129
05 400 (315|276 {253 (237 (225|217 (210 [2.04 [1.99 [1.92 |1.84 |1.75 |1.65 |153 |1.47 1.39
025 529 [393 ]334 |301 |2.79 |2.63 [2.5]1 |241 |2.33 |2.27 |2.17 |2.06 |1.94 |1.82 |1.67 |158 148
01 60 7.08 |4.98 |4.13 365|334 |3.12 (295|282 |2.72 |2.63 |250 |2.35 |2.20 |2.03 |1.84 |1.73 1.60
005 849 |5.80 |4.73 |4.14 |3.76 |3.49 |3.29 |3.13 |3.01 |2.90 |2.74 |257 |2.39 |2.19 |1.96 |1.83 1.69
10 275 |2.35(213 [1.99 |1.90 |1.82 [1.77 |1.72 |1.68 |1.65 |1.60 | 154 [1.48 |1.41 |1.32 |1.26 119
05 3.92 |3.07 |2.68 |245 (229 |2.18 [2.09 [2.02 |[1.96 |1.91 |1.83 |1.75 |1.66 |1.55 |143 |1.35 125
025 5.15 |3.80 |3.23 |2.89 |2.67 |2.52 (2.39 |2.30 |2.22 |2.16 |2.05|1.94 |1.82 |1.69 |1.63 |1.43 131
01 120 6.85 [4.79 |3.95 348 |3.17 |2.96 [2.79 |2.66 |2.56 |2.47 |2.34 |2.19 |2.03 |1.86 |1.66 |1.53 138
.005 8.18 |554 |450 [3.92 |355 |3.28 [3.09 (2.93 |2.81 |2.71 |2.54 |2.37 |219 |1.98 |1.75 |161 143
10 271 |2.30|2.08 [1.94 |1.85 |177 |1.72 |1.67 |1.63 |1.60 |1.55 |1.49 |142 |1.34 |1.24 |117 1.00
.05 3.84 |3.00|2.60 [2.37 |2.21 |2.10 |2.01 |1.94 |1.88 |1.83 |1.75 |167 |1.57 |1.46 |1.32 |1.22 1.00
025 502 |3.69 |3.12 279 |257 (241 (229 {219 |2.11 |2.05|1.94 |1.83 |1.71 |1.57 |1.39 |1.27 1.00
01 o0 6.63 |4.61 |3.78 |3.32 |3.02 |2.80 |2.64 |2.51 |2.41 |2.32 |2.18 |2.04 |1.88 |1.70 |1.47 |1.32 1.00
.005 7.88 |5.30 |4.28 [3.72 |13.35 |3.09 [2.90 (2.74 |2.62 |2.52 |2.36 |2.19 [2.00 |1.79 |1.53 |1.36 1.00
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A Table B Some values of CDF of Poisson Distribution g <

or K

P10 1 2 3 4 5 6 7 8 9 10 11 12 13 14
001 |09 [1000 [1000 [1000 [1000 [1000 [1000 1000 [1000 1000 [1000 [1000 [1000 [1000  |1.000
0.10 |0905 [0995 1000 [1000 |1000 1000 [1000 |1000 [1000 |1000 1000 1000 [1.000  |1000  |1.000
0.20 0819 0.982 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.30 |0741 0.963 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.40 |0.670 0.938 0.992 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0 80 0.449 0.809 0.953 0.991 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.00 0.368 0.736 0.920 0.981 0.996 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 |0135 0.406 0.677 0.857 0.947 0.983 0.995 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.00 |0.050 0.199 0.423 0.647 0.815 0.916 0.966 0.988 0.996 0.999 1.000 1.000 1.000 1.000 1.000
4.00 |0.018 0.092 0.238 0.433 0.629 0.785 0.889 0.949 0.979 0.992 0.997 0.999 1.000 1.000 1.000
5.00 |o0.007 0.040 0.125 0.265 0.440 0.616 0.762 0.867 0.932 0.968 0.990 0.995 0.998 0.999 1.000
6 OO 0.002 0.017 0.062 0.151 0.285 0.446 0.606 0.744 0.847 0.916 0.960 0.980 0.991 0.996 0.999
6.20 |0.002 0.015 0.054 0.134 0.259 0.414 0.574 0.716 0.826 0.902 0.950 0.975 0.989 0.995 0.998
Ty Y Y T Y T S T B S Y B Y B 7 S 7 S Y S 7 - M Y - M Y Y- Y7
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A Table B Some values of CDF of Poisson Distribution g <

or k

np |0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

7.00 |0.001 0.007 0.030 0.082 0.173 0.301 0.450 0.599 0.729 0.830 0.900 0.947 0.973 0.987 0.994

8.00 |0.000 0.003 0.014 0.042 0.100 0.191 0.313 0.453 0.593 0.717 0.820 0.888 0.936 0.966 0.983

9.00 |0.000 0.001 0.006 0.021 0.055 0.116 0.207 0.324 0.456 0.587 0.710 0.803 0.876 0.926 0.959

10.00 | 0.000 0.000 0.003 0.010 0.029 0.067 0.130 0.220 0.333 0.458 0.580 0.697 0.792 0.864 0.917

11.00] 0.000 0.000 0.001 0.005 0.015 0.038 0.079 0.143 0.232 0.341 0.460 0.579 0.689 0.781 0.854

12.00 | 0.000 0.000 0.001 0.002 0.008 0.020 0.046 0.090 0.155 0.242 0.350 0.462 0.576 0.682 0.772

12.50 0.000 0.000 0.000 0.002 0.005 0.015 0.035 0.070 0.125 0.201 0.300 0.406 0.519 0.628 0.725

13.00 | 0.000 0.000 0.000 0.001 0.004 0.011 0.026 0.054 0.100 0.166 0.250 0.353 0.463 0.573 0.675

13.50 | 0.000 0.000 0.000 0.001 0.003 0.008 0.019 0.041 0.079 0.135 0.210 0.304 0.409 0.518 0.623

14.00 | 0.000 0.000 0.000 0.000 0.002 0.006 0.014 0.032 0.062 0.109 0.180 0.260 0.358 0.464 0.570

14.50 0.000 0.000 0.000 0.000 0.001 0.004 0.010 0.024 0.048 0.088 0.140 0.220 0311 0.413 0.518

15.00 | 0.000 0.000 0.000 0.000 0.001 0.003 0.008 0.018 0.037 0.070 0.120 0.185 0.268 0.363 0.466

15.50 | 0.000 0.000 0.000 0.000 0.001 0.002 0.006 0.013 0.029 0.055 0.100 0.154 0.228 0.317 0.415

16.00 | 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.010 0.022 0.043 0.080 0.127 0.193 0.275 0.368

16.50 | 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.007 0.017 0.034 0.060 0.104 0.162 0.236 0.323

17.00 ] 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.005 0.013 0.026 0.050 0.085 0.135 0.201 0.281

17.50] 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.009 0.020 0.040 0.068 0.112 0.170 0.243

18.00 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.007 0.015 0.030 0.055 0.092 0.143 0.208
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A Table B Some values of CDF of Poisson Distribution g <

or k

P10 1 2 3 4 5 6 7 8 9 10 11 12 13 14
18.50 | 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.005 0.012 0.020 0.044 0.075 0.119 0177
19.00 | 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.004 0.009 0.020 0.035 0.061 0.098 0.150
19.50 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.007 0.010 0.027 0.049 0.081 0.126
20.00 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.005 0.010 0.021 0.039 0.066 0.105
20.50 |0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.004 0.010 0.017 0.031 0.054 0.087
21.00 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.010 0.013 0.025 0.043 0.072
21.50 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.005 0.010 0.019 0.035 0.059
22.00 |0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.004 0.008 0.015 0.028 0.048
22.50 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.006 0.012 0.022 0.039
23.00 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.004 0.009 0.017 0.031
23.50 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.007 0.014 0.025
24.00 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.005 0.011 0.020
24.50 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.004 0.008 0.016




463 Table_C Areaunder gtandardnermalecurnel Pr(7 < 2\ aa prcz 2 00) — 00013 RenabiTjty Engineering
Fable-C—-Areaunderstandare-rermal-eurve( A Z))eg—PrZ 3.00)=0.0013
z=-2=
c 0.09 008 | 007 | 0.06 | 005 | 004 | 0.03 ] 0.02 | 001 | 0.00

-35 0.00017 0.00017 | 0.00018 | 0.00019 | 0.00019 | 0.0002 ] 0.00021 |0.00022 |0.00022 | 0.00023
-34 0.00024 0.00025 | 0.00026 |0.00027 |0.00028 | 0.00029 | 0.0003 |0.00031 |0.00032 |0.00034
-3.3 0.00035 0.00036 | 0.00038 | 0.00039 | 0.0004 |0.00042 | 0.00043 | 0.00045 |0.00047 | 0.00048
-3.2 0.0005 0.00052 | 0.00054 | 0.00056 |0.00058 | 0.0006 | 0.00062 |0.00064 |0.00066 | 0.00069
-3.1 0.00071 0.00074 ] 0.00076 | 0.00079 |0.00082 | 0.00084 | 0.00087 |0.0009 |0.00094 | 0.00097
-3 0.001 0.00104 ]0.00107 |0.00111 |0.00114 ]0.00118 | 0.00122 | 0.00126 |0.00131 | 0.00135
-2.9 0.00139 0.00144 | 0.00149 | 0.00154 | 0.00159 | 0.00164 | 0.00169 | 0.00175 |0.00181 | 0.00187
-2.8 0.00193 0.00199 ]0.00205 |0.00212 |0.00219 ]0.00226 | 0.00233 | 0.0024 ]0.00248 | 0.00256
=27 0.00264 0.00272 10.0028 ]0.00289 |0.00298 ]0.00307 | 0.00317 |0.00326 |0.00336 | 0.00347
-2.6 0.00357 0.00368 | 0.00379 | 0.00391 | 0.00402 | 0.00415 | 0.00427 |0.0044 |0.00453 | 0.00466
-2.5 0.0048 0.00494 ] 0.00508 | 0.00523 | 0.00539 | 0.00554 | 0.0057 |0.00587 |0.00604 |0.00621
-2.4 0.00639 0.00657 | 0.00676 | 0.00695 | 0.00714 |0.00734 | 0.00755 | 0.00776 | 0.00798 | 0.0082
-2.3 0.00842 0.00866 | 0.00889 | 0.00914 | 0.00939 | 0.00964 | 0.0099 |0.01017 |0.01044 |0.01072
-2.2 0.01101 0.01130 | 0.0116 ]0.01191 |0.01222 |0.01255 | 0.01287 |0.01321 |0.01355 | 0.01390
2.1 0.01426 0.01463 | 0.015 0.01539 | 0.01578 | 0.01618 | 0.01659 | 0.01700 | 0.01743 | 0.01786
-2 0.01831 0.01876 |0.01923 | 0.0197 |0.02018 | 0.02068 | 0.02118 | 0.02169 | 0.02222 | 0.02275
-1.9 0.0233 0.02385 | 0.02442 |0.025 0.02559 ]0.02619 | 0.0268 ]0.02743 | 0.02807 | 0.02872
-1.8 0.02938 0.03005 | 0.03074 |0.03144 |0.03216 | 0.03288 | 0.03362 | 0.03438 | 0.03515 | 0.03593
-1.7 0.03673 0.03754 ]0.03836 | 0.0392 |0.04006 | 0.04093 | 0.04182 | 0.04272 |0.04363 | 0.04457
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Table C continued eg. Pr(z < —1.56) = 0.05938

Z (0.09 0.08 |0.07 006 005 004 0.03 ]0.02 ]0.01 0.00
-1.6 ]0.04551 0.04648 |0.04746 ] 0.04846 | 0.04947 | 0.0505 0.05155 ] 0.05262 | 0.0537 0.0548
-1.5 ]0.05592 0.05705 ]0.05821 |0.05938 |0.06057 |0.06178 ]0.06301 ]0.06426 | 0.06552 0.06681
-1.4 ]0.06811 0.06944 ]0.07078 ]0.07215 ]0.07353 |0.07493 ]0.07636 ] 0.0778 0.07927 0.08076
-1.3 ]0.08226 0.08379 ]0.08534 ]0.08691 |0.08851 |0.09012 |0.09176 ]0.09342 | 0.0951 0.0968
-1.2 ]0.09853 0.10027 ]0.10204 ]0.10383 ] 0.10565 |0.10749 ]0.10935 ]0.11123 |0.11314 0.11507
-1.1 ]0.11702 0.119 0.121 0.12302 ]| 0.12507 ]0.12714 ]0.12924 ]0.13136 |0.1335 0.13567
-1 0.13786 0.14007 ] 0.14231 ]0.14457 ]0.14686 |0.14917 ]0.15151 ]0.15386 | 0.15625 0.15866
-0.9 |0.16109 0.16354 ]0.16602 ]0.16853 ]0.17106 ]0.17361 J0.17619 ]0.17879 |0.18141 0.18406
-0.8 ]0.18673 0.18943 1019215 ]0.19489 ]0.19766 |0.20045 ]0.20327 ]0.20611 | 0.20897 0.21186
-0.7 ]0.21476 0.2177 0.22065 ]0.22363 ]| 0.22663 | 0.22965 | 0.2327 0.23576 | 0.23885 0.24196
-0.6 ]0.2451 024825 |0.25143 |0.25463 |0.25785 |0.26109 ]0.26435 ]0.26763 | 0.27093 0.27425
-0.5 ]0.2776 028096 ]0.28434 ]0.28774 ]0.29116 | 0.2946 0.29806 ] 0.30153 | 0.30503 0.30854
-0.4 |]0.31207 031561 ]0.31918 ]0.32276 ]0.32636 |0.32997 | 0.3336 0.33724 | 0.3409 0.34458
-0.3 ]0.34827 0.35197 ]0.35569 ]0.35942 ]0.36317 ]0.36693 | 0.3707 0.37448 10.37828 0.38209
-0.2 ]0.38591 0.38974 1039358 ]0.39743 | 0.40129 | 0.40517 ] 0.40905 ]0.41294 | 0.41683 0.42074
-0 1 |]0.42465 0.42858 ]0.43251 ]0.43644 |0.44038 |0.44433 ]0.44828 ]0.45224 | 0.4562 0.46017
0 0.46414 0.46812 | 0.4721 0.47608 ] 0.48006 ]0.48405 ]0.48803 | 0.49202 | 0.49601 0.5




e — H .
105 ; O?abb—%contmued—eg.—PrﬁZ—ﬁeﬁfeﬁ9ﬁ—%“i“wEngmeermg
10 0.01 |0.02 |0.03 |0.04 |0.05 006 007 |0.08 0.09
0 05 0.50399 | 0.50798 |0.51197 |0.51595 0.51994 0.52392 0.5279 0.53188 0.53586
0.1 [053983 0.5438 0.54776 | 0.55172 | 0.55567 0.55962 0.56356 0.56749 0.57142 0.57535
0.2 |057926 0.58317 ]0.58706 |0.59095 |0.59483 0.59871 0.60257 0.60642 0.61026 0.61409
0.3 |o061791 0.62172 ] 0.62552 | 0.6293 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173
0.4 |0.65542 0.6591 0.66276 | 0.6664 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793
0.5 [0.69146 0.69497 ]0.69847 |0.70194 | 0.7054 0.70884 0.71226 0.71566 0.71904 0.7224
0.6 |0.72575 0.72907 ] 0.73237 | 0.73565 | 0.73891 0.74215 0.74537 0.74857 0.75175 0.7549
0.7 [0.75804 0.76115 |0.76424 |0.7673 0.77035 0.77337 0.77637 0.77935 0.7823 0.78524
0.8 |[0.78814 0.79103 | 0.79389 | 0.79673 | 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327
0.9 [0.81594 0.81859 |0.82121 |0.82381 | 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891
1 0.84134 0.84375 |0.84614 |0.84849 |0.85083 0.85314 0.85543 0.85769 0.85993 0.86214
1.1 10.86433 0.8665 0.86864 | 0.87076 | 0.87286 0.87493 0.87698 0.879 0.881 0.88298
1.2 10.88493 0.88686 | 0.88877 |0.89065 |0.89251 0.89435 0.89617 0.89796 0.89973 0.90147
1.3 ]0.9032 0.9049 0.90658 | 0.90824 | 0.90988 0.91149 0.91309 0.91466 0.91621 0.91774
1.4 091924 0.92073 | 0.9222 0.92364 | 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189
1.5 ]0.93319 0.93448 ]0.93574 |0.93699 |0.93822 0.93943 0.94062 0.94179 0.94295 0.94408
1.6 09452 0.9463 0.94738 | 0.94845 | 0.9495 0.95053 0.95154 0.95254 0.95352 0.95449
1.7 10.95543 0.95637 ] 0.95728 |0.95818 | 0.95907 0.95994 0.9608 0.96164 0.96246 0.96327
1.8 10.96407 0.96485 |0.96562 |0.96638 |0.96712 0.96784 0.96856 0.96926 0.96995 0.97062
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Table C continued eg. Pr(Z < 3.44) = 0.99971
Z 000 (001 |0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
1.9 /097128 |097193 |097257 [09732  |09738L  [097441 | 0975 097558 | 0.97615 09767
2 |o97725 |097778 |09783L  |o097es2 | 097932  |097982 | 09803 098077 | 098124 098169
2.1 (098214 |098257 |0.983 098341  |098382  |0.98422 | 09846l 0985 0.98537 098574
2.2/0981 |098645 |098679 |098713  |098745  |0.98778 | 098809 09884 | 09887 098899
2.3[098928 098956 [098983  |09901  |099036  |0.99061 | 099086 099111 [ 099134 099158
2.4 (09918 [099202 (099224 |099245 | 099266 | 099286 | 099305 099324 | 099343 099361
2.5(099379 [099396 [099413 |093  [099446  |0.99461 | 09%477 099492 | 099506 09952
2.6 (099534 099547 (09956  |099573 | 099585  |0.99598 | 099609 099621 | 099632 099643
2.7 (099653 099664 [099674  |099683 | 099693  |0.99702 | 099711 09972 [099728 099736
2.8 (099744 099752 |09976  |099767 | 099774  |0.99781 | 099788 099795 | 0.99801 0.99807
2.0(099813 099819 [099825 |099831 | 099836  |0.99841 | 099846 099851 | 0.99856 0.99861
3 [099865 |099869 [099874 |099878  [099882 (09983 | 099889 099893 | 0.9989% 0999
310099903 |099906 [09991  |099913 [099916 (099918  |099921 099924 | 099926 0.99929
32/099931 |099934 [099936  |0.99933 (09994  |099942 0990044 099946 | 099948 09995
3.3/099952 [099953 [099955 |0.99957 [099958 (0999 | 099961 099962 | 099964 0.99965
34109996 |099968 099969 |09997  [099971 (099972  [099973 099974 | 099975 099976
3.5/099977 [099978 [099978  |099979 [09998  [0.99981  |099981 099982 | 0.99983 099983
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Table D Critical values of standard normal (Z,) ed. Zyos = 1.64

Z, |0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0.5 0.49601 0.49202 0.48803 0.48405 0.48006 0.47608 0.4721 0.46812 0.46414
0.1 0.46017 0.4562 0.45224 0.44828 0.44433 0.44038 0.43644 0.43251 0.42858 0.42465
0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.39743 0.39358 0.38974 0.38591
0.3 0.38209 0.37828 0.37448 0.3707 0.36693 0.36317 0.35942 0.35569 0.35197 0.34827
04 0.34458 0.3409 0.33724 0.3336 0.32997 0.32636 0.32276 0.31918 0.31561 0.31207
05 0.30854 0.30503 0.30153 0.29806 0.2946 0.29116 0.28774 0.28434 0.28096 0.2776

0.6 0.27425 0.27093 0.26763 0.26435 0.26109 0.25785 0.25463 0.25143 0.24825 0.2451

0.7 0.24196 0.23885 0.23576 0.2327 0.22965 0.22663 0.22363 0.22065 0.2177 0.21476
0.8 0.21186 0.20897 0.20611 0.20327 0.20045 0.19766 0.19489 0.19215 0.18943 0.18673
0.9 0.18406 0.18141 0.17879 0.17619 0.17361 0.17106 0.16853 0.16602 0.16354 0.16109
1 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 0.14457 0.14231 0.14007 0.13786
1.1 0.13567 0.1335 0.13136 0.12924 0.12714 0.12507 0.12302 0.121 0.119 0.11702
1.2 0.11507 0.11314 0.11123 0.10935 0.10749 0.10565 0.10383 0.10204 0.10027 0.09853
1.3 0.0968 0.0951 0.09342 0.09176 0.09012 0.08851 0.08691 0.08534 0.08379 0.08226
14 0.08076 0.07927 0.0778 0.07636 0.07493 0.07353 0.07215 0.07078 0.06944 0.06811
15 0.06681 0.06552 0.06426 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592
1.6 0.0548 0.0537 0.05262 0.05155 0.0505 0.04947 0.04846 0.04746 0.04648 0.04551
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Table D Crtical values of standard normal continued

egfora =0.05z« = zy 9,5 = 1.96
2

Z, |0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
18 0.03593 0.03515 0.03438 0.03362 0.03288 0.03216 0.03144 0.03074 0.03005 0.02938
19 0.02872 0.02807 0.02743 0.0268 0.02619 0.02559 0.025 0.02442 0.02385 0.0233
2 0.02275 0.02222 0.02169 0.02118 0.02068 0.02018 0.0197 0.01923 0.01876 0.01831
2.1 0.01786 0.01743 0.017 0.01659 0.01618 0.01578 0.01539 0.015 0.01463 0.01426
2.2 0.0139 0.01355 0.01321 0.01287 0.01255 0.01222 0.01191 0.0116 0.0113 0.01101
2.3 0.01072 0.01044 0.01017 0.0099 0.00964 0.00939 0.00914 0.00889 0.00866 0.00842
24 0.0082 0.00798 0.00776 0.00755 0.00734 0.00714 0.00695 0.00676 0.00657 0.00639
2.5 0.00621 0.00604 0.00587 0.0057 0.00554 0.00539 0.00523 0.00508 0.00494 0.0048
2.6 0.00466 0.00453 0.0044 0.00427 0.00415 0.00402 0.00391 0.00379 0.00368 0.00357
2.7 0.00347 0.00336 0.00326 0.00317 0.00307 0.00298 0.00289 0.0028 0.00272 0.00264
2.8 0.00256 0.00248 0.0024 0.00233 0.00226 0.00219 0.00212 0.00205 0.00199 0.00193
2.9 0.00187 0.00181 0.00175 0.00169 0.00164 0.00159 0.00154 0.00149 0.00144 0.00139
3 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00104 0.001
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4 Table E Critical values of Chi2 Distribution(xZ,)
Xy
a
v 1.001 005 010 025 .050 .100 900 |.950 |.975 990 .99 .999
1 1.83 7.88 6.63 5.02 3.84 271 0.02 0.00 0.00 0.00 0.00 0.00
2 13.82 10.60 9.21 7.38 5.99 4.61 0.21 0.10 0.05 0.02 0.01 0.00
3 16.27 12.84 11.34 9.35 781 6.25 0.58 0.35 0.22 0.11 0.07 0.02
4 18.47 14.86 13.28 11.14 949 7.78 1.06 071 0.48 0.30 0.21 0.09
5 20.52 16.75 15.09 12.83 11.07 9.24 161 115 0.83 0.55 041 0.21
6 22.46 18.55 16.81 14.45 12.59 10.64 2.20 164 124 0.87 0.68 0.38
7 24.32 20.28 18.48 16.01 14.07 12.02 2.83 217 1.69 124 0.99 0.60
8 26.13 21.95 20.09 17.53 15,51 13.36 349 2.73 218 1.65 1.34 0.86
9 27.88 2359 2167 19.02 16.92 14.68 417 3.33 2.70 2.09 173 115
10 29.59 25.19 2321 20.48 18.31 15.99 4.87 3.94 3.25 2.56 2.16 1.48
11 31.26 26.76 24.72 2192 19.68 17.28 5.58 4.57 3.82 3.05 2.60 1.83
12 3291 28.30 26.22 2334 21.03 18.55 6.30 5.23 4.40 357 3.07 221
13 34.53 29.82 27.69 24.74 22.36 19.81 7.04 5.89 5.01 411 3.57 2.62
14 36.12 3132 29.14 26.12 23.68 21.06 7.79 6.57 5.63 4.66 4.07 3.04
15 37.70 32.80 30.58 27.49 25.00 2231 8.55 7.26 6.26 5.23 4.60 348
16 39.25 34.27 32.00 28.85 26.30 2354 9.31 7.96 6.91 5.81 514 3.94
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Table E continud

v *1.001 |.005 010 |.025 |.050 |.100 {.900 |[.950 |.975 |.990 995 999
17 479 35.72 3341 30.19 27.59 24.77 10.09 8.67 7.56 6.41 5.70 442
18 4231 37.16 34.81 31.53 28.87 25.99 10.86 9.39 8.23 7.01 6.26 491
19 |4382 38.58 36.19 32.85 30.14 21.20 11.65 10.12 891 7.63 6.84 541
20 4532 40.00 37.57 34.17 3141 28.41 2.44 10.85 9.59 8.26 7.43 5.92
21 |46.80 41.40 38.93 35.48 32.67 29.62 13.24 11.59 10.28 8.90 8.03 6.45
22 |4827 42.80 40.29 36.78 33.92 30.81 14.04 12.34 10.98 9.54 8.64 6.98
23 |49.73 44.18 41.64 38.08 3517 32.01 14.85 13.09 11.69 10.20 9.26 7.53
24 |5118 45.56 42.98 39.36 36.42 33.20 15.66 13.85 12.40 1.86 9.89 8.09
25 |52.62 46.93 4431 40.65 37.65 34.38 16.47 14.61 1312 11.52 10.52 8.65
26 |54.05 48.29 45.64 41.92 38.89 35.56 17.29 15.38 13.84 12.20 11.16 9.22
27 | 5547 49.64 46.96 43.19 40.11 36.74 18.11 16.15 14.57 12.88 11.81 9.80
28 |56.89 50.99 43.28 44.46 41.34 37.92 18.94 16.93 15.31 13.56 12.46 10.39
29 |58.30 52.34 49.59 45.72 42.56 39.09 19.77 17.711 16.05 14.26 13.12 10.99
30 |59.70 53.67 50.89 46.98 43.77 40.26 20.60 18.49 16.79 14.95 13.79 11.59
40 |7340 66.77 63.69 59.34 55.76 51.81 29.05 26.51 24.43 22.16 20.71 17.92
50 |86.67 79.49 76.15 71.42 67.50 63.17 37.69 34.76 32.36 29.71 27.99 24.67
60 |99.61 91.95 88.38 83.30 79.08 74.40 46.46 43.19 40.48 37.48 35.53 3174
70 11232 |104.21 100.43 95.02 90.53 85.53 55.33 51.74 48.76 45.44 43.28 39.04
80 |12484 |116.32 112.33 106.63 101.88 96.58 64.28 60.39 57.15 53.54 51.17 46.52
90 |137.20 |128.30 124.12 118.14 113.15 107.57 73.29 69.13 65.65 61.75 59.20 54.16
100 | 14945 |140.17 135.81 129.56 124.34 118.50 82.36 77.93 74.22 70.06 67.33 61.92
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Table F Chracteristic of some continuous distributions

paf MGF Mean Variance

, 1 e’ —e” (a+b) (b -a)*

_+ 1) =
Uniform (a,b) b_a ,a<x<b o(t) {0 _a) 5 B
Exponential with _Ix A l i
Parmeter A A7, x=0 A—t A A2
Gammaa(n, ) e (ﬂx)n_l x>0 A " n n
ninteger,ﬂ,>0 Y = 2 22

(n-1)! A—t
{x—y)z 2‘[ n
Normal((n, 6) ﬁe 25 —0o(X {0 exp[yt + 62 j M o?
2
~(Int-u)? o 5 5

Lognormal (p, o) 1 e 2° >0 expl u + 7 e2u+0 N (eG 1)

ot 2r
Beta with parameters adg b _ I'(a+b) a axb
0 >0 LX) Ol ““T@r) a+b (a+b)*(a+b+1)
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Table F  Chracteristic of some continuous distributions continued
A= location parameter B= scale parameter C= shape parameter
Variance mean CDF paf
_aC-1 - A
2 1 x-A.C CooAT T AC .
B’I'(l+2)+B?*(r(1+& A+BIr(l+= -(==5) 5B B Weibul
() +B° (1@ ) T O L
1 Ayl
B 1-(@+cx XAy &valid on E(l+CX?)lcvaI|d on
A+— A<x<w “whenCz0 or A<x<owo whenC>0 or GPD
1-C A<x<A—% when C< 0 A<X<A—E when C<0
0 X<A+g & C<0 0 x<A+8 &C<o
1 1 1
= X-A 1 _cX-Ac
~(1-CxXZA)C acghe xed g
e B o x>A+Bg&c<o GEV
1 x> A+g & C>0 XSA+6&C>0
1 x>A+(L3: &C>0
2Rp2 A+ vB X-A X-A
7B Y XA B _x=A
6 Y = oosm2 e® ’ geecigh-e B Frt
A Weibull distribution with A= 0 & C=1isan exponential distribution. A Weibull distribution with A= 0 & C=2 is Rayleigh distribution
A GPD distribution with A= 0 & C=0 isan exponentia distribution
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Table G Chracteristic of some discrete distributions

Probability function p(x) MGF Z-transform mean Variance
n X n-x _

Binomial (n,p),0<p<1 (xj Pr(-p)™" x=0L..n [pe' +@-p)]" [pz +(1-p)]"| NP np(1-p)
Poi ith A _
permete e’ 2 x=012 el -1 A A
Geometric for success t 1—

ith parameter _nY?t y— _pe I 1 P
0<pel PU-p) x=12 1-(1- p)e 1-@-p)z | p 0’
Geometric for failure p

: t p 1- p 1- P

th parameter —-p)* x= . 1-(1-p)e —
0< p<i PL=p)" x=012 1-(1-p)z p p’°

t <—In(1-p)




Table H MATLAB! Commands related to Distributions

Parameter

Density/probabality

Disribution | estimator Random numbers Inverse of CDF CDF(F(x)) Function
Beta betafit(X) | betarnd(A,B,m,n,0,...) | betainv(P,A,B) betacdf(x,A,B) betapdf(x,A,B)
Poisson poissfit(X) | poissrnd(A,m,n) poissinv(P, A) poi sscdf(x, A) poisspdf(x, A)
Binomial binofit(X,n | binornd(N,P,m,n) binoinv(Y,N,P) binocdf(x,N,P) binopdf(x,N,P)
Neg Bino. | nbinfit(X) | nbinrnd(R,P,m,n) nbininv(Y,R,P) nbincdf(x,R,P) nbinpdf(x,R,P)
Hyp. Geo. hygernd(M,K,N,m,n) | hygeinv(P,M,K,N) | hygecdf(x,M,K,N) | hygepdf(x,M,K,N
Gamma gamfit(X) | gamrnd(n, A,m,n) gaminv(P, n, ) gamcdf(x, n, A) gampdf(x,n, A)
Lognormal | lognfit(X) | lognrnd(u, o,m,n) logninv(P,u, 6) lognedf (X,u, 6) lognpdf(x,u, ©)
Chi-Squa.. chi2rnd(V,m,n) chi2inv(P,V) chi2cdf(x,V) chi2pdf(x,V)
Normal normfit(X) | normrnd(y, 6,m,n) norminv(P,u, 6) normcdf(x y, o) normpdf (X, p, o)
Exponential | expfit(X) | exprnd(mu,m,n) expinv(P,mu) expcdf (X, mu) exppdf(x, mu)
Geometry geornd(P,m,n) geoinv(Y,P) geocdf(x,P) geopdf(x,P)
Weibull whlfit(X) | wblrnd(B,C,m,n) whlinv(P, B,C) whbl cdf(x, B,C) whblpdf(x-A, B,C)
Uniform unifit(X) unifrnd(A,B,m,n) unifinv(P,A,B) unifcdf(x,A,B) unifpdf(x,A,B)
F frnd(V1,V2,m,n) finv(P, V1,V2) fcdf(x, V1,V2) fpdf(x, V1,V2)
GEV gevfit(X) | gevrnd(C,B,A) gevinv (P,C,B,A) | gevcdf(x,C,B,A) gevpdf(C,B,A)
GPD gpfit gprnd gpinv gpcdf gppdf
Rayleigh raylfit(X) | raylrnd(B,m,n) raylinv(P,B) raylcdf(x,B) raylpdf(x,B)

t trnd(V,m,n) tinv(P,V) tedf(x,V) tpdf(x,V)
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