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Preface 

My motivation for writing this textbook originates from several years teaching 
mechanical engineering at British Columbia Institute of Technology (BCIT). Several 
references specifically pertinent to the bachelor-level course System Design (MECH 
8230) are available, but those existing resources and textbooks fail to fully meet the 
course requirement and curriculum—mainly the combination of related fundamentals 
and modern engineering software applications. Students at the bachelor level have been 
forced to consult with several sources. An opportunity became available through a call 
from the government of British Columbia and supported by BCIT to develop textbooks as 
open education resources and to make them available to students. 

This textbook, Engineering Systems Dynamics: Modelling, Simulation, and Design, 
presents effective system modelling methods, mainly bond graph (BG), and the 
application of a relevant engineering software tool, 20-sim. As well, we have created an 
affordable, open education resource for students and professionals in the field. 

This textbook emphasizes the fundamentals of modelling methods—including Lagrangian 
and BG—and introduces a software tool for modelling and simulation to support the 
design of common engineering systems. In this approach, time-consuming effort of 
manipulating and extracting system equations, and writing computer codes for 
integrating and finding their solution are secondary. We believe that our approach helps 
both students and professionals currently working in the field to become more 
productive engineers. Screen-recorded video files of selected worked-out examples help 
the reader understand the topic and applications for real-world engineering systems. 

This book comprises the following 11 chapters: 

Chapter 1: Introduction gives the definition of modelling, some background on the role 
of modelling for simulation and design, and the history of BG method. 

Chapter 2: Lagrangian Mechanics discusses the background foundation of the energy-
based Lagrangian method of modelling, its formulation, and several worked-out 
examples to demonstrate the applications of this method along with their system 
equations solutions using 20-sim. 
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Chapter 3: Bond Graph Modelling Method gives a full description of the BG method, its 
related structure, generalized variables including power variables effort and flow, nine 
basic elements, and causality-definition and assignment rules. This chapter is the 
foundation for learning BG method and prepares the reader to learn and apply BG 
method. 

Chapter 4: Building Bond Graph Models: Procedure and Application gives guidelines 
and procedure of how to build a BG model and how to assign causalities. A step-by-step 
approach with worked-out examples demonstrates application of the procedure. 

Chapter 5: Introduction to 20-sim Software Tool introduces the software package 
20-sim and details its features for building BG models and simulation for systems. This 
chapter includes examples and solutions, including screen-recorded video files of the 
solution steps using 20-sim. 

Chapter 6: Bond Graph Models for Complex Mechanical Systems gives more worked-
out examples for selected complex mechanical systems including rotational and 2D rigid 
body motion. This chapter includes several examples and their solutions including 
screen-recorded video files of the solution steps using 20-sim. 

Chapter 7: Bond Graph Models for Electrical Systems discusses the application of BG 
method to electrical circuits and systems and the related sign convention for current and 
voltage. This chapter includes several worked-out examples for selected electrical 
systems including screen-recoded video files of the solution steps using 20-sim. 

Chapter 8: Bond Graph Models for Hydraulic Systems discusses the application of BG 
method to hydraulic systems and the related definitions for effort and flow in these types 
of systems. This chapter gives the derivation for hydraulic inertance, capacitance, and 
resistance, as well as several worked-out examples for selected hydraulic systems, 
including screen-recorded video files of the solution steps using 20-sim. 

Chapter 9: Bond Graph Models for Multi-Domain Systems gives several worked-out 
examples of the application of BG method to systems consisting of multi-energy 
domains, including screen-recorded video files of the solution steps using 20-sim. 

Chapter 10: Frequency Analysis: Bode Plots and Transfer Function discusses the 
methods of analyzing systems in frequency domain vs. time domain and details the 
application of the Bode method for plotting power and phase of selected input/output 
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signals related to a given system. This chapter includes several worked-out examples, 
including screen-recorded video files of the solution steps using 20-sim. 

Chapter 11: Miscellaneous Topics collects all related and supporting topics to help the 
reader’s understanding of the subject. The topics include extraction of system equations 
from BG models, the derivative and algebraic loop, conjugate variables, and pseudo bond 
graph. The chapter also includes worked-out examples where necessary. 

 

Mehrzad Tabatabaian, PhD, PEng 

Vancouver, BC 

October 2021 

The publisher recognises and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products. All brand names and product names
mentioned in this book are trademarks or service marks of their respective companies. Any
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1. Introduction 

The foundations of engineering practice are mathematical models, the principles of 
physics, and empirical results obtained from experiments for defining design criteria. An 
engineer must know the laws of physics very well and use the relevant mathematical 
models and their solutions, either exact or numerical, to design parts, systems, and 
complex machines which function with certain reliability for an assumed lifetime. To help 
with this task, an engineer may use modelling tools to simulate the behavior of systems 
and their components. Modelling and the application of software tools are becoming 
increasingly common in modern engineering practice. As shown in Figure 1‑11

, modeling 
and simulation results can help optimize and refine a design before the physical 
prototype is built. This minimizes the time required for the design process. In addition, 
application of modelling can minimize the final cost of a prototype or a product. 

Figure 1-1 Modern design process for a system or component 

1. Adapted and modified, with permission from Mercury Learning and Information LLC. 
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Isaac Newton (1643–1727) 

Modelling has a long history starting from 
ancient times when scientists used “equations” to 
relate variables or parameters to one another 
(e.g., Archimedes, Thales, Khawrazmi). Later, 
scientists and mathematicians developed 
“equations” which could represent the way that 
natural phenomena work and materials behave. 
These “equations” are sometimes referred to as 
laws of physics and constitutive equations since 
they are validated through time and the obtained 
results match with what we experience or 
measure in the real world with some 
approximations, of course. For example, Newton’s 
second law is given as a model which predicts the 
behaviour of material bodies under given forces applied to them, i.e., the relationship 
between forces applied to a body mass and the change of its momentum with respect to 
time. 

Similarly, Ohm’s law is a model which relates the voltage across a resistor to the electrical 
current using the resistor’s material property. These models, and many other similar 
ones (e.g., Hooke’s, Fick’s, Fourier’s) related to different engineering disciplines, form the 
foundation of engineering. It is through their application that we trust the behavior and 
responses of our designs in the real world. Assume that we are flying in an airplane which 
is designed based on laws and governing equations or models applied to fluid mechanics 
and solid mechanics, among others. If we don’t trust and accept these laws and models, 
then it would not be logical to ride in an airplane! 

Real-world phenomena are complex and usually involve many types of physics. For 
application in engineering, we usually simplify these phenomena and consider the 
dominant physics involved. For example, the length of a simple spring linearly changes 
under a given load according to Hooke’s law. But it becomes a more complex problem if 
the spring’s material behaves non-linearly, or if for example, electrical charges flow 
through it. Traditionally, the simplification of a problem is/was due to lack of tools for 
finding a solution which could represent more accurately that problem’s real world 
behaviour. It is at this point that modelling methods, e.g., Lagrangian and BG, and 
advanced modelling software tools, e.g., 20-sim, are valuable resources for finding 
solutions to complex engineering systems and optimizing our designs to have more 
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Henry Paynter (1923–2002). Courtesy MIT 
Museum. 

economical, reliable, and durable products as end results. Although this book focuses on 
using bond graphs as a modelling method, we also emphasize the importance of learning 
and, hence, understanding the foundation and mathematics behind an energy-based 
approach for system analysis. For this purpose, we summarize Lagrangian mechanics in 
chapter 2 and provide some references for further reading. 

The main body of the text is devoted to the BG method. This graphical (i.e., it can be 
sketched similar to engineering drawings) method translates the physical laws relevant to 
a desired system at hand into graphical interactions of interconnected assigned 
elements. The method uses laws of thermodynamics and the principle of cause and effect 
(in an acausal

2
 way) with the inclusion of constitutive relations relevant to system 

components. 

In 1959, Henry M. Paynter at the MIT 
Department of Mechanical Engineering 
developed the bond graph method [1]. This 
method has fluctuated in application and 
popularity in the industry, with a recent rise 
due to its strength in modelling multi-energy-
domain systems and the widespread 
availability of economically viable computer 
power [2]. 

In this book, we make use of facilities available 
in 20-sim, as a software tool for building, 
among others, BG models. 20-sim also offers solvers for finding solutions for the 
resulting system equations for simulation and design of systems. We use these solvers, 
with the modern script language SIDOPS++ included, to solve system equations as 
ordinary differential equations (ODEs). The system equations could be extracted from BG 
models or using Lagrangian method. The script language SIDOPS++ is suitable for 
complex system modelling and solving the relevant equations [3]. 

2. Acausal method, like bond graph, allows the user to select input and ouput ports, in contrast to 
causal method, for which the ports are fixed in terms of input and output signals, e.g., block diagram 
method. Acausal methods can be interpreted as two-way streets vs. causal methods as one-way 
streets. 
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The reader may come across or already be familiar with other available methods/tools 
for modelling engineering systems, including block diagram, a signal processing 
graphical method; icon-diagram, a component-iconic graphical method; and advanced 
script languages/tools, e.g., Dymola, Smile, and recently Modelica [4], [5], [6]. 

Media Attributions 

• Isaac Newton © J. MacArdell after E. Seeman is licensed under a CC BY (Attribution) 
license 

• Henry Paynter © MIT Museum is licensed under a All Rights Reserved license 
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Joseph-Louis Lagrange (1736–1813) 

2. Lagrangian Mechanics 

2.1        Overview 

In general, it is easier to perform engineering/
technical calculations using a scalar quantity rather 
than a tensor/vector type quantity, mainly because 
a vector’s components depend on the selected 
coordinates system, and hence, more quantities to 
deal with. This was the main motivation for 
Joseph-Louis Lagrange (1736–1813), [7], [8] to start 
looking into the Newtonian mechanics close to a 
century after Newton developed his laws. 
Consequently, Lagrange developed a new 
formulation, so-called Lagrangian mechanics (1788). 
Lagrange’s approach has advantages over that of 
Newton’s, specifically for analyzing complex multi-
domain, multi-component systems. Lagrange’s 
approach releases us from having to consider a single inertia coordinates system and 
inter-component constraint forces. In addition, Langrangian method is faster and more 
efficient in terms of computation time and effort required to analyze and model 
engineering systems. 

In Newtonian mechanics, a local condition, e.g., initial position and velocity (or 
momentum), is required for calculating the future states of a system. Using Newton’s law 
of motion, for a system or components of a system, the sum of forces (both applied, 
and constrained/internal, ), is equal to the time rate of change of the momentum, . 

(2.1)   

In order to identify the constraints, we usually isolate the components one by one from 
the rest of the system, while keeping the related dynamical equilibrium intact. This 
operation gives us the free-body diagram of each desired component, useful for 
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analyzing the system’s motion dynamics and calculating inter-component constraint 
forces. However, in the Lagrangian approach, we consider a quantity that is like energy in 
dimension, the Lagrangian , and use a set of partial differential equations (PDEs)—Euler-
Lagrange or Lagrange’s equations— to analyze the system dynamics. 

The latter is much more effective approach for analyzing the systems with many degrees 
of freedom and for dealing with multi-domain systems. In general, L is a function of 
coordinates considered and their time derivatives and, as well, could explicitly depend on 
time. For example, in a one-dimensional system, with designated coordinate x, the 
Lagrangian is written as  We can visualize  as the topography of a surface 
represented by  as a function of  and , as shown in Figure 2-1. This surface can vary 
with time, hence explicit dependence of  on time, or it could be stationary. An example 
of the former is the motion of a mass particle on the surface of a moving sphere. 
Similarly, the Lagrangian of such a system is stationary if the sphere is not moving. The 
visualization presented in reference [9] may help readers with understanding Lagrangian 
surface. 

Figure 2-1 Lagrangian surface visualized in x-  space 

The foundation of Lagrangian mechanics rests on the principle of stationary action 
integral (also referred to as Hamilton’s principle) . This principle simply states that a 
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system’s motion from a given state to another is such that a specific quantity (i.e., the 
system’s Lagrangian function) related to its motion is extremized (i.e., minimized or 
maximized); hence, the value of its integral (i.e., the action integral, ) remains invariant 
[10]. 

The motion of a system from  to  is such that the action integral has a stationary value for the actual 
path of the motion 

In other words, among all possible paths available for the motion of the system to go 
through, there exists one specific path that minimizes/maximizes (for most systems 
minimizes; hence, this is also referred to a principle of least action) the integral of the 
corresponding Lagrangian with respect to time. Mathematically, the stationary action 
integral can be stated as 

(2.2)   

Using calculus of variations [11], [12], [13] and Equation (2.2) it can be shown (see section 
2.5) that L should satisfy Lagrange’s equation, or 

(2.3)   

where L is defined as , with  being the kinetic energy and  the potential 
energy functions. With reference to Figure 2-1,  is the slope at a selected point 

on the curve at the cross-section of surface  and a plane parallel to -plane at desired , 
and  is the rate of change in the slope at the same selected point on the 

curve at the cross-section of a plane parallel to -plane drawn from and including the 
selected point the same point. In other words, we draw two planes parallel to the  and 
planes and equate their corresponding slopes at their intersectional point. Therefore, for 
a stationary point, these two quantities should be equal, as given by Euler’s equation (2.3). 
This is shown in the following sketch, see Figure 2-2. 
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Figure 2 2 A sketch for visualizing Euler-Lagrange’s equation 

By working out a simple example, we show that the Lagrangian approach is equivalent to 
the Newtonian approach in terms of the system’s equation of motion. 

2.2        Example: A Mass-Spring System 

For this example, we show that Equation (2.3) gives the same results as that of Newton’s 
law of motion when applied to a simple mass-spring system, as sketched in Figure 2-3. 
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Figure 2-3 A frictionless mass-spring system 

The kinetic energy for the mass  is  and the spring potential energy (i.e. stored 

elastic energy) with the spring constant k is . Therefore, using Equation 

(2.3), we get , or . Note that for 

this analysis we did not need to consider the free-body diagram of mass  nor the spring 
force as the constraining force acting on it; rather, we used the scalar quantity . 
However, the assumption of having a potential function  from which we can calculate 

the spring force is required (i.e., ), see section 2.7. 

In the following sections we expand on the Lagrangian method for discrete systems with 
related derivation, constraints and definitions for generalized coordinates, forces, and 
momenta. 

2.3        Lagrange’s Equations for a Mass System in 3D 
Space 

We consider a particle with mass  in a 3D space , Cartesian 
system. By definition, the Lagrangian function is written as 
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. We have assumed that the potential energy 

function is only a function of the space coordinates, so-called holonomic system. We now 
form two sets of derivatives  and  of the Lagrangian function 

. Therefore, e.g., in 1D space, we have  and . Hence 

 is a conservative force (see section 2.7). Now, using Newton’s second law, we can write 
the equation of motion, its -component, as  or  and 

Therefore, . Similar derivation can be performed for  and  components of 

the equation of motion. Therefore, we get the Euler-Lagrange equations 

(2.4)   

The motion of the particle could be considered, in principle, in another coordinate 
system, e.g., a cylindrical or spherical system, as well. Therefore, we can define a set of 
coordinates  to represent arbitrary coordinate systems, including Cartesian 
or curvilinear, and write Equation (2.4) in terms of , as well, for generality. 

2.4        Generalized Coordinates, Momenta, and Forces 

As mentioned previously, one of the advantages of Lagrangian method is that we do not 
require consideration of the constrained forces. Therefore, we can include only those 
coordinates that correspond to the degrees of freedom related to a system. This 
consideration leads us to the concept of generalized coordinates, which is used in 
Lagrangian mechanics instead of inertia coordinates used in the Newtonian mechanics. 

We now define the generalized coordinates. First, we expand the system discussed in 
section 2.3 to include  number of particles that move in  coordinate space, or 

. However, in a real-world system we can have restrictions imposed on 
the system’s motion; hence, some of the coordinates are constrained and do not vary 
independently. For example, a particle moving in a plane  is constrained to move in 
-direction . Or, the mass bob of a pendulum moving in  plane is restricted to 

move out of -plane and if the pendulum rod has a fixed length, then only coordinate 
varies during its motion. To capture these constraints, it is common and convenient to 
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define generalized coordinates. Assume that for a  coordinates system we have 
number of constraints. Therefore, the number of independent coordinates defining the 
motion is . By definition, for holonomic systems this is equal to the number of 
degrees of freedom [13]. Now we define the generalized coordinates as a subset of the 
original coordinates, with . Note that  is the number of degrees of 
freedom which is equal to the number of generalized coordinates, and coordinates of the 

 system are not necessarily the same as those of the , by one-to-one comparison. 

For derivation of the equations of motion of a system, using Lagrangian approach, we can 
calculate  number of equations for the system, one by one, related to each generalized 
coordinate. We can also use the generalized coordinates to define the velocity-phase 
space, as the combined set of generalized coordinates and their corresponding time 
derivatives. Therefore, the Lagrangian, as a functional, reads 

(2.5)   

Note that the time dependence of Lagrangian may be explicit for some systems and 
implicit for others and that the phase-space coordinates do not necessarily have the 
same units/dimensions. For example,  could be a displacement and  an angle for a 
system like a pendulum with moving pivot point. 

The fact that we can neglect the constrained coordinates in Lagrangian formulation is an 
advantage of this method over Newton’s because we don’t need to calculate the 
constrained “forces” in order to derive the equations of motion. Of course, the 
constrained forces can be calculated, if required, after having the solution to the system’s 
equations of motion. 

Like the generalized coordinates, we also define associated generalized momenta and 
forces. As mentioned in the previous section, the definition of momentum in Lagrangian 
mechanics is more general than that of mass times the velocity. For example, it could be 
angular momentum, instead. Similarly, the definition of forces is not limited to 
mechanical forces; it can be applied, e.g., to voltage and temperature in electrical and 
thermal domains. Therefore, for each generalized coordinate we can define the 
corresponding generalized momentum and force. As given by Equation (2.6), we can 
write the generalized momenta and generalized force in terms of , as 
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William Rowan Hamilton 
(1805–1865) 

(2.6)   

Section 2.7 discusses the topic of generalized force in terms of its types: conservative and 
non-conservative. 

2.5        Hamilton’s Principle and Lagrange’s Equations 

Hamilton’s principle, as given by Equation (2.2), is 
basically a mathematical expression of calculus of 
variations application for a system dynamical motion with 
the realization that Lagrangian functional is the function 
that should be extremized [12]. Therefore, Lagrange’s 
equations are resulted from the related calculations, 
naturally. This realization was first expressed by William 
Rowan Hamilton (1805-1865), [14], [11], [15]. 
Equation (2.4) can be written in terms of generalized 
coordinates, as 

(2.7)   

Equation (2.7) shows that Lagrange’s equation is 
consequence of, and necessary for, making the action 
integral stationary. We assume that variation  results from variation in one of the 
arbitrarily selected coordinates,  (dropping the subscript index for simplicity without 
losing the generality) while satisfying the fixed boundary conditions, or . 
Obviously, the same operation can be performed for all coordinates involved, . 
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Figure 2-4 Sketch for variation of  for an arbitrary 

Substituting Equation (2.7) into Equation (2.2), after dropping the subscript index and 
assuming  for simplicity, we get 

    

But  and the last term can be written as 

and hence, . 

Back substituting into action integral expression, we get 
. 
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But the last integral gives . 

Therefore, we have . Since  is arbitrarily selected, the 

integrand should be equal to zero in order to have the value of the integral null, or 
. This concludes the derivation of Lagrange’s equation using Hamilton’s 

principle. However, one can derive Lagrange’s equation in a more direct way using 
calculus of variations or virtual work principles, see [11], [13], [16]. 

So far, we have considered systems that do not involve energy dissipation. In practice, 
however, we require extra terms in Lagrange’s equation to account for friction existing in 
real-world systems. Therefore, we expand the discussion to include non-conservative 
forces, e.g., friction and dampers, and find the corresponding Lagrange equation, 
including related topics such as cyclic coordinates, symmetry, multi-domain, and higher-
order systems, [8], [13], [17]. 

2.6        Cyclic Coordinates 

From Equation (2.6), it can be shown that if Lagrangian function does not have explicit 
dependency on one of the coordinates, say , among all , then the conjugate 
momentum  is conserved. The proof is as follows. Writing the Lagrange’s equation for 
coordinate , we have . Since by definition,  is not a function of , 

then . Therefore, , and written in terms of generalized momentum , 

we get , or  is invariant with respect to time, hence conserved. It is common to 

call the coordinate , cyclic or ignorable. 

2.7        Conservative and Non-Conservative Forces 

The generalized forces can be conservative or non-conservative. Conservative forces are 
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those like gravity, buoyancy, mechanical spring, electrostatic, and magnetic. Non-
conservative forces are those like friction, damping, and resistance. 

By definition, a conservative force is curl free, or . Writing this expression in 
index notation, we have , where  is the permutation symbol [18]. For 
example, force under gravity is . Calculating the curl gives 

. Each term is identically zero; hence, 
the force under gravity field is conservative. Now, using the vector identity 
or ; i.e., the curl of a gradient of a scalar function is identically zero, and we can 
write a conservative force as the gradient of a scalar, such as potential function V as 

. By convention, the negative sign indicates that potential energy increases 
when work is done against a force field and vice versa. 

We now, write Equation (2.7), after dropping the index  for simplicity, for  and 
. Therefore, , or  But  , and 

we get  . This is the equation of motion (i.e. ). We clearly 

see that the conservative force is already included in the Lagrange equation given by 
Equation (2.7). Now, for the case that we have a non-conservative force, or that the 
potential function is a function of velocity  and q, (i.e.  or ), then we 
can write use Equation (2.7) to write  Re-arranging the term 

in this expression, we get  We define the expression on the 

right-hand side as the non-conservative force, as  Hence, 

 Again, we have shown that the non-conservative force is already 

included in the Lagrange equation given by Equation (2.7), provided a modified potential 
function is defined, as given by . See reference listed at [11] for more details. 

2.8        Alternative form of Lagrange’s Equation 

In section 2.7, we discussed the applicability of Lagrange’s equation given by Equation 
(2.7) for conservative and non-conservative forces. In practice, we could benefit from a 
more explicit form of the Lagrange equation whose terms can be easily identified for 
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Jean le Rond d’Alembert (1717–1783) 

different types of forces, including energy dissipation such as damping and resistance. In 
this way, we can readily calculate the related terms in the Lagrange equation for 
modeling and simulation of a desired system. 

There are several possible ways to derive the 
Lagrange equation using, e.g., principles of virtual 
work and d’Alembert’s principle, directly from 
Newton’s second law of motion and first law of 
thermodynamics or energy conservation (e.g., 
conservation of sum of kinetic and potential energies) 
[8], [11], [13], [15], [17]. 

We use the conservation of energy approach to derive 
the alternative form of Equation (2.7) including its 
expansion [17]. 

We consider the kinetic energy of a system with 
generalized coordinates  for ) (see 
section 2.4) represented by  and its 
potential energy by . Note that, as we discussed previously, for many 
mechanical systems kinetic energy is a function of  and potential energy a function of , 
only. Therefore, the resulted Lagrange equation can be simplified, accordingly. Now, 
using conservation of total energy of the system, we can write 

(2.8)   

But  and  , using their functional relationships. After 

substituting into Equation (2.8), we get . Note that the 

Einstein summation convention applies, or 
 . Now, using the relation for the kinetic 

energy of the system, or 

(2.9)   

where  is defined as the generalized mass matrix, a diagonally nonzero matrix, 
corresponding to the generalized coordinates. Therefore, its diagonal elements could be 
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mass or moment of inertia when the generalized coordinates are displacement and angle, 
respectively. For example, for a  system, we have 

With having  and , and , particle mass,  , inertia, and 
 we get  Now, differentiating T with respect to , we get 

 and substituting into Equation (2.9), we get  Now, we calculate total 

change of T using the last expression, or  But we had, 

 Therefore, subtracting these last two relations, gives, after 

simplification,  But we can manipulate the first term on the right-

hand side as  Substituting into the last relation for 

dT, we get 

(2.10)   

Now, substituting Equation (2.10) into (2.8), we get  Now, if 

 i.e. holonomic systems, then we get  and, after substitution, we have 

 This expression is true for any arbitrarily selected ; 

therefore, the terms in the bracket should be identically null, or 

(2.11)   

Equation (2.11), is an alternative form of Lagrange’s equation and holds when forces 
associated with the system are conservative, included in the  term. Note that using 

Lagrangian,  and Equation (2.11) we can recover Equation (2.7). The inclusion of 
non-conservative generalized forces,  (usually the loading associated with each 
coordinate) should be added to the right-hand side of Equation (2.11). Also, energy 
dissipation due to viscous damping or resistance is usually given as  and 
contributes to Lagrange equation as . Finally, we get the alternative form of Lagrange 

equation, as 
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(2.12)   

Recall the n is the number of generalized coordinates. In matrix form, Equation (2.12) can 
be written as 

    

2.9        Multi-Domain Systems 

Lagrangian method can be applied to many kinds of engineering systems, including 
mechanical, electrical, thermal, hydraulic, and their possible combinations as multi-
domain systems. As discussed in the previous sections, the established concept of 
generalized coordinates, momenta, and force are key tools to model such systems. 

2.10       Systems with Higher Order Equations 

System equations are mostly second-order differential equations, like Newton’s second 
law, and Kirchohff’s law for RCL circuits. Previous sections, e.g., Equation (2.7), presented 
Lagrange’s equation for such systems. One may require, mostly in continuous systems, to 
build the Lagrangian function for higher-order systems, e.g., fourth-order bi-harmonic 
equation for fluid flows or plate displacements. Fortunately, the Lagrangian method can 
be easily extended to cover the higher-order systems by considering a Lagrangian 
function, as given by Equation (2.13) 

(2.13)   
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Using the calculus of variations and Hamilton’s principle, we can derive the 
corresponding Lagrange’s equation [13], [9]. This s done by: 

(2.14)   

where m is the differentiation order; e.g., for , we have 

    

Worked-out examples are useful to demonstrate applications of Lagrangian method. 
These examples, for mechanical and electrical systems, appear below. Each example 
includes numerical values assigned to the parameters and presents simulation results. 
Selected examples include accompanying screen-recorded video files demonstrating the 
solution steps for related system equations using 20-sim. After learning from the related 
video file, the reader can modify the parameters and run the simulation for specific 
design cases. 

2.11       Example: A Multi-Mass-Spring System 

We want to find the equations governing its motion dynamics for the system sketched in 
Figure 2-5. For this example, we neglect the effect of gravity. 
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Figure 2-5 A mass-spring system with three degrees of freedom 

This system has three degrees of freedom  associated with three masses 
. For three masses, , and each can move vertically; hence, the number of 

constraints is  for each mass. This gives . The Lagrangian method 
is used to find the equations of motion, or three coupled second-order differential 
equations. We start by writing the kinetic and potential energy expressions of the system 
and forming the corresponding Lagrangian. The kinetic energy of the system is 
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. For the potential energy, we should use the difference in 

displacements associated with each spring because the neutral position of the 
unstressed springs do not contribute to the potential energy. For example, for the spring 

, connecting masses  and , we should use  as the variable, or 
. Therefore, the potential energy of the system consisting of the 

sum of all springs is . 

Note that for this system the kinetic energy is a function of only  and potential energy a 
function of . Applying Euler-Lagrange equation to each mass, or degree of freedom, we 
get a system of ODEs, written in matrix form, 

    

For example, the Euler-Lagrange equation associated with mass  reads 
. But we have  and 

. Having information about initial 

and boundary conditions for displacements and/or velocities, we can obtain the solution 
of the system’s equations using 20-sim. An initial velocity of 0.2  is applied to mass , 
for example. The script code is as follows: 

parameters 

real m1 = 15.0 {kg}; 
real m2 = 30.0 {kg}; 
real m3 = 15.0 {kg}; 
real k1 = 50.0 {N/m}; 
real k2 = 100.0 {N/m}; 
real k3 = 50.0 {N/m}; 
real k4 = 20.0 {N/m}; 
real k5 = 70.0 {N/m}; 
real k6 = 10.0 {N/m}; 

variables 

real x1 {m}; 
real x2 {m}; 
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real x3 {m}; 
real x1_dot {m/s}; // velocity 
real x2_dot {m/s}; // velocity 
real x3_dot {m/s}; // velocity 
real x1_dot_dot {m/s2}; //acceleration 
real x2_dot_dot {m/s2}; //acceleration 
real x3_dot_dot {m/s2}; //acceleration 
real Fk1 {N}; // force spring k1 
real Fk2 {N}; // force spring k2 
real Fk3 {N}; // force spring k3 

equations 

x1_dot_dot = -(1/m1)*((k1+k5+k6)*x1-k6*x2-k5*x3); 
x2_dot_dot = -(1/m2)*((k2+k4+k6)*x2-k6*x1-k4*x3); 
x3_dot_dot = -(1/m3)*((k3+k4+k5)*x3-k4*x2-k5*x1); 
x1_dot = int (x1_dot_dot , 0); 
x2_dot = int (x2_dot_dot , 0.2); //initial velocity 0.2m/s 
x3_dot = int (x3_dot_dot , 0); 
x1 = int (x1_dot , 0.2); //initial displacement 0.2m 
x2 = int (x2_dot , 0); 
x3 = int (x3_dot , -0.1); //initial displacement -0.1m 
Fk1 = k1*x1; 
Fk2 = k2*x2; 
Fk3 = k3*x3; 

The results for displacements of the masses and velocities are shown below, see Figure 
2-6. 
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Figure 2-6 Sample results as output from 20-sim 

Here is a video showing how to build and run the model for this example in 20-sim: 

 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=58 

2.12       Example: A System with Energy Dissipation and 
Applied External Force 

We consider a system with two degrees of freedom, as shown in Figure 2-7. The damping 
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coefficients  and  and spring stiffness  and  are used to calculate the potential and 
damping functions  and , respectively. 

Figure 2-7 A mass-spring-damper system with two degrees of freedom 

The non-conservative Rayleigh energy dissipation function is, . 

The derivative of this function with respect to  gives the damping forces associated 

with mass . The kinetic energy is , and potential energy reads 

Lagrange’s equation for motion of mass  reads  and for mass 

is . Performing the derivatives, we get 

Using Lagrange’s equation, with , we get the equations of motion of the system 
in matrix form as 

    

We use 20-sim to solve the systems equations. A step function is used for applied force. 
The script code is as follows: 

parameters 
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real m1 = 2.0 {kg}; 
real m2 = 1.0 {kg}; 
real k1 = 20.0 {N/m}; 
real k2 = 30.0 {N/m}; 
real b1 = 0.1 {N.s/m}; 
real b2 = 0.05 {N.s/m}; 
real start_time = 10 {s}; 
real amplitude = 0.5; 

variables 

real x1 {m}; 
real x2 {m}; 
real x1_dot {m/s}; 
real x2_dot {m/s}; 
real x1_dot_dot {m/s2}; 
real x2_dot_dot {m/s2}; 
real F_applied {N}; // applied force 

equations 

x1_dot_dot = -(b1+b2)/m1*x1_dot+b2/m1*x2_dot-(k1+k2)/m1*x1+k2/m1*x2; 
x2_dot_dot = -(1/m2)*(-b2*x1_dot+b2*x2_dot-k1*x1+k2*x2+F_applied); 
x1_dot = int (x1_dot_dot , 0); 
x2_dot = int (x2_dot_dot , 0); 
x1 = int (x1_dot , 0); 
x2 = int (x2_dot , 0); 
F_applied = amplitude*step (start_time); 

The results for displacements of the masses and applied force are shown below, see 
Figure 2-8. 
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Figure 2-8 Sample results as output from 20-sim 

Here is a video showing how to build and run the model for this example in 20-sim: 

 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=58 

2.13       Example: A Two-Loop Electrical Circuit 

For this example, we consider an electrical circuit with two loops/branches. For the 
system, we have; electric charges  and ; resistors  and ; inductors , , and ; 
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and capacitors  and  as Figure 2-9 shows. The voltage source is , connected to 
loop 1. 

Figure 2-9 A two-loop electrical circuit with source 

For comparison with a typical mechanical system, the equivalent of mass is an inductor; 
for spring, a capacitor; and for damper, a resistor. Therefore, using the Lagrangian 
method, we can write the kinetic energy of the system as 

. Note that electric charge is analogous to mechanical displacement and electric current 
to velocity, or  and . Therefore, e.g., the term  represents the stored 

kinetic energy in the corresponding inductor. Similarly, the potential energy is 
. Note that the capacitance is the inverse of stiffness, or . The 

energy dissipation function for the system is . Using Langrange’s 

equation, , gives the electric circuit system equations 

as 

    

One can use rate of charge or the electric current, I as the variable by replacing  in 
the system’s equations. This gives  and 

 where  and  are the voltage across the capacitors, 
respectively. 
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We use 20-sim to solve the system equations. The script code is as follow 

parameters 

real L1 = 0.15 {H}; 
real L2 = 0.2 {H}; 
real L3 = 0.25 {H}; 
real C1 = 0.05 {F}; 
real C2 = 0.02 {F}; 
real R1 = 1 {ohm}; 
real R2 = 2 {ohm}; 
real omega = 3 {rad/s}; 
real amplitude = 1; 

variables 

real q1 {C}; 
real q2 {C}; 
real q1_dot {A}; 
real q2_dot {A}; 
real q1_dot_dot ; 
real q2_dot_dot ; 
real Voltage {V}; // applied voltage 

equations // equations are manipulated 

q2_dot_dot*(L1*L2+L2*L3+L1*L3)=-L3*R1*q1_dot-(L1+L3)*R2*q2_dot-L3/
C1*q1-(L1+L3)/C2*q2+Voltage*L3; 
q1_dot_dot*(L3) = (L2+L3)*q2_dot_dot+R2*q2_dot+(1/C2)*q2; 
q1_dot = int (q1_dot_dot , 0); 
q2_dot = int (q2_dot_dot , 0); 
q1 = int (q1_dot , 0); 
q2 = int (q2_dot , 0); 
Voltage = amplitude*sin (omega*time); 

Typical plots for current in each loop is shown in Figure 2-10 for a sinusoidal voltage. 
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Figure 2-10 Sample results as output from 20-sim 

2.14       Example: A Compound Atwood’s Machine 

Atwood’s machine is a collection of pulleys and masses. This example examines and 
models the dynamical behavior of this machine as shown in Figure 2-11. 
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Figure 2-11 A compound Atwood’s machine 

This system has two degrees of freedom  describing the motion of 

mass  and pulley b. Therefore, two ODEs describe the system dynamical behaviour. 
The massless un-stretchable string length hanging over pulley  is , and that of pulley 
is . We measure the potential energy with reference to the top of pulley  with vertical 
displacement designated with  and similarly from top of pulley  with , as shown in 
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Figure 2-11. The kinetic energy reads , where , using the 

geometrical constraints and string lengths, . 
Therefore, . Substituting in kinetic energy relation, gives 

. The potential energy reads 

. After substituting for , and  and algebraic 
simplifications we get  , where constant C is given 
by . The Langrange equations in terms of  and  are 

 and 

, having 

    

We dropped , since its differentiation is zero. Hence, 

    

    

    

    

Substituting into the corresponding Lagrange equations, we get the system’s equations of 
motion as 

    

To simplify the equations, eliminate  by multiplying the first equation by  and 
the second one by . After some manipulations, we get 

    

We use 20-sim to solve these system equations. The script code is as follows: 
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parameters 

real m1 = 1.0 {kg}; 
real m2 = 2.0 {kg}; 
real m3 = 4.0 {kg}; 
real g = 9.08 {m/s2}; 

variables 

real x {m}; 
real y {m}; 
real x_dot {m/s}; 
real y_dot {m/s}; 
real x_dot_dot {m/s2}; 
real y_dot_dot {m/s2}; 

equations 

/* x_dot_dot = (1/(m1+m2+m3))*(-y_dot_dot*(m3-m2)+g*(m1-m2-m3)); */ 
x_dot_dot = g*(m1-m2-m3)*(m2-m3)/(m1*m2+m1*m3+4*m2*m3); 
y_dot_dot = (1/(m3+m2))*((x_dot_dot+g)*(m2-m3)); 
x_dot = int (x_dot_dot , 0); 
y_dot = int (y_dot_dot , 0); 
x = int (x_dot , 0); 
y = int (y_dot , 0.1); 

2.15       Example: Atwood’s Machine with Massive String 
and Pulley 

In the analysis of Atwood’s machine, the pulley and string are usually considered 
massless. In this example, we include these parts, assuming the string having mass , 
total length , and linear mass density  and the pulley with mass , radius , and 
moment of inertia  [19]. 
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Figure 2-12 Atwood’s machine 

2Datum for potential energy is a horizontal plane at the level of the pulley’s centre. From 
the datum, the length of hanging string on the two sides of pulley is . The potential 
energy is due to the masses and the string mass, or 

. Note that x is measured downward from the 
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datum toward mass . The kinetic energy is due to the masses, string, and the pulley’s 
angular kinetic energy,  with angular velocity . Therefore, 

. The Lagrangian is written as 

    

The Lagrange is equation reads , or , after 

substituting . The result reduces to the familiar result of  for 

massless string and pulley . 

We use 20-sim to solve these system equations. The script code is as follows: 

parameters 

real Ms = 2.5 {kg}; // string mass 
real L = 2.0 {m}; //string length 
real M = 3.0 {kg}; //mass of the pulley 
real R = 30.0 {cm}; //radius of the pulley 
real g = 9.08 {m/s2}; // grav. acceleration 
real m1 = 4.0 {kg}; 
real m2 = 1.5 {kg}; 

variables 

real x {m}; //vertical displacement 
real I {kg.m2}; // pulley moment of inertia 
real x_dot {m/s}; // vertical velocity 
real x_dot_dot {m/s2}; // vertical acceleration 

equations 

I = 0.5*M*R^2; 
x_dot_dot = g*(m1-m2+(Ms/L)*(x-L))/((m1+m2+(Ms/L)*(L+ pi*R)+I/R^2)); 
x_dot = int (x_dot_dot , 0.0); 
x = int (x_dot , 0); 
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2.16       Example: A Complex Vibrating Mechanical 
System 

For this example, we consider a mechanical system with three degrees of freedom, 
, associated with three masses, . The arrangement of springs and 

dampers is shown, with their coefficients, in Figure 2-13, with corresponding stiffness 
 and damping  coefficients. An applied force,  acting on mass  and all 

wall contact surfaces are considered to have negligible friction. 

Figure 2-13 A complex vibrating mechanical system 

The kinetic energy of the systems reads  and the potential 

energy is . Similarly, the damping function reads 

. The Lagrange’s equations are 

, with 

because the applied force is exerted on mass . Performing the differentiations, we can 
write the equations of the system, as 
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and . In matrix form, the system’s equations are 

    

We use 20-sim to solve these system equations. The applied force is composed of three 
impulses applied at 5, 10, and 20 second. The script code is as follows: 

parameters 

real m1 = 1.0 {kg}; 
real m2 = 3.0 {kg}; 
real m3 = 2.0 {kg}; 
real k1 = 50.0 {N/m}; 
real k2 = 30.0 {N/m}; 
real b1 = 0.1 {N.s/m}; 
real b2 = 0.2 {N.s/m}; 
real b3 = 0.3 {N.s/m}; 

variables 

real x1 {m}; 
real x2 {m}; 
real x3 {m}; 
real x1_dot {m/s}; 
real x2_dot {m/s}; 
real x3_dot {m/s}; 
real x1_dot_dot {m/s2}; 
real x2_dot_dot {m/s2}; 
real x3_dot_dot {m/s2}; 
real F_applied1 {N}; 
real F_applied2 {N}; 
real F_applied3 {N}; 

equations 

x1_dot_dot = -b2/m1*x1_dot+b2/m1*x2_dot-k1/m1*x1; 
x2_dot_dot = -(1/m2)*(-
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b2*x1_dot+(b1+b2)*x2_dot+k2*x2-k2*x3+F_applied1+F_applied2+F_applied3); 
x3_dot_dot = -(1/m3)*(b3*x3_dot-k2*x2+k2*x3); 
x1_dot = int (x1_dot_dot , 0); 
x2_dot = int (x2_dot_dot , 0); 
x3_dot = int (x3_dot_dot , 0); 
x1 = int (x1_dot , 0); 
x2 = int (x2_dot , 0); 
x3 = int (x3_dot , 0); 
F_applied1 = 3*impulse (5,0.1); 
F_applied2 = 5*impulse (20,0.2); 
F_applied3 = -10*impulse (10,0.2); 

Sample results are shown in Figure 2-14. 

Figure 2-14 Sample results as output from 20-sim 

Here is a video showing how to build and run the model for this example in 20-sim: 
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A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=58 

 

2.17       Example: A Pendulum with Moving Pivot 

A simple pendulum with mass  hanging from a free-moving pivot with mass . The 
system has two degrees of freedom: oscillation of pivot,  and pendulum motion 
about vertical designated by angle . The pendulum string with length  is massless 
and unstretchable. We consider the datum at the pivot level and gravitational 
acceleration  pointing downwards, as in Figure 2-15. 
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Figure 2-15 Pendulum with oscillating pivot 

Mass  coordinates read ; hence, the velocity components are 
. We can write kinetic energy of the system as 
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Similarly, the potential energy of the systems reads . Note that the 
pivot motion is horizontal with coordinates (x, 0). The Lagrange equation for rotational 
motion with respect to coordinate  reads , or 

. After simplification, we get . 

Note that for fixed pivot (or ) we get the familiar result for a simple 
pendulum. The Lagrange equation for translational motion with respect to coordinate 
reads , or . After performing 

differentiation, we get . Collectively, the system’s 
equations of motion are 

    

We use 20-sim to solve these system equations. An initial velocity of 0.5 rad/s is applied 
to the pendulum. The script code is as follows: 

parameters 

real m = 0.5 {kg}; // pendulum/bob mass 
real M = 1.0 {kg}; // pivot mass 
real g = 9.08 {m/s2}; //gravity 
real L = 30 {cm}; //pendulum length 

variables 

real x {m}; 
real x_dot {m/s}; 
real x_dot_dot {m/s2}; 
real theta {rad}; 
real theta_dot {rad/s}; 
real theta_dot_dot {rad/s2}; 

equations 

x_dot_dot = (1/cos (theta))*((g/L)*sin (theta)-theta_dot_dot); 
theta_dot_dot = (1/(m*L*cos (theta)^2-M-m))*(m*L*sin (theta)*cos 
(theta)*theta_dot^2-g/L*(m+M)*sin (theta)); 
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x_dot = int (x_dot_dot , 0); 
x = int (x_dot , 0); 
theta_dot = int (theta_dot_dot , 0.5); 
theta = int (theta_dot , 0); 

Sample results are shown in Figure 2-16. 

Figure 2-16 Sample results as output from 20-sim 

Here is a video showing how to build and run the model for this example in 20-sim: 

 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=58 
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2.18       Example: A Pendulum Attached to a Moving 
Mass-Spring-Damper System 

In this example we consider a system consisting of a pendulum with its pivot attached to 
the centre of a freely moving mass . The mass is connected to a spring with stiffness 
and a damper with damping coefficient . The pendulum bob has a mass of  and is 
attached to a torsional damper with damping coefficient  and a torsional spring with 
stiffness . The pendulum string is massless and has a length of . We consider the datum 
at the pivot level and gravitational acceleration  pointing downwards, as in Figure 2-17. 
The system has two degrees of freedom; oscillation of pivot,  and pendulum 
motion about vertical direction designated by angle . 

Figure 2-17 A pendulum attached to a mass-spring-damper system 
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The coordinates of mass  read , and its velocity components are 
. We can write kinetic energy of the system as 

    

Similarly, the potential energy of the systems reads . The 

damping function of the system is . 

The Lagrange equation for rotational motion with respect to coordinate  reads 
, or . After 

simplification, we get . The Lagrange equation for 

translational motion with respect to coordinate  reads 
, or . After performing 

differentiation, we get . Collectively, the 
system’s equations of motion are 

    

We use 20-sim to solve these system equations. The script code is as follows: 

parameters 

real m = 0.5 {kg}; // pendulum/bob mass 
real M = 1.0 {kg}; // pivot mass 
real g = 9.08 {m/s2}; //gravity 
real L = 30 {cm}; //pendulum length 
real k = 2 {N/m}; // spring stiffness 
real kt = 0.5 {N.m/rad}; // torsional stiffness 
real bt = 0.5 {N.m.s/rad}; // torsional damping 
real b = 0.2 {N.s/m}; // damping 
real amplitude = 1; // amplitude of applied force 
real omega = 0.5 {rad/s}; // frequency of applied force 

variables 
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real x {m}; 
real x_dot {m/s}; 
real x_dot_dot {m/s2}; 
real theta {rad}; 
real theta_dot {rad/s}; 
real theta_dot_dot {rad/s2}; 
real F_applied {N}; 
real F_spring {N}; // linear spring force 
real T_spring {N.m}; // torsional spring torque 
real y; // aux. variable, to help the solver 

equations 

x = int (x_dot , 0); 
x_dot = int (x_dot_dot , 0); 
theta = int (theta_dot , 0); 
theta_dot = int (theta_dot_dot , 0); 
y = -m*L*cos (theta)*(theta_dot_dot); 
x_dot_dot = (1/(m+M))*(m*L*sin (theta)*theta_dot^2 + y -k*x-
b*x_dot+F_applied); 
theta_dot_dot = -g/L*sin (theta) -1/L*cos (theta)*x_dot_dot 
-1/(m*L^2)*(bt*theta_dot+kt*theta); 
F_applied = amplitude*sin (omega*time); 
F_spring = k*x; 
T_spring = kt*theta; 

Cart displacement, pendulum angle, and force and torque of the springs are shown in 
Figure 2-18. 
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Figure 2-18 Sample results as output from 20-sim 

Here is a video showing how to build and run the model for this example in 20-sim: 

 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=58 
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2.19       Example: A Mass Particle Sliding on a Rotating 
Circular Ring 

Figure 2-19 shows a particle with mass  sliding on a circular ring with radius . The ring 
itself is rotating about the -axis with a constant angular velocity . We want to find the 
equation of motion for the mass particle. 

Figure 2-19 A particle moving on a circular ring 
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The generalized coordinate is , the polar angle. We can write the coordinates of 
the mass particle as , , and . Therefore, 

, , and . Therefore, the 
kinetic energy reads ) and after substitution of velocities and 

simplifications we get . Similarly, the potential energy of the mass 

particle reads . Note that the kinetic energy of the particle consists of 
those resulted from angular velocity , defined in spherical coordinates in the 
plane due to sliding of the mass on the circular ring, and the rotational velocity , 
defined in a  plane parallel to the  plane at any given time during the motion. 

Now we can write the Lagrange’s equations, using Equation (2.12), with the assumption 
that no friction and non-conservative forces exist, or . Hence 

. But ,  and . After 

substitution and rearranging the terms, we get the equation of motion for the mass 
particle as 

    

We use 20-sim to solve these system equations. An initial angular velocity of 0.2 rad/s is 
applied to the mass. The script code is as follows: 

parameters 

real g = 9.08 {m/s2}; //grav. acc. 
real R = 40 {cm}; //ring radius 
real omega = 0.8 {rad/s}; // ring angular velocity 

variables 

real theta {rad}; 
real theta_dot {rad/s}; 
real theta_dot_dot {rad/s2}; 

equations 

theta_dot_dot= ((1/2)*omega^2*sin (2*theta)+g*sin (theta)/R); 
theta_dot = int (theta_dot_dot , 0.2); 
theta = int (theta_dot , 0); 
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The angular displacement, velocity and acceleration are shown in Figure 2-20. 

Figure 2-20 Sample results as output from 20-sim 

Here is a video showing how to build and run the model for this example in 20-sim: 

 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=58 

48  |  Lagrangian Mechanics

https://pressbooks.bccampus.ca/engineeringsystems/?p=58#pb-interactive-content


2.20       Example: An Extensible Robotic Arm Rotating in 
a Plane 

Figure 2-21 shows a load with mass  is carried by a robotic arm in the  plane. The 
length  of the arm and its angle  with respect to -axis are functions of time , or 
and . The damping coefficients for radial and tangential motions are  and , 
respectively. 

Figure 2-21 An extensible robotic arm carrying a load 
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The generalized coordinates (or degrees of freedom) are , and corresponding 
velocities are , for mass . We can write the kinetic energy as , 

due to radial and tangential velocities, respectively. The potential energy, with reference 
to the support, is . The damping function is . The conservative 

gravity force due to the load mass is accounted for through the potential function . The 
force  and torque  exerted by the robot-arm motor to move the mass are components 
of generalized force vector, or . Now, we have , , 

, , , ,  and . Using Equation (2.12), 

we can write the equations of the motion for the mass , as 

    

We use 20-sim to solve the system equations. The script code is as follows: 

parameters 

real m = 0.5 {kg}; // load mass 
real g = 9.08 {m/s2}; //grav. acc. 
real bt = 0.5 {N.m.s/rad}; // tangential damping 
real br = 0.2 {N.s/m}; // radial damping 

variables 

real arm {m}; 
real arm_dot {m/s}; 
real arm_dot_dot {m/s2}; 
real theta {rad}; 
real theta_dot {rad/s}; 
real theta_dot_dot {rad/s2}; 
real F {N}; //applied force 
real T {N.m}; // applied torque 

equations 

arm_dot_dot = (arm*theta_dot^2-g*sin (theta)-br*arm_dot/m+F/m); 
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theta_dot_dot = (1/(m*arm^2))*(-2*m*arm*arm_dot*theta_dot-m*g*arm*cos 
(theta)-bt*theta_dot+T); 
arm_dot = int (arm_dot_dot , 0); 
arm = int (arm_dot , 0.2); 
theta_dot = int (theta_dot_dot , 0); 
theta = int (theta_dot , 0); 
F = sin (0.2*time); 
T = 0.2; 

Exercise Problems for Chapter 2 

Exercises 

1. Using the Equation Model tool in 20-sim, build a model for the example given in section 2.13. Using the 
numerical data for the parameters, run simulation and analyze the results. 

2. Using the Equation Model tool in 20-sim, build a model for the example given in section 2.14. Using the 
numerical data for the parameters, run simulation and analyze the results. 

3. Using the Equation Model tool in 20-sim, build a model for the example given in section 2.15. Using the 
numerical data for the parameters, run simulation and analyze the results. 

4. Using the Equation Model tool in 20-sim, build a model for the example given in section 2.20. Using the 
numerical data for the parameters, run simulation and analyze the results. 

5. Using Lagrangian method, derive the system equations for the double pendulum system shown below. 
Solve the resulting system of ODE’s and draw the angular displacements and velocities  and ) 

of mass  and  for an initial condition of  at . Also draw the phase diagram (i.e.,  vs. ) for each 

mass. Assume that the strings are massless and inextensible. 
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6. For the mechanical system given, e.g., an elevator with a mass-spring-damper subsystem, verify the 
system equations, using Lagrangian method and solve them with 20-sim. The container could be an 
elevator, e.g., with a mass  and is supported by a spring  and moving vertically, guided by frictionless 
rollers under load . The subsystem is composed of a mass m, two springs  and , and a damper , 
as shown in the figure below. The gravitational acceleration vector is directed downward, . 
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7. Repeat the sliding mass on a rotating circular ring example given in section 2.19 assuming . 
Modify the model provided for this example accordingly and run the simulation. 

8. Repeat the example given in section 2.16 after adding a mechanical spring  between mass  and the 
wall. Modify the model provided for this example accordingly and run the simulation. 
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9. Repeat the example given in section 2.17 after replacing the pendulum with a double pendulum. Modify 
the model provided for this example accordingly and run the simulation. 

54  |  Lagrangian Mechanics

https://pressbooks.bccampus.ca/engineeringsystems/exercise-2-8/


10. Derive the system equations for the electrical circuit shown in the below sketch. Use Lagrangian method 
and solve the resulting system of ODEs with 20-sim. 
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Media Attributions 

• Joseph Louis Lagrange © Zephirin Belliard is licensed under a CC BY (Attribution) 
license 

• William Rowan Hamilton adapted by Quikbik is licensed under a Public Domain 
license 

• Jean le Rond d’Alembert is licensed under a Public Domain license 
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3. Bond Graph Modelling Method 

3.1        Overview 

All engineering systems share the physical phenomenon of the transfer and distribution 
of energy among their corresponding components while converting one form of energy 
to another. The balance of energy “flowing” through a system should be maintained. The 
total amount of energy remains constant—energy is conserved—according to the first 
law of thermodynamics. In 1959, Henry Paynter used the first law and common system 
features to create a general graphical method for analyzing and modelling multi-domain 
engineering systems. His objectives were mainly to have a unified graphical method for 
modelling single- and multi-domain systems as well as a common procedural algorithm 
to develop such models and obtain their relevant systems’ equations. Hence, the bond 
graph (BG) method was created [1], [20], [21], [22]. 

BG represents a system through graphical modelling. The BG method assigns ports (the 
communication point) for each component of a system and connects each port to the 
adjacent component through bonds (the communication path and direction) for a two-
way energy/power exchange. At any instant of time, each component either receives 
(sends) a quantity called effort and simultaneously sends (receives) another quantity 
called flow. The product of the quantities of effort and flow has the dimension of 
power—or time rate of energy change. In a mechanical system, force is the effort and 
velocity is the flow; in an electrical system, voltage is the effort and current is the flow. 
The collection of bonds—with the inclusion of the related system components’ 
constitutive laws, constraints, and boundary conditions—forms the system BG model. 
Building a BG model requires nine basic elements, defined as follows. See section 3.4 for 
full description. 

The nine basic BG elements, along with the principle of causality, can be employed for 
building a BG model representing a given system’s dynamical behaviour (see further 
sections for detailed explanation). The resulting BG model, then, would clearly show the 
kinematic (i.e., continuous stream of flow) and kinetic (i.e., continuous stream of effort) 
of the system and can be used to extract the equations governing the dynamical 
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behaviour of the whole system. In addition, the insights provided by a BG model are 
valuable for understanding the physics/dynamics of the system and provide a powerful 
tool for simulation, design, and optimization of the system. The procedure for building a 
BG model is similar for analogous engineering systems. For example, when the 
parameters of the pertinent components are used, the BG model for a mechanical mass-
spring-damper system is identical to those of an electrical inductor-capacitor-resistor 
(RCL) system. 

In this chapter, we discuss, among other topics, the definitions for basic BG elements, 
the causality principle and assignments, and the concept of state variables. 

3.2        Categorizing System Components—Generalized 
Effort and Flow 

The components of a system can be categorized according to energy transfer through 
the system into three types. These are kinetic energy storages, potential energy storages, 
and energy dissipaters. In addition, we have energy source/sink components acting with 
the surroundings at the boundary of the system. There may also exist components that 
simply transfer energy without storing or dissipating it. Finally, a system may include 
components, such as a distributor, that perform as junctions. Figure 3‑1 shows a sketch of 
a mechanical system with examples of component categories, as mentioned above. All 
these types of components can be modelled using nine basic BG elements, as discussed 
in further sections. 
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Figure 3-1 Sketch of a mechanical system with components’ category types 

The dynamical behaviour of a system changes with time. Therefore, time rate of energy 
or power is the quantity of interest in BG models. The relation between energy  and 
power  can mathematically be written as 

(3.1)   

We can identify the components of a given system as “lumped” entities that exchange 
energy with one another. Using the first law of thermodynamics, we can write the 
change in energy as the sum of work  and heat  exchanges, or . 
Summing up the energy changes of lumped components in a system gives the total 
energy change of the system. For example, without losing generality, we consider a 
mechanical system component receiving power and exhibiting a displacement  and 
velocity . Using Equation (3.1), the amount of energy in terms of work input 

can be written as . But the work is also equal to the force times the 
displacement; hence, . Substituting for , we get . 
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Considering  and  as the time limits associated with the duration of energy transfer, 
we can, after integrating, write the work as 

(3.2)   

where  is mass. In a BG model, each system component is designated by a suitable basic 
element and associated port(s). Depending on the type of element used, the number of 
ports could be one, two, or more. The power direction is designated by a half-arrow ( ) 
which shows the direction of power to or from the port for each element. Traditionally, 
half-arrows are used in BG models to keep the full-arrow shape for one-way signal data, 
as in block diagram graphs. 

As mentioned above and by Equation (3.2), for mechanical systems, the power is 
composed of two quantities: force and velocity. In BG method, we generalize this 
concept and show the power with the product of  and , the effort and flow, respectively. 
Hence, the product of effort and flow has the dimension of power, or  . For 
example, for a rotational motion,  is the torque and  is the angular velocity (see Table 
3‑1). In other words, in a BG model, the kinetics of a system is modelled by transfer of the 
efforts of its components according to the equilibrium, and the kinematics by transfer of 
components’ flows according to compatibility requirement. We will discuss this feature 
of BG method, using some examples, in section 4.6. 

Figure 3‑2 shows the definition of power direction for element A sending power to B, and 
the associated effort, shown above the half-arrow, and flow, shown, by definition, below 
the half-arrow. 
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Figure 3-2 BG power direction and associated effort and flow definitions: B receives power from A 

Table 3‑1 Analogous quantity definitions in BG modelling method related to different systems 

Systems Effort ( ) Flow ( ) Displacement Momentum 

mechanical-translational force [N] velocity [m/s] distance [m]  [kg.m/s] 

rotational mechanical torque [N.m] angular 
velocity [rad/s] angle [rad] 

angular 
momentum 
[kg.m2/s] 

hydraulic pressure [Pa] volume flow 
rate [m3/s] volume [m3] hydraulic 

momentum [Pa.s] 

thermal/
thermodynamics 

temperature 
[K] 

entropy change 
rate [J/ K.s] 

entropy [J/
K] — 

thermo-fluid enthalpy 
(specific) [J] 

mass flow rate 
[kg/s] 

mass flow 
[kg] flow momentum 

electrical voltage [V] current [A] charge [C] flux linkage [V.s] 

magnetics magnetic force 
[A] 

magnetic flux 
rate [Wb/s] 

magnetic 
flux [Wb] — 

chemical 
chemical 
potential [J/
mol] 

mole flow rate 
[mol/s] 

mole flow 
[mol] — 

3.3        Causality Principle and Assignment 

To establish the principle of cause and effect relationship in BG method, we use the 
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definition of causality assignment. The cause signal brings all the history data to the 
system/element, and through the dynamical behaviour of the system, the present signal 
effect is decided and provided as output. 

As mentioned, in BG method, the half-arrow indicates the direction of power between 
related elements in a BG model. However, the half-arrow does not provide information 
about the direction of power constituents, i.e., effort or of the flow. In principle, we can 
arbitrarily define these directions. For example, in Figure 3‑2, we can assign  direction 
pointing from component A to B (hence,  should be directing from B to A) or vice versa. 
In other words, the causality assignment is a symmetrical one. By definition, a small 
transverse/vertical line, a causality stroke, is drawn close to one of the ports at the power 
bond to show the direction of effort toward it, hence the direction of flow away from it, 
as shown in Figure 3‑3. This operation is critical for building BG models and, in terms of 
providing a definite solution, has consequences in the resulting equations of the system. 
After the causality is assigned, then the signal received by the element is the cause, and 
the returning signal—or the element response—is the effect. 

The preferred causality assignment is called integral causality, and the alternative option 
is the derivative/differentiate causality. We will discuss the details further in section 3.5. 

Figure 3-3 Causality assignment definition and directions of effort and flow between elements A and B 

3.4        Nine Basic Elements of Bond Graph Method 

As mentioned in the previous section, building a BG model of a physical system involves 
consideration of the energy conservation, transfer, and conversion through the system. 
In a BG model, we focus on the rate of energy or power as the quantity to deal with. 

For energy storage, we define two elements, represented by   (inertial element) for 
kinetic energy and   (capacity element) for potential energy storages. For energy 
dissipation, we define one element, represented by  (friction or resistor element). We 
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Portrait of a Mathematician, thought 
to be of Robert Hooke (1635–1703) 

represent the energy source/sink acting at the boundary of the system by two elements, 
one for effort   and one for flow . To manage the distribution of energy through the 
system, we define two elements as junctions, represented by junction 1 and junction 0. 
For energy transfer/conversion, we define two elements, represented by transformer 
and gyrator  . Therefore, in total, we have nine elements available and sufficient for 
building a BG for any given physical system, with the inclusion of their modulated 
versions ( , , etc.) for when a signal is input to the corresponding element from an 
external source. Examples of physical/engineering systems are mechanical, electrical, 
thermal, hydraulic systems, or some hybrid systems composed of subsystems assembled 
of different energy media. 

Each one of the BG elements mentioned above should 
behave according to the relevant physical laws 
represented by their constitutive relations—a 
mathematical model. For example, a linear mechanical 
spring is modelled by element , whose governing 
equation should comply with Hooke’s law. However, a 
given spring can go under deformation either by 
receiving an effort (i.e., force) or a flow (i.e., 
displacement rate/velocity). Depending on the system 
and computational preferences, we can assign 
causality strokes to the element  to specify that the 
desired spring receives effort or flow. This rule, the 
causality assignment, must be applied to all bonds in a 
BG model. Examples of typical translational 
mechanical elements are shown in Table 3‑2. 
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Table 3‑2 Typical mechanical components and their corresponding BG elemen

-element 
(damper) 

-element 
(spring) 

-element 
(mass) 

-element 
(lever) (gyr

In the next sections, we will define the constitutive equations, preferred causality, and 
physical representation examples for all nine BG elements. 

3.4.1        Inertia Element I: Kinetic Energy Storage 

In BG modelling, the -element is a passive element; it should receive power to return a 
signal. This requirement means that the half-arrow power bond should be drawn toward 
this element. An -element has only one port for communicating to the rest of the 
system. Examples are mass bodies in mechanical systems and inductors in electrical 
systems. 

As shown in Figure 3‑4, the input quantity for the -element can be either effort ( ) or 
flow ( ); consequently, the response is flow or effort, respectively. Note that the causality 
stroke (the vertical/transverse line) specifies the direction of effort defined to be toward 
the stroke; hence, the direction of flow is to be away from it. We use red colour for 
specifying non-integral causality strokes. 
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Figure 3-4 Causality assignments for an -element, with preferred integral causality indicated by 
dashed circle (left) and derivative causality (right) 

Now the question is, how do we choose between these two possible options when 
building a BG model? What are the implications when choosing one option versus the 
other? The short answer is that both options are legitimate, but there is a preference for 
having the -element receiving the effort and sending the flow out—integral 
causality—hence, the causality stroke is placed at the half-arrow head at the port close to 
the element. The effort is the cause, and the flow is the effect relevant to -element 
when it is integrally causalled. 

In a bond graph model for an -element, the preferred causality assignment is effort-in, so-called integral 
causality. 

Mathematically, the statement given in the box can be analyzed as follows. In a 
mechanical system, for example, we consider a point mass  and apply Newton’s second 
law to the motion of that point mass. Therefore, we can write  (  is net 

applied force, and  is the velocity of the mass), or in BG generalized notation, 
 . Recall that the  symbol represents effort (force) and  represents flow 
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(velocity) in a mechanical system (see Table 3‑1). We also use the symbol , representing 
mass , or inductance for electrical systems. Now, for the effort-in option that we have, 
since the input should be ,  or after integration, 

 Note that the integral of force with respect to time is the 

momentum , ( ). The equation   is the key point here. Let’s see what it 

means. The flow (velocity) is equal to momentum divided by the mass. This is well-
known! In BG method, however, it has an important meaning: for the -element, the 
input effort quantity, after being integrated, is divided by the -element parameter , 
and the output quantity is flow or velocity. This can be shown in a block/signal diagram 
along with equivalent BG model diagram (see Figure 3‑5). Since the integration of effort is 
involved, we call the related causality assignment an integral causality which is preferred 
for -elements. From the physical point of view, the integration of effort collects all the 
input data and hence represents a more comprehensive description of the system in 
terms of modelling. In addition, the resulting system’s equations (see section 3.5) are 
first-order ODEs when integral causality is assigned. 

Figure 3-5 Block diagram (left) and equivalent bond graph for -element with assigned integral 
causality and state variable 

The constitutive equation for the -element in a BG model is given as 

(3.3)   
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The momentum , which is the result of input/effort integration, is a state variable (see 
section 3.5). 

Now, we consider the second possible option with flow-in signal (see Figure 3‑4). We 
have . This equation matches with the input and output data, since the time 

derivative of input flow, given on the right-hand side of the relation, multiplied by the 
-element parameter is the element output or effort, given on the left-hand side. This is 
the derivative causality assignment since the derivative of input data is involved. This 
case can be shown in a block diagram along with equivalent BG model diagram (see 
Figure 3‑6). 

Figure 3-6 Block diagram (left) and equivalent bond graph for an -element with assigned derivative 
causality 

3.4.2        Capacity Element C: Potential Energy Storage Element 

In BG modelling method, the -element is a passive element because it should receive 
power to react to. This requirement means that the half-arrow power bond should be 
drawn toward this element. A -element has only one port for communicating to the rest 
of the system. Examples are springs in mechanical and capacitors in electrical systems. 
As shown in Figure 3‑7, the input quantity can be either effort ( ) or flow ( ); 
consequently, the response is flow or effort, respectively. Note that the causality stroke 
(the vertical line) specifies the direction of effort defined to be toward the stroke; hence, 
the direction of flow is to be away from it. 
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Figure 3-7 Causality assignments for a -element, with preferred one indicated by dashed circle, 
integral causality (right) and derivative causality (left) 

Now the question is, how do we choose between these two possible options when 
building a model? What are the implications when choosing one option versus the other? 
The short answer is that both options are legitimate, but there is a preference for having 
the -element sending the effort and receiving the flow—integral causality—hence, the 
causality stroke is placed at the opposite end of the half-arrow head away from the 
element’s port. 

In a bond graph model for a -element the preferred causality assignment is effort-out, so-called integral 
causality. 

Mathematically, the statement given in the box can be analyzed as follows. In a 
mechanical system, e.g., we consider a linear mechanical spring with stiffness

1
  and 

apply Hooke’s law to its motion. Therefore, we can write  (  is net applied force, 
and  is the displacement) or, in generalized BG notation, , where  the 

1. force per unit displacement of the spring 
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spring compliance
2
. Recall that the  symbol represents effort (force) and  represents 

flow (velocity) in, e.g., a mechanical system, (see Table 3‑1). We use the symbol , 
representing spring compliance or capacitance in electrical systems as well. 

Now, for the effort-out option having the flow  as the input, we can write . 

That is, for the -element, the input flow quantity, after integration, is divided by the 
-element’s compliance and gives the output quantity as effort . For -element, the 
displacement , which is the result of input/flow integration, is the state variable. 

(3.4)   

This can be shown in a block/signal diagram along with equivalent BG model diagram 
(see Figure 3‑8). 

Figure 3-8 Block diagram (left) and equivalent bond graph for a -element with assigned integral 
causality and state variable 

Now, we consider the second possible option with effort-in signal (see Figure 3‑7). We 
can write , with effort being the input and displacement as the output data; hence, 
the time derivative of output displacement ( )  is required to get the flow/velocity. This is 
derivative causality assignment, since the derivative/differential operation is needed to 

2. displacement per unit force applied to the spring 
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get the output signal involved. This case can be shown in a block diagram along with 
equivalent BG model diagram (see Figure 3‑9). 

Figure 3-9 Block diagram (left) and equivalent bond graph for a -element with assigned derivative 
causality 

3.4.3        Friction Element R: Energy Dissipation Element 

In BG modelling method, the -element is a passive element since it should receive 
power to return a signal. This requirement means that the half-arrow power bond should 
be drawn toward this element. An -element has only one port for communicating to the 
rest of the system. Examples are dampers in mechanical and resistors in electrical 
systems. 

As Figure 3‑10 shows, the input quantity for the -element can be either effort ( ) or flow 
( ); consequently, the response is flow or effort, respectively. Note that the causality 
stroke (the vertical line) specifies the direction of effort defined to be toward the stroke; 
hence, the direction of flow is to be away from it. 
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Figure 3-10 Causality assignments for an -element 

There is no preference for having the -element receiving the effort or the flow. 
Therefore, the causality stroke can be placed at either end of the half-arrow power 
connection, according to the causality requirement for the adjacent elements. 

In a bond graph model for an -element, there is no preferred causality assignment- i.e., it is neutrally 
causalled. 

Mathematically, the statement given in the box can be analyzed as follows. In a 
mechanical system, for example, we consider a damper with viscous damping coefficient 

. The constitutive equation gives the force applied on the damper proportional to the 
rate of displacement. Hence, we can write  (  is net applied force, and  is the 
velocity). Writing in BG generalized notation, . Now, for the effort-in option we 
have, since the input should be , 

Now, we consider the option with flow-in data (see Figure 3‑10). We have . Since 
the constitutive equation for a linear viscous damper is algebraic, we do not need to 
integrate or differentiate the input signal to obtain the output signal for an -element. 
Therefore, there is no preference, and -element is neutrally causalled. Figure 3‑11 shows 
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block diagrams along with equivalent BG model diagram with causality assignments for 
an -element. 

Figure 3-11 Block diagrams (left) and equivalent bond graph for an -element with assigned causality 

3.4.4        Source Elements Se and Sf : System Boundary Input 
Elements 

In BG modelling method, the boundary source elements are of two types. The sources for 
effort (such as force, voltage) and flow (such as velocity, current) are represented by 
and  respectively. These elements are active, and the half-arrow power bond should be 
drawn from these sources to the connecting elements in the system. Source elements 
have only one port each, for communicating to the rest of the system. As shown in Figure 
3‑12, the causality assignments are uniquely assigned for these elements. 

Figure 3‑12 BG symbols for effort source (left) and flow source (right) with their assigned causalities 
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3.4.5        1- and 0-junctions: Distribution Constraint Elements 

In BG modelling method, system-required constraints for distribution of energy are 
applied using two elements. These are multi-port elements with symbols “1” and “0” that 
can receive or send power to the elements connecting to them. This requirement means 
that the half-arrow power bond can be drawn toward or from these elements. 

A 1-junction is a flow equalizer or an effort summator element. For example, in a 
mechanical system, a common node with connecting system components exhibits the 
same value of velocity, or the elements of an electrical circuit experience the same value 
of current. The causality assignment for a 1-junction element must comply with its 
definition of distributing the flow received through one of the connecting bonds to the 
rest of bonds. Therefore, only one bond can send flow to a 1-junction—the strong 
bond—and the remaining connecting bonds should send the same flow to connecting 
elements; hence, the causalities are assigned accordingly, as shown in Figure 3‑13. 
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Figure 3‑13 BG symbol for 1-junction element with four connecting bonds, corresponding 
causalities, and strong bond identified with thick half-arrow 

After labelling the bonds with arbitrary numbers, we can write the conservation energy 
law, in terms of its rate, as . But the 1-junction distributes the 
flow received from the strong bond (i.e., the bond labelled “1”) equally to bonds 2, 3, and 
4. Hence, . From these relations, after substitution, we get 

 . Similarly, for  number of bonds connecting to a 1-junction, we have 
the constraint relations for the 1-junction as 

(3.5)   
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In Equation (3.5), the summation for efforts received by 1-junction is algebraic, or the 
input power is considered to be positive, and the output power has a negative sign. 

A 0-junction is an effort equalizer or a flow summator element. For example, in a 
mechanical system, a common node with connecting system components experiences 
relative velocity values or the nodes in an electrical circuit with common voltage. The 
causality assignment for a 0-junction element must comply with its definition of 
distributing the effort received through one of the connecting bonds to the rest of 
bonds. Therefore, only one bond can send effort to a 0-junction—the strong bond—and 
the remaining connecting bonds should send the same effort to connecting elements, 
hence, the causalities are assigned accordingly, as shown in Figure 3‑14. 

Figure 3‑14 BG symbol for a 0-junction element with four connecting bonds, corresponding 
causalities, and strong bond identified with thick half-arrow 
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After labelling the bonds with arbitrary numbers, we can write the conservation energy 
law, in terms of power or energy rate, as . But the 0-junction 
distributes the effort received from the strong bond (i.e., the bond labelled “1”) equally to 
bonds 2, 3, and 4. Hence, . From these relations, after substitution, we get 

. Similarly, for  number of bonds connecting to a 0-junction, we have 
the constraint relations for the 0-junction as 

(3.6)   

In Equation (3.6), the summation for flows received by the 0-junction is algebraic, or the 
input power is considered to be positive and the output power has a negative sign. 

3.4.6        Transformer TF and Gyrator GY: Energy Conversion 
Elements 

In physical engineering systems, energy may be converted by some components while its 
conservation is maintained. Examples are levers and gearbox in mechanical systems or 
electrical transformers and motors in electrical systems. In BG modelling method, there 
exist two elements for modelling convertors: transformer  and gyrator . These 
elements are two-port elements and can receive power through one of their ports as 
input and deliver a converted power from the other port as output, in terms of the power 
variables effort and flow. The causality assignments determine the directions of flows 
and efforts as being inputs or outputs. In this section, we present the details of 
-element followed by those of -element. 

A transformer element,  represents the converter that receives the same type of 
physical quantity as the type it delivers, after conversion. For example, a force applied at 
one end of a lever is converted to a magnified/reduced force at the other end, or the 
velocity of the lever’s end point is converted to another velocity value related to another 
point proportional to their distances from the lever’s pivot. 

As shown in Figure 3‑15, a -element can have one effort and one flow as inputs, and 
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consequently, delivers converted corresponding effort and flow as outputs. The 
conversion parameter  should be defined, based on the physical system data. For 
example, for the case that flow  is the input and flow  the output, we can write 
to define . But from energy conservation we have , or the output effort 

. Similarly, for the case that effort  is the input and effort  the 

output, we can write , using . But from energy conservation, we have, 
 or the output flow . 

These relations constitute the -element equations and are shown in Figure 3‑15, for 
each case where the inputs to the -element are identified with thick arrows. 

Figure 3-15 Block diagrams (left) and equivalent bond graphs for a -element with related assigned 
causalities—inputs are shown with thick arrows 

Note that the -element should have only one of the two required causality strokes 
near it for either cases, as shown in Figure 3‑15. 

In a bond graph model for the -element, there should be only one causality stroke close to it and 
another one away from it. A -element converts flows to flows and efforts to efforts. 

A gyrator element, , represents the converter that receives a type of physical quantity 
and delivers a different type after conversion. Examples are a DC motor which converts 
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voltage (effort) to angular velocity (flow) of the rotor or the attached shaft. The reverse 
operation is that of an electric generator. 

As Figure 3‑16 shows, a -element can have one effort and one flow as inputs and, 
consequently, delivers corresponding flow and effort as outputs. The conversion 
parameter  should be defined, based on the physical system data. For example, for the 
case with flow  as the input and effort  being the output, we can write  to 
define . But from energy conservation we have , or the output effort 

. Similarly, for the case with effort  as the input and effort  being the 

output, we can write , using . But from energy conservation we have , 
or the output effort . Similarly, for the case with effort  as the input 

and effort  being the output, we can write , using . But from energy 
conservation we have , or the output flow . These relations 

constitute the -element equations and are shown for each case where the inputs for 
the -element are identified with thick arrows in Figure 3‑16. 

Figure 3-16 Block diagrams (left) and equivalent bond graphs for a -element with related assigned 
causalities—inputs are shown with thick arrows 

Note that the -element should have both required causality strokes near it or away 
from it, as shown in Figure 3‑16. 
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In a bond graph model for the -element, there should be two causality strokes close to it or both away 
from it. A -element converts flows to efforts and efforts to flows. 

Now that we have all nine elements of BG method defined, in the following sections we 
discuss the state variables, their definitions, and relation with integral causality. State 
variables are key quantities in analyzing engineering system dynamics and behaviour and 
are a critical part of BG method. A sound understanding of the state variables will help in 
developing a high level of competency in BG method and its applications to engineering 
systems. 

3.5        System State Variables 

The main objective of BG models is to derive system equations that describe the 
behaviour of the system and to follow up by solving these equations for simulation and 
design purposes. 

The system equations may be ODEs of second order or higher. However, when writing 
these governing system equations in terms of state variables—those variables that 
uniquely and sufficiently describe the system dynamics—we end up having first-order 
ODEs, a huge advantage when using numerical/analytical solution methods. In addition, 
when we extract system equations from the corresponding BG model (see chapter 11), 
additional algebraic equations are involved; hence, we have a system of differential-
algebraic equations (DAEs) that could benefit from having the related ODEs written as 
first-order equations. 

In this section, we define the state variables that relate themselves to the storage 
elements in BG method i.e., -element and -element. Other BG elements correspond to 
the algebraic equations of the system DAEs and do not possess state variables of their 
own. 

We now consider the kinetic energy storage element or inertia -element. The energy 
stored can be written as the integral of power (i.e., effort multiplied by flow) with respect 
to time,    or as . But , the generalized momentum 
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differential/change. Hence, , or the energy stored in an inertia element 
is the integral of flow (e.g., velocity) with respect to momentum as the independent 
variable. Therefore, a functional form of the type  is required to perform the 
integral operation. In other words, the area under the curve of the flow  in the 
coordinate system is equal to the energy stored. Recall that, e.g., in mechanical systems, 
this function (i.e., ), is derived from Newton’s second law, or  (the 
parameter  is mass or inductance, for example). Therefore, we have 

, or 

(3.7)   

Equation (3.7) clearly shows that the energy stored by an -element is uniquely defined 
by its generalized momentum. Therefore, the momentum of an -element is identified as 
a state variable of the system. 

The generalized momentum associated with Inertia element in the bond graph model is a system state 
variable, so-called  on . 

Similarly, we consider the potential energy storage element, or -element. The energy 
stored can be written as the integral of power with respect to time,  or as 

. But , the generalized displacement differential/change. Hence, 
 or the energy stored in a -element is the integral of effort (e.g., force) 

with respect to displacement as the independent variable. Therefore, a functional form of 
the type  is required to perform the integral operation. In other words, the area 
under the curve of  as a function of  in the  coordinate system is equal to the 
energy stored. Recall that, e.g., in mechanical systems, this function (i.e., ) is 
derived from Hooke’s law, or  (the parameter  is spring compliance or capacitor 

capacitance, for example). Therefore, we have , or 

(3.8)   

Equation (3.8) clearly shows that the energy related to a -element is uniquely defined 
by its generalized displacement. Therefore, the displacement of a -element is identified 
as a state variable of the system. 

80  |  Bond Graph Modelling Method



The generalized displacement associated with a -element in the bond graph model is a system state 
variable, so-called  on . 

 

These two state variables (  and ) are key variables when extracting system equations 
from the corresponding bond graph (see chapter 11). The total number of independent 
system equations is equal to the total number of state variables, or  on  and  on . 

The reader should also note that the assumed governing equations for these two 
elements (i.e., Newton’s second law for -elements and Hooke’s law for -elements) 
determine the functional forms of  for an -element and  for a -element, 
respectively. Other constitutive equations: e.g., non-linear relations could be used if 
desirable, but the uniqueness of energy stored on the  and  remains for each of these 
two elements. 

3.5.1        Integral Causality and State Variables: I– and C-elements 

The main objective of assigning a causality stroke to an element is to make the element 
definite in terms of its inputs and outputs (i.e., either effort or flow). Since we have two 
choices (either effort or flow being the input or the output), the preferred causality is the 
one that, when assigned, allows the input to the element such that the element-related 
laws of physics are satisfied and the state variable is concluded as well. For example, if an 
element receives effort, then it should respond with flow, and the related state variable 
should be the outcome of the application of the laws of physics to this element. These 
objectives are met when we use the integral causality strokes for -element and 
-element. In other words, when the integral of the cause signal is equal to the state 
variable of the corresponding storage element, then that element is integrally causalled. 

In the previous sections (see sections 3.4.1 and 3.4.2), we discussed the preferred 
causalities for – and – elements as being the integral causality types. Having defined 
the state variables for – and – elements (see section 3.5), we can expand the discussion 
on why the integral causality is the preferred one for these elements. 
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Figure 3-17 
Consistency of 
integral causality 
assignment and 
state variable for 

an -element 
with parameter 

The state variable corresponding to elements  and  specifies the assignment of causality strokes for the 
integral causality is defined such that the integral of input quantity (either effort or flow) for – or 
-elements result in the corresponding state variable. 

Recall that generalized momentum  is the state variable for an -element. Now, we 
consider the choice of having the flow  or effort  as the input for -element according 
to the causality stroke assignment (see Figure 3‑4). When the effort is selected as the 
input, we can integrate it (hence, the designation of integral causality for this choice), 
and get the momentum, i.e., the state variable, as well as the flow for the element 
response. This is consistent with the -element governing equation (i.e., Newton’s second 
law). Therefore, having the causality stroke at the port of -element, or the preferred 
causality assignment (see Figure 3‑4), satisfies all the mathematical requirements and 
provides the flow as the response and the momentum as the state variable. The whole 
process is shown in Figure 3‑17. The choice of having flow as the input for -element—the 
derivative causality—does not fulfill all the objectives mentioned above; hence, it is not 
preferred. Note that when derivative causality is assigned, Newton’s second law still is 
satisfied, but the state variable is not explicitly involved. 

Similarly, for a -element, we can have a similar argument. Recall that generalized 
displacement  is the state variable for a -element. Now, we consider the choice of 
having the flow  or effort  as the input for -element according to the causality stroke 
assignment (see Figure 3‑7). When the flow is selected as the input, we can integrate it 
(hence the designation of integral causality for this choice) and get the displacement, i.e., 
the state variable, as well as the effort as the element’s response. This is consistent with 
the -element governing equation, i.e., Hooke’s law. Therefore, having the causality 
stroke away from the port of -element, or the preferred causality assignment (see 
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Figure 3-18 
Consistency of 
integral causality 
assignment and 
state variable for 

a -element with 
parameter 

Figure 3‑7) satisfies all the mathematical requirements and provides the effort as the 
response and the displacement as the state variable. The whole process is shown in 
Figure 3‑18. The choice of having effort as the input for -element—the derivative 
causality—does not fulfill all the objectives mentioned above; hence, it is not preferred. 
Note that when derivative causality is assigned Hooke’s law still is satisfied but the state 
variable is not explicitly involved. 

Exercise Problems for Chapter 3 

Exercises 

1. Using Figure 3‑1, identify each component in terms of its type related to energy storage, dissipation, 
converter, and source. 

2. Using Figure 3‑3, explain if the power bond direction and causality stroke assignment are independent 
from each other or dependent. 

3. List nine basic bond graph elements and sketch them with their preferred causalities, where applicable. 
4. For each bond graph sketch, perform the operations given below: 

a. Write the energy rate balance equation at each junction 
b. Identify strong power bond. 
c.  Assign all remaining causality strokes, using red colour to distinguish them
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5. The massless lever rotates about the pivot point with angular velocity , as shown in the below sketch. 
Draw the bond graph model for each case: 

a. Velocity magnitude at point A is given, . Calculate the transformer parameter . 
b. Force magnitude at point A is given, . Calculate the transformer parameter 
c. Discuss the relation between  and  .

6. Describe system state variables and explain their significance related to a system’s equations. Identify BG 
elements associated with these variables. 

7. Discuss the principle of cause and effect in relation to causality assignment in BG method. For the 
following elements, assign the causalities and identify the cause and effect for each one. Also identify the 
integral vs. the derivative causality. 
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4. Building Bond Graph Models: 
General Procedure and Application 

4.1        Overview 

To demonstrate applications of BG method, we discuss the procedure for building BG 
models for physical systems, using the material presented in chapter 3. We use examples 
related to mechanical systems to establish the guidelines and steps required to build a 
BG model. In further chapters, we present more worked-out examples for several 
engineering systems and disciplines, including electrical, hydraulic systems. 

4.2        Steps for Building Bond Graph Models: General 
Guidelines 

As mentioned, BG method can be used to build models for single- and multi-domain 
physical systems. The building blocks are the nine basic BG elements, including their 
modulated versions, and causality assignment rules (see section 3.4). A model for any 
specific system also requires definitions of relevant sign conventions for general 
displacement and forces. This chapter will discuss the latter and will present some 
worked-out examples. The following are the steps for building a BG model, in general, 
including for mechanical, electrical, and hydraulic systems: 

1. Identify the physical system components in terms of their type (energy storage, 
source, dissipater, etc.). 

2. Identify the DOF (degrees of freedom) of the system. This step is optional but 
recommended. 

3. Identify and list the required BG elements. 
4. Identify distinct physical points/nodes of the physical systems: 
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◦ velocity or force (mechanical systems): translational 
◦ angular velocity or torque (mechanical systems): rotational 
◦ voltage or current (electrical systems): electrical circuits 
◦ pressure or flow rate (hydraulic systems): fluid network 

5. Assign proper BG multi-port junction elements
1
 to items from step 4: 

◦ “1” for velocity, angular velocity, and electrical and flow currents 
◦ “0” for force, voltage, and pressure 

6. Connect associated elements, using BG elements and power bonds, to the items 
from step 5. 

7. Assign proper BG multi-port junction elements in between those items from step 5: 

◦ “0” for relative velocity and angular velocity 
◦ “1” for voltage drop and pressure drop 
◦  and  for energy conversion 

8. Connect associated elements to items from step 7, using BG elements and power 
bonds. 

9. Define sign convention and connect all remaining power bonds. 
10. Apply all causality assignments (integral causalities must be given priority). 
11. Draw and build the BG model in 20-sim (when available). 
12. Perform simulation and design, using the obtained BG model (when required). 

In further sections, we will demonstrate implementation of the procedure/algorithm 
mentioned above with some worked-out examples, including power bond direction, 
causality assignment, and sign convention. 

1. Recall that 1- junction is a flow equalizer (or effort summator) and 0-junction is an effort equalizer (or 
flow summator). 
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4.2.1        Guidelines for Power Bond Direction 

Connecting elements in a BG model with power bonds requires compliance with the 
direction of energy flow in the physical system. Therefore, the directions of half-arrows 
are critical. The following guidelines may be helpful: 

1. Draw power bonds from BG source elements (  and ) toward the system, 
connecting to the adjacent elements. 

2. Draw power bonds toward BG passive elements (i.e., , , and ) 
3. Draw power bonds to and from BG junction elements (“1” and “0”) according to a 

previously defined sign convention (see section 3.4.5). 
4. Draw remaining power bonds to have all BG elements connected. 
5. Some simplifications of the BG model may be justified, but not required. 

After drawing all power bonds for the model, assign the causality strokes. The next 
section provides a list of guidelines for causality assignments. 

4.2.2        Guidelines for Assigning Causality Strokes 

The assignment of causality strokes is a required step in building any BG model. The 
following steps help with achieving this requirement. 

1. Assign causality to BG source elements. 
2. Assign causality assignments with preferred integral causality strokes to – and – 
3. As far as possible, extend the causality assignments to other power bonds, using the 

causality requirements for connecting elements (e.g., 1, 0,  and ) 
4. Assign causality assignments to -elements that accept neutral causality stroke 

assignment. 
5. As far as possible, using the causality requirements for connecting elements, extend 

the causality assignments to all remaining power bonds in the model. 

If execution of step 5 from the above list cannot be completed, then the BG model 
contains some specific mathematical properties—algebraic loop or differential/derivative 
causality (see chapter 11). The application 20-sim automatically assigns the causality 
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strokes with prioritizing integral causalities, and if present, identifies the derivative or 
algebraic loops causalities in the model with red-colour strokes. In further sections, we 
will explore these features, with some examples. 

4.3        Example: BG Model for a One-DOF 
Mass-Spring-Damper Mechanical System 

A mechanical system consists of mass  [kg], spring  [N/m], and damper  [N.s/m]. The 
applied force on mass is . Build a BG model for this system as shown in Figure 4‑1, 
neglecting friction of the rollers. 

Figure 4-1 A mass-spring-damper mechanical 
system 

Solution: 

DOF = 1 (1D translational motion of one mass) and the required BG elements are: 
(representing the mass),  (representing the spring),  (representing the damper), 
(representing force ) and  (representing the wall velocity). Also, we are required to 
have junctions “1” and “0.” 

1. Distinct velocity nodes are the mass and the wall (although the wall usually is 
stationary). Hence, we need two “1” junctions to represent common velocity for all 
elements attached to the mass and the wall. 

We draw them as 
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As well, for each junction, it is useful to assign a name related to its representation. 

2. We draw all elements connecting to the junctions which have the same distinct 
velocity values and connect them with power bonds. Therefore, for the wall-velocity 
junction, we use flow source  and for mass-velocity junction and inertial element , 
representing the mass  and a  representing the applied force  Note that 
-element should receive power (passive element), and sources send power to the 
system (active elements). 

3. The spring and damper experience the same value of relative velocity, | |, 
which is represented by 0-junctions. Recall that 0-junction element is a flow 
summator. According to the power bonds connecting the spring (or damper) to the 
0-junction, we can have ( ) or ( ), considering the -coordinate as 
given in Figure 4‑1. Therefore, to specify the associated power bond directions we 
should define a sign convention. The common practice is to consider the spring (or 
damper) from the BG model and define either tension force as being positive (+T) or 
the compression force being positive (+C). For this example, we use the spring 
displacement/velocity to demonstrate the sign convention. A similar argument 
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applies for the damper’s displacement. 

To represent the relative velocity, we add two 0-junctions and – and – elements 
to the model and use, e.g., (+T) sign convention, as shown below: 

Note that – and – elements are passive and should receive power from the 
system. After labelling the bonds connecting to the 0-junction associated with the 

– element, we can write the power balance as . But . 
Hence, , or  where  is the spring displacement rate or 
velocity equal to the relative velocity. Now, to have the displacement of the spring 
in the +  direction, we should have  or . This implies that the 
displacement/velocity of the mass should be larger than that of the wall, for the 
spring is experiencing a positive tension force. Therefore, the spring is under 
tension and the assigned sign convention (+T) is satisfied, considering the +
direction. 
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Now, if we change the power direction of the bonds connecting to the 0-junction, 
as shown in the sketch below, we have , or ; hence, we have 
the spring under compression. Therefore, the (+C) sign convention is satisfied. Note 
that only the power direction of the four bonds associated with the two 0-juctions 
can change their directions since the rest are associated with source or passive 
elements and are unique in their directions, as shown below. 

Both sign conventions are legitimate, but only one should be selected and used 
consistently for building a BG model. We continue, using the BG model with (+T) 
sign convention. 

4. Causality assignments are now applied, according to the rules discussed in chapter 
3. Following the guidelines given in section 4.2.2, we start applying the causality to 
the source elements, followed by those for – and – elements. Recall that integral 
causalities are preferred for elements  (i.e.,  receives effort) and  (i.e., C sends 
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effort). The causality strokes are shown with transvers lines, as shown below. 

5. Extend the causality assignments to the remaining bonds, using the rules for 
1-junction (can receive only one flow signal through its strong bond) and 0-junction 
(can receive only one effort signal through its strong bond), as shown below in the 
model sketch (see Figure 4‑2). 
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Figure 4‑2 Bond graph model for a one-DOF mass-spring-damper system 

 

6. To a reasonable extent, we can simplify the BG model such that it clearly resembles 
the physical system. The two 0-junctions represent the same value of relative 
velocity, . Therefore, we can combine them into a single 0-junction and share 
the relative velocity value through a 1-junction element with the – and – 
elements. This simplification becomes very useful for building large BG models for 
more complex systems. Figure 4‑3 shows the resulting BG model. Note that the 
causality strokes should be adjusted after simplifications are made. 
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Figure 4‑3 Simplified bond graph model for a one-DOF mass-spring-damper system 

4.4        Example: BG Model for a Two-DOF 
Mass-Spring-Damper Mechanical System 

Build the BG model for the mechanical system as shown in Figure 4-4. Consider the (+C) 
to be the sign convention for internal forces. 

 

Figure 4-4 A two-DOF mass-spring-damper mechanical system 

 

Solution: 
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This system has two DOF and four distinct velocity points, corresponding to mass  and 
 and the two walls. Therefore, we lay out four 1-junctions to represent them in the 

model. The remaining required BG elements are , , , , , and 1- and 0- junctions. 

We follow the same guidelines demonstrated in the previous example (see section 4.3) 
and build the BG model as shown in Figure 4-5. 

 

Figure 4-5 BG model for a two-DOF 
mass-spring-damper mechanical system 

 

The reader is encouraged to build this BG model and to compare the results with those 
provided in Figure 4-5. The 20-sim BG model and a screen recording are available as 
companion resources describing the process to build the equation model and typical 
results for this example. 
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A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=62 

4.5        Example: BG Model for a Three-DOF 
Mass-Spring-Damper Mechanical System 

Build the BG model for the mechanical system as shown in Figure 4-6. Consider the (+C) 
to be the sign convention for internal forces. 

 

Figure 4-6 A three-DOF mass-spring-damper mechanical system 

 

Solution: 

This system has three DOF and five distinct velocity points corresponding to mass , , 
and  and the two walls. Therefore, we lay out five 1-junctions to represent them in the 
model. The remaining required BG elements are , , , , , and 1- and 0-junctions. 
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We follow the same guidelines demonstrated in the previous example (see section 4.3) 
and build the BG model, as shown in Figure 4-7. 

Figure 4-7 BG model for a three-DOF mass-spring-damper mechanical system 

The reader is encouraged to build this BG model and compare the results with those 
provided in Figure 4-7. The 20-sim BG model and a screen recording are available as 
companion resources describing the process to build the equation model and typical 
results for this example. 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=62 
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4.6        Example: Kinetics and Kinematics of a Mechanical 
System Using BG Model 

As mentioned previously (see section 3.2), one of the advantages of BG modelling method 
is that a BG model allows us to gain insights by visual inspection of the BG model. This 
can be achieved by drawing the streams of efforts (kinetics) and flows (kinematics) for a 
BG model. 

In this example, we use the results from the example given in section 4.3 to demonstrate 
this property by explicitly drawing the effort and flow associated with each power bond 
in the model. First, we look at the kinetics of the system by drawing the efforts, as shown 
in Figure 4-8. As shown, the efforts/forces associated with the spring  and dumper 
are collected as force  and transferred to the mass  in addition to the applied force 
shown as . Clearly, the wall receives the collected force . 

 

Figure 4-8 Kinetics of a one-DOF mechanical system showing the stream of efforts with its BG model 

 

100  |  Building Bond Graph Models: General Procedure and Application



Similarly, by drawing the flows, as shown in Figure 4-9 the kinematics of the system can 
be visualized. As shown, the flows/velocities associated with the mass  and wall  are 
collected as velocity  and transferred to the spring and damper. Clearly, these elements 
receive the relative velocity  due to the motion of mass and the wall (if 
stationary, ). 

 

Figure 4-9 Kinematics of a one-DOF mechanical system showing the stream of flows with its BG model 

4.7        Modelling and Simulation Approaches in 
Engineering: Modern vs. Traditional 

Considering BG—our focus in this textbook—as the modelling method, once we have the 
corresponding BG model, we can proceed to simulation, and hence, design of a system. 
One can take two approaches to perform this task: traditional or modern. As mentioned, 
the main objective of modelling and simulation is to help with more effective design of 
the systems in terms of their cost, function, material consumption, etc. Therefore, any 
modelling method, including bond graph, should result in a mathematical model 
consisting of the systems’ equations. The solution of the equations can be used for 
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system simulation and analysis to support effective system design. In the following 
sections, we briefly describe possible approaches and the reason for choosing the 
modern approach over the more traditional one. 

 

4.7.1        Traditional Approach 

Once the BG model is available for a system, we can derive/extract the system equations 
from the BG model—usually a laborious task—and then using numerical methods, we can 
obtain their solutions. This task is usually achieved with the help of computer programs 
(usually developed from scratch) based on a selected numerical method. This approach, 
along with both its system equation extraction and especially the computer coding, is 
limited in practical application, being specific from one problem to another one, and is 
laboriously time consuming. Figure 4-10 shows the major steps of the traditional 
approach. 

 

Figure 4-10 Traditional approach for system simulation and design 

In practice, it is inefficient to develop computer codes for each specific design: the 

102  |  Building Bond Graph Models: General Procedure and Application



amount of person power, computer power, and other resources become overwhelming 
for the fast-paced engineering design needs of today’s industries. Therefore, a huge 
effort has been made to develop commercially available software tools to help meet these 
objectives and to make the whole process of system design more effective, economically 
viable, and efficient. 

4.7.2        Modern Approach 

Alternatively—or rather, preferably—the modern approach in engineering and system 
design employs related software tools. These tools provide opportunities to perform 
systems simulation immediately after obtaining the BG model. The software tool that we 
introduce and use in this textbook, 20-sim, helps with extracting the system equations 
from the BG model seamlessly and provides facilities for system simulation and 
parametric analysis. This modern approach is more effective in engineering practice and 
provides more and quicker insights into engineering systems design. In addition, the 
modern approach helps to respond more effectively to the fast-paced engineering 
demands in industry and is recommended for engineers in practice. Figure 4-11 shows 
the major steps of the modern approach. Note that verification and validation should be 
considered in the modelling step as well. 

 

Figure 4‑11 Modern approach for system simulation and design 

In the next section, we introduce the 20-sim software package with a focus on bond 
graph modelling, simulation, and time and frequency analysis for engineering systems 
and design. In further sections, we use 20-sim to build BG models and their simulations 
and to study their dynamical behaviour. 
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Exercise Problems for Chapter 4 

Exercises 

1. Build the BG model, including causality assignment, for the example given in section 4.4 considering (+T) 
as the sign convention for internal forces. 

a. Draw a kinetic map of the system, using the stream of efforts. 
b. Draw a kinematic map of the system, using the stream of flows. 

2. Build the BG model, including causality assignment, for the example given in section 4.5 considering (+T) 
as the sign convention for internal forces. 

a. Draw a kinetic map of the system, using the stream of efforts. 
b. Draw a kinematic map of the system, using the stream of flows. 

3. Discuss the benefits of modern vs. traditional approaches for simulation and design of systems, from a 
practical point of view. Include speed of calculations, and economical aspects of the two methods in your 
discussion. 
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5. Introduction to 20-sim Software Tool 

5.1        Overview 

In this chapter, we introduce the engineering software tool 20-sim, focusing on its BG 
modelling and simulation facilities. Originally developed in the Netherlands at the 
University of Twente and released in 1995, 20-sim was the first commercially released 
software package for bond graph modelling. 20-sim was further developed and currently 
is available through Controllab Products [3]. 

An advanced modelling and simulation software tool, 20-sim uses Microsoft Windows™ 
operating system. 20-sim enables users to model the behaviour of systems, such as 
mechanical, electrical, hydraulic, thermal, or a combination of these systems (i.e., multi-
domain systems). Below is a list of 20-sim’s modelling and simulation tools. The first four 
items in the list are the main tools: 

• bond graph 
• block diagrams 
• iconic diagrams 
• equation models 
• 3D animation 
• 3D mechanics 
• code generation 
• controller design 
• frequency and time domain 
• multi-domain systems 
• virtual reality: Unity Toolbox 

20-sim allows users create models graphically, similar to drawing an engineering sketch. 
With these models you can simulate and analyze the behaviour of single-domain and 
multi-domain dynamic systems and create control systems. One can even generate C-
code and run this code on hardware for rapid prototyping and hardware-in-the-loop 
(HIL) simulation. 
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20-sim has two main window interfaces: Editor and Simulator, shown in Figure 5‑1 and 
Figure 5‑2, respectively. To open the Simulator window from the keyboard, select Ctrl + 
R. To open the Simulator window from the Editor window, choose Tools > Simulator. 

 

Figure 5-1 20-sim Editor interface 

 

Figure 5-2 20-sim Simulator interface 
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As described in the manual Getting started with 20-sim 4.8, the Editor consists of four 
parts: 

• Model tab/Library tab: This is the part at the middle left. The Model tab shows the 
model hierarchy, i.e., the hierarchical composition (all the elements) of the model 
that is created in the Editor. The Library tab shows the 20-sim library. 

• Graphical Editor/Equation Editor: This is the big white space, with or without grids, 
at the middle right. The Editor is used to create graphical models and enter 
equations. 

• Output tab/Process tab/Find tab: This is the part at the bottom right. The Output 
tab shows the files that are opened and stored. The Process tab shows the compiler 
messages. The Find tab shows the search results. 

• Interface tab/Icon tab: This is the part at the bottom left. The Interface tab shows 
the interface of a selected model. Double-click to open the Interface Editor. 

• The Icon tab shows the icon of a selected model. Double-click to open the Icon 
Editor. 

Here is a video guiding the reader through the features of 20-sim: 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=64 

 

More information about using 20-sim is available at 20-sim webhelp and at 20-sim Help 
Manuals. 
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Figure 5‑3 shows the main steps for system design. In further sections, we will follow 
these steps with several worked-out examples to demonstrate the application of this 
process. 

 

Figure 5-3 Process steps for design of a system using modelling, simulation, and analysis 

5.2        Example: BG Model for a Car Seat Mechanical 
System 

To demonstrate 20-sim application, using the data provided in Table 5‑1, we build a BG 
model of a car seat. The car seat system schematic is shown in Figure 5‑4. 
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Figure 5-4 Sketch for a mechanical system for a car seat 

Table 5‑1 Data for car-seat example and BG model 

Component/element Value Unit 

Mass, 27 kg 

Mass, 80 kg 

Spring, 1800 N/m 

Spring, 19 x 104 N/m 

Damper, 400 N.s/m 

Damper, 900 N.s/m 

Car floor speed, signal step-function 
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Solution: 

Here are two videos showing how to build and run the model for this example in 20-sim: 

 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=64 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=64 

Launch 20-sim and follow the solution steps provided in the videos. Figure 5‑5 shows the 
resulting BG model. 
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Figure 5-5 Bond graph model for a car seat 

 

5.3        Example: BG Model for a Cart Carrying a Load 

To demonstrate 20-sim, we build a BG model of a cart carrying a load. 

Table 5‑2 shows the data for the system components. Figure 5‑6 shows the cart system 
schematic. 

 

Table 5‑2 Data for example of cart with load and BG model 

Component/element Value Unit 

Mass, 40 kg 

Mass, 20 kg 

Spring, 2000 N/m 

Spring, 1500 N/m 

Damper, 400 N.s/m 

Damper, 900 N.s/m 

Force, signal sinusoidal 
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Figure 5‑6 Sketch for a cart system carrying a load 

Solution: 

The process for building a BG model and related simulation for this example is given 
through a screen recording that guides the readers through the whole process. Launch 
20-sim, and to build and run the 20-sim model for this example,  follow the solution 
steps provided in the following video: 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=64 

 

Figure 5‑7 shows the resulting BG model. 
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Figure 5‑7 Bond graph model for a cart carrying a load 
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 Exercise Problems for Chapter 5 

 Exercises 

1. Familiarize yourself with the 20-sim tools and features, using the screen recording in section 5.1. 
2. Build the BG model using 20-sim for the example given in section 5.2 considering:. 

a. (+T) as the sign convention for internal forces 
b. (+C) as the sign convention for internal forces 

Run the model for simulation and create and report typical graphs. 

3. Build the BG model using 20-sim for the example given in section 5.3 considering: 

a. (+T) as the sign convention for internal forces 
b. (+C) as the sign convention for internal forces 

Run the model for simulation and create and report typical graphs. 
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6. Bond Graph Models for Complex 
Mechanical Systems 

6.1       Overview 

In the previous chapters, we established concepts such as the basic elements of bond 
graph method and the algorithm for building BG models. We now continue with more 
worked-out examples for selected complex mechanical systems. These systems may have 
many components, involve many degrees of freedom, and exhibit translational and 
rotational motions in one-dimensional (1D) or two-dimensional (2D) space. So far, we 
have used translational mechanical systems and demonstrated how to build their related 
BG models (see chapters 4 and 5). In this chapter, we expand the discussion to rotational 
mechanical systems with rotational and/or 2D/plane rigid-body motions, including their 
related BG model examples. First, we establish the theories and related equations and 
then use those for building the BG models. 

6.2       Mechanical Systems—Rotational 

A mechanical system may consist of rotational components, e.g., shafts, discs, gears, 
pulleys, and levers. The generalized BG elements and relations apply to the motion of 
rotational components in a similar way that the translational motion was treated; i.e., 
they are analogous (see Table 3‑1). In other words, rotation angle  is equivalent to the 
generalized displacement , angular velocity  to the flow , and torque  to the 
effort . The polar moment of inertia  is represented by -element, the shaft by 
-element, and bearing by -element. The generalized momentum is the integral of 
 with respect to time. Therefore, we can write 
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where  is the rotational momentum or so-called angular momentum. Using the 
constitutive relations, for an -element we have  or , for a -element we 
have  or,  where  represents the torsional compliance or inverse of 
torsional stiffness , . Similarly, for an -element we have  or 
where  is the friction of the torsional bearing. The energy associated with storage 
elements can be written using Equations (3.7) and (3.8), or for elements  and , as 

and , respectively. One advantage of bond graph method is its analogous 

applicability to different domains using the common constitutive relations, as described 
above for rotational motion. 

Table 6‑1 shows typical rotational components. 
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Table 6-1 Typical rotational mechanical com

-element 
(bearings) 

-element 
(shaft) 

-elemen
(disc

6.3       Mechanical Systems—Two-Dimensional Rigid 
Plane Motion 

The components of mechanical systems that we considered so far are assumed as point 
masses. In other words, they are point elements but can have motions either in 
translation and/or rotation. However, two-dimensional components such as rigid plates, 
car chassis, and thin rods can have relative 2D motion and cannot be treated as point 
elements. 

In general, a 3D solid component/body has six degrees of freedom; i.e., its centre of mass 
can move in three translational directions and through three associated rotational 
angles. In many mechanical systems, however, we can assume components as two-
dimensional planes with negligible deformations, or as 2D rigid bodies having three 
degrees of freedom: two in-plane translations and one rotation about the perpendicular 
axis to the plane of motion. 
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Building a BG model requires transforming the velocities and angular velocities 
associated with the rigid plane and making them available to the contact points with 
other components of the system. For example, a car’s chassis moving forward on a wavy 
road may experience rotations like pitch and roll (i.e., rotations about the axes parallel to 
the ground) in addition to translational motion. Considering the chassis as a 2D rigid 
body, we need to know how the linear and angular velocities are transmitted to the 
suspensions connecting to it. 

We present here an analysis of 2D rigid-body motion, with focus on applications to BG 
modelling. For further readings on this topic, consult with available references [13], [18], 
[20], [23]. 

 

The general motion of a 2D rigid body can be decomposed into translation of the whole 
body and a rotation about a fixed point of the body. This is the result of the principle of 
superposition and can be shown using the geometry of the motion. As Figure 6‑1 shows, 
we assume a rigid body going through a planar motion with reference to a fixed 
coordinate system . We identify a line/vector on the body connecting two arbitrarily 
selected points A and B, with point B taken as a reference, usually the centre of mass. We 
then capture a picture of the body at a later time,  during its motion, and find out the 
line BA in its new orientation and position, as shown in the sketch on the right in Figure 
6‑1. Since the body does not deform, the length of the line BA (or the magnitude of vector 

) remains constant. Using this property, we can draw a circle with 
its centre at the new position of point B and radius of BA. Then, we draw the radial line 
BA’ parallel to the line BA at its initial position. To orient BA’ according to the new 
position of BA, we then rotate BA’ about point B through angle , where  is 
the magnitude of the angular velocity vector of the rigid body, perpendicular to the plane 
of motion. Consequently, we can claim that original point A is translated (not rotated) by 
the velocity of point B,  from its initial position to a new position A’ and subsequently 
rotated about point B by angle  to orient in its final new position of point A. The initial 
position of point A is arbitrarily selected; therefore, the argument equally applies to all 
points of the rigid body. 
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Figure 6-1 Decomposition of 2D rigid-body motion into translation and rotation 

 

The general planar motion of a 2D rigid body can be decomposed into the translation of an arbitrary point 
on the body followed by a rotation about the point. 

Mathematically, we can write . The relative velocity  is the 
tangential velocity due to rotation and can be written as . Therefore, 

. Therefore, we can write the velocity 
components of point A resulted from rigid-body motion as 

(6.1)   

But  and  where,  is the angle between vector  and positive 
direction of -axis. After substituting, we get 

(6.2)   

We can use Equations (6.2) for large rotations. However, for small rotations (i.e., ), 
we can linearize these relations by substituting for  and , or 
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(6.3)   

For example, for a car chassis, the front and rear ends are moving with the same speed as 
that of the centre of mass, and their velocities in the vertical direction are the algebraic 
sum of the vertical speed and that of due to the pitch rotation (i.e., rotation about the 
axis parallel to the ground and perpendicular to the direction of the motion). See the 
example in section 6.7. 

In the following sections, we present examples of several mechanical systems along with 
their BG models. 

6.4       Example: Gear-Shaft Mechanical 
System—Rotational 

The sketch in Figure 6‑2 shows a system composed of four gears, three shafts, six 
bearings, and two discs. 

a. Build the BG model for this system, including bearings. Use 20-sim. 
b. Identify derivative causalities and the related elements. Discuss the reasoning and 

how to remove the derivative causalities. 
c. Remove all bearings from the model and perform some analysis using the data 

provided. 

For gears, use velocity ratio,  equal to the inverse ratio of the number of teeth,  or 
gears’ diameters,  given by . Angular velocity of gears is represented 

by the symbol . System data is given in Table 6‑2. 

122  |  Bond Graph Models for Complex Mechanical Systems



Figure 6-2 Gear and shaft mechanical system 

Table 6‑2 Data for the gear-shaft mechanical system 

Shaft torsional stiffness 
(MN.m/rad) 

Gear/disc rotational inertia 
(kg.m2) Gear number of teeth 

K1=2500 
J1=40 N/A 

J2=15 120 

K2=1000 
J3=80 400 

J4=20 200 

K3=700 
J5=25 150 

J6=35 N/A 

 

Solution: 

This system has six distinct angular velocities related to gears and discs. The torsional 
shafts are potential energy storages, and the torsional inertia are kinetic energy storages. 
The BG elements required are , , , , , and 1- and 0-junctions. 
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The following video shows how to build and run the model for this example in 20-sim. 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=66 

The resulted BG models are shown in Figure 6‑3 and Figure 6‑4. 
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Figure 6-3 BG model for a gear shaft system, built in 20-sim 
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Figure 6-4 BG model for a gear shaft system, derivative causalities removed 

6.5       Example: Double Rack-and-Pinion Mechanical 
System—Rotational 

Figure 6‑5 shows a double rack-and-pinion mechanical system. Build a BG model for this 
system using 20-sim. A torque is applied on the disc connected to the two shafts. 
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Figure 6-5 A double rack-and-pinion 
mechanical system 

The following video shows how to build and run the model for this example in 20-sim. 

 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=66 

Figure 6‑6 shows the BG model for this system. 
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Figure 6-6 BG model for the double rack-and-pinion system 

6.6       Example: Mass-Spring-Damper System on an 
Inclined Plane—Translational 

Figure 6‑7 show a mass-spring-damper system on an inclined plane. Build a BG model for 
this system using 20-sim. Build a BG model for this system using 20-sim. 
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Figure 6-7 A mass-spring-damper system on an inclined plane 

 

The following video shows how to build and run the model for this example in 20-sim. 
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A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=66 

Figure 6‑8 shows the BG model for this system. 

Figure 6-8 BG model for the mass-spring-damper system on an inclined plane 
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6.7       Example: 2D Rigid-Body Motion—Half-Car Model 

In this example, we demonstrate how to build a BG model for a half-car model as shown 
in Figure 6‑9. The chassis of the car is modelled as a rigid body with two degrees of 
freedom. The vertical displacement of the centre of mass is the heave, and its angular 
velocity is the pitch. In the BG model, transformer elements are used to transfer the 
front and rear velocities to the corresponding connecting points between the 
suspensions and the chassis. The suspension are modelled as spring-dampers and the 
tires as mass-spring subsystems. 
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Figure 6-9 Half-car mechanical system sketch 

Below are two videos (parts 1 and 2) showing how to build and run the model for this 
example in 20-sim, including the implementation of the BG transformer element and the 
setup of the equation model. 
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Watch the videos and practise building the model on your own, with modified 
parameters and input signals. 

 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=66 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=66 

 

Figure 6‑10 shows the corresponding BG model. The compression force is considered to 
be positive. 
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Figure 6-10 BG model for a half-car mechanical system 

 

6.8       Example: Mass-Spring-Damper System Connected 
to a Massless Lever 

In this example, we demonstrate how to build a BG model for the mechanical system 
shown in Figure 6‑11. The lever is represented with a -element. 
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Figure 6-11 A mass-spring-damper mechanical system attached to a lever 

Below are two videos (parts 1 and 2) showing how to build and run the model for this 
example in 20-sim, including the implementation of the BG transformer element and the 
setup of the equation model. 
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A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=66 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=66 

6.9       Example: Mass-Spring-Damper System Connected 
to a Lever 

For this example we discuss and demonstrate how to build a BG model for the 
mechanical system as shown in Figure 6‑12. The lever is represented with a -element. 
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Figure 6-12 A mass-spring-damper mechanical system attached to a beam 

Below are two videos (parts 1 and 2) showing how to build and run the model for this 
example in 20-sim, including the implementation of the BG transformer element and the 
setup of the equation model. 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=66 
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A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=66 

6.10      Example: Inclined Lever and Mass-Spring-Damper 
System 

In this example, we demonstrate how to build a BG model for a mechanical system 
consisting of two moving masses attached to a rod, as shown in Figure 6‑13. The rod can 
rotate as a lever and is represented with a -element. 

Figure 6-13 Two moving mass-spring system attached to a lever 
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The following video shows how to build and run the model for this example in 20-sim. 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=66 

6.11      Example: A Pulley-Mass-Spring System 

In this example, we demonstrate how to build a BG model for a mechanical system 
consisting of two pulleys and three masses, as shown in Figure 6‑14. 
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Figure 6-14 A two-pulley mechanical system 

The video below shows how to build and run the model for this example in 20-sim. 
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A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=66 

Exercise Problems For Chapter 6 

Exercises 

1. Repeat the BG model using 20-sim for the half-car system given in section 6.7, considering: 

a. ground velocity signal as a pulse signal with start time at 1.5 sec., stop time at 3 sec., and amplitude 
of 10 cm 

b. ground velocity signal as a step signal with start time at 1.5 sec. and amplitude of 10 cm 
c. ground velocity signal as an impulse signal with minimum width of 1E-7 and start time of 1 sec. 
d. ground velocity signal as a pulse wave signal with interval of 1 sec., pulse length of 0.1 sec., and 

amplitude of 5 cm 

2. Using 20-sim, build a BG model for the mechanical system shown in the sketch below. Use the data to 
graph the displacement of the mass , , and spring . Consider the floor velocity input as a pulse 
signal with start time of 3 sec., stop time of 4.5 sec., and amplitude of 10 cm. Compression forces are 
considered to be positive (+C). Gravity direction and positive displacements are shown in the sketch. For 
all inputs, graph the displacements of the tires and the heave and pitch of the car chassis. 

Masses (kg)         — 

Springs (N/m) 

Dampers (N.s/m) 
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7. Bond Graph Models for Electrical 
Systems 

7.1        Overview 

An electrical system may consist of components such as resistors, inductors, capacitors, 
transformers, and batteries/source. The generalized BG elements and relations apply to 
the analysis of dynamics of electrical systems and components in a similar way that the 
mechanical components were treated; i.e., they are analogous (see Table 3-1). In other 
words, electric charge  is equivalent to the generalized displacement , electrical 
current to  to the flow , and voltage  to the effort . The inductor (with 

inductance ) is analogous to point mass and is represented by -element; the capacitor 
(with capacitance ) is analogous to a mechanical spring and is represented by 
-element; and resistor (with resistance ) is analogous to mechanical damper and is 
represented by -element. The generalized momentum  or flux linkage is the integral 
of  with respect to time. Therefore, we can write 

    

Using the constitutive relations, for an -element we have  or , and for a 

C-element we have  or . Similarly, for an R-element we have  or 
. The energy associated with storage elements can be written using Equations (3.7) 

and (3.8), or for elements I and C, as and , respectively. An 

advantage of the bond graph method is its analogous applicability to different domains 
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using the common constitutive relations, as described above for electrical systems. 
The analogy between mechanical and electrical systems can be summarized as follows: 

• For a system with series-connected components, we have equal effort for 
mechanical and equal flow for electrical systems. For example, when a spring and a 
damper are connected in series, they experience the same force, and when a 
capacitor and a resistor are connected in series, they experience the same current. 

• For a system with parallel-connected components, we have equal flow for 
mechanical and equal effort for electrical systems. For example, when a spring and a 
damper are connected in parallel, they experience the same velocity (or rate of 
displacement), and when a capacitor and a resistor are connected in parallel, they 
experience the same voltage. 

In other words, the relations of efforts and flows are swapped according to the type of 
the physical system between mechanical and electrical systems. 

Table 7-1 shows typical components for resistor/ , capacitor/ , Inductor/ , 
Transformer/ , Electric motor/ . 
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Table 7‑1 Typical electrical components and their corr

-Element 
(resistor) 

-Element 
(capacitor) 

-Element 
(inductor) 

-Element 
(transformer) 

7.2       Example: Sign Convention for Electrical Systems 

Like mechanical systems, for which we defined +C and +T sign convention for internal 
forces, we require to define a sign convention for electrical systems. It is customary to 
use the passive sign convention (PSC) for defining the direction of electrical current (

 ) passing through the elements of an electrical circuit. The background for the 

PSC is to have power being positive when absorbed by passive elements, e.g., -, -, and 
-elements in BG method. Therefore, for a typical passive element, by definition, the 

electrical current is considered as being positive when input into the element from its 
higher-voltage node (i.e., positive voltage/  ) and output from the relatively lower-
voltage node (i.e., negative voltage/  ). Otherwise, the current is negative. See Figure 
7‑1. 
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Figure 7-1 Sign convention for electrical current through passive elements, passive sign convention 

Using the PSC, we have power defined positive for positive current and negative for 
negative current, or  when  and ; hence, power is absorbed by the 
element. Otherwise, power is generated, when  when  and . Figure 
7‑2 shows the electrical power sign convention for passive elements ( , , ) and active 
elements (voltage and current sources). 

Figure 7‑2 Electrical power sign for several elements according to passive 
sign convention 

In the next section, we use the PSC for defining the current and voltage signs and discuss 
the step-by-step procedure for building BG models for electrical systems. 
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Gustav Robert Kirchhoff 
(1824–1887) 

7.3       Guidelines for Drawing BG for Electrical Systems 

As mentioned in chapter 4, the general guidelines for 
drawing BG model can be applied to electrical systems 
along with causality assignment rules. For electrical 
systems, we follow these guidelines, along with Kirchhoff’s 
circuit laws [24] and the PSC for building their BG models, 
as described in the following steps: 

1. Assign voltage polarity ( ) for each element in 
the electrical circuit. 

2. Assign current direction based on PSC for each 
element (see Figure 7‑1 and Figure 7‑2). 

3. Assign 0-junction for each distinct voltage node in the 
circuit, according to Kirchhoff’s voltage law (KVL)—the 
algebraic sum of all voltage drops around a closed 
circuit is equal to zero. 

4. Assign 1-junction for each element in the circuit, according to Kirchhoff’s current law 
(KCL)—the algebraic sum of all electrical currents entering and leaving a node is 
equal to zero). This is for taking care of relative voltage or drops related to each 
element located between two 0-junctions, since 1-junction is an effort summator. 

5. Select a node in the circuit as a reference, i.e., the grounding, with zero voltage. 
6. Assign -element for capacitors, -element for resistors, -element for inductors, 

for voltage, and  for current sources. 
7. Assign -element for electrical transformers and -element for electric motors. 
8. Connect the elements with power bonds, assign causalities, and simplify by 

neglecting the bonds and the 0-junction which are connected to the ground source. 

The above steps are based on KVL, and the process starts with assigning 0-junctions for 
each distinct voltage node. It is also possible to start with KCL and assign 1-junctions for 
the current in each closed-circuit loop and use 0-junctions in between for distribution of 
the current to corresponding circuit loops. The latter will result in a more simplified BG 
model and is recommended for complex circuits that involve several electric loops. In 
practice, we sometimes use a combination of these two approaches for building BG 
model for electrical systems. 
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In the following sections, we demonstrate the application of the procedure discussed 
above, with some worked-out examples. 

7.4       Example: An RCL Circuit—in Series 

Figure 7‑3 shows an RCL circuit consisting of a resistor, a capacitor, and an inductor 
connected in series. To build the BG model, we apply the PSC and use the procedure 
listed in section 7.3. The four nodes identified by solid circles have distinct voltages. 
Therefore, four 0-junctions are assigned at the four corners of the circuit. For voltage 
drop across each element, we assign 1-juction and connect it to the corresponding 
element with a power bond. Note that the current direction in the circuit is consistent 
with the PSC convention. The resulting BG model is shown in Figure 7‑4 after being 
simplified with deleted ground-connecting bonds shown in the dashed circle. 
Alternatively, we can simplify the BG model and use a 1-juction for the current in the 
circuit loop according to KCL. In other words, the electrical current flowing through all 
elements should be identical. The resulting simplified BG model is shown in Figure 7‑5. 

It is useful to discuss the analogy between the RCL circuit and mechanical mass-spring-
damper systems (see Figure 4‑1) and their identical BG model. Assuming a ground 
connection for the circuit is analogous to a wall with zero velocity for the mass-spring-
damper system, the current through the inductor is analogous to the velocity of the 
mass. The same current flows through the resistor and the capacitors, analogous to the 
velocity of the spring and damper components. Therefore, the simplified BG model (see 
Figure 7‑5) is identical for both electrical and mechanical systems. In other words, the BG 
model is identical to the one for a mass-spring-damper connected in parallel. 

Figure 7-3 Sketch for a RCL electrical circuit in 
series 
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Figure 7‑4 BG model for a RCL electrical circuit in series 
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Figure 7‑5 Simplified BG model for an RCL electrical circuit in series 

7.5       Example: An RCL Circuit—in Parallel 

Figure 7‑6 shows an RCL circuit consisting of two inductors, a resistor, and a capacitor 
connected in parallel. We use the KCL approach to build the BG model for this example. 
Because the voltages across all components are identical, we can, using power bonds, 
apply a 0-junction (i.e., voltage equalizer) and connect the , , and  components to it. 
This can be obtained by simplifying the BG model shown in Figure 7‑7. 
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Figure 7‑6 Sketch for a RCL electrical circuit in parallel 

 

The following video shows how to build and run the model for this example in 20-sim. 

 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=68 
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Figure 7‑7 BG model for a RCL electrical circuit in parallel 

7.6       Example: An Electrical Circuit—Two Loops 

Figure 7‑8 shows an RCL two-loop circuit consisting of resistors, inductors, and a 
capacitor connected in parallel. We use the KCL approach to build the BG model for this 
example. 
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Figure 7‑8 A two-loop RCL electrical circuit 

The following video shows how to build and run the model for this example in 20-sim. 
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A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=68 

The simplified BG model with a supplied voltage signal as a square wave is shown in 
Figure 7‑9. 

Figure 7‑9 BG model for the two-loop RCL electrical circuit 

7.7       An Electrical Circuit—Three Loops 

Figure 7‑10 shows an RCL three-loop circuit consisting of resistors, inductors, and a 
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capacitor connected in parallel. We use the KCL approach to build the BG model for this 
example. 

 

Figure 7‑10 A three-loop electrical circuit 

The following video shows how to build and run the model for this example in 20-sim. 
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A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=68 

The simplified BG model with a supplied voltage signal as a block wave is shown in Figure 
7‑11. 

Figure 7‑11 BG model for the three-loop RCL electrical circuit 
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Georg Simon Ohm (1789–1854) 

7.8       An Electrical Circuit—Wheatstone Bridge 

Figure 7‑12 shows a Wheatstone circuit consisting of 
resistors. This circuit is usually used to measure an 
unknown resistor, e.g., placed in the system as , by 
adjusting the variable  such that the current through 

 is null, i.e., the balanced point. Using Kirchhoff’s and 
Ohm’s laws [25], we can calculate the currents going 
through the branch  as  and branch  as 

 Therefore, the voltages at nodes  and , with 

reference to the ground, are  and 

, respectively. For having null voltage 

across , we let  or after some manipulations, 
we get . As shown, the balanced point is 

independent of the voltage supplied. We use the KCL 
approach to build the BG model for this example. 

Figure 7‑12 A Wheatstone bridge electrical 
circuit 

The following video shows how to build and run the model for this example in 20-sim. 
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A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=68 

The simplified BG model with a supplied voltage is shown in Figure 7‑13. 

Figure 7‑13 BG model for the Wheatstone bridge circuit 
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7.9       An Electrical Circuit—Multi-loop 

Figure 7‑14 shows an RCL multi-loop circuit consisting of resistors, inductors, and 
capacitors connected in series and parallel. We use the KCL/KVL approach to build the 
BG model for this example. 

Figure 7‑14 A multi-loop electrical circuit 

The following video shows how to build and run the model for this example in 20-sim. 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=68 
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The simplified BG model with a supplied voltage is shown in Figure 7‑15. 

Figure 7‑15 BG model for the multi-loop electrical circuit 

7.10      An Electrical Circuit—Multi-loop with 
Transformer 

Figure 7‑16 shows an RCL multi-loop circuit consisting of resistors, inductors, capacitors, 
and a transformer connected in series and parallel. We use the KCL/KVL approach to 
build the BG model for this example. 
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Figure 7‑16 A multi-loop electrical circuit with transformer 

The following video shows how to build and run the model for this example in 20-sim. 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=68 

The simplified BG model with a supplied voltage is shown in Figure 7‑17. 
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Figure 7‑17 BG model for the multi-loop electric circuit with transformer 

Exercise Problems for Chapter 7 

Exercises 

1. Build the BG model for the electrical system as shown in the sketch. Run the model and report the 
following quantities: 

a. charge accumulated on capacitors 
b. current across resistors 
c. voltage drop across resistor 
d. momentum (flux linkage) for the inductor. 

Use following data: , , , , , 
, , and transformer parameter 2:1. 
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2. Build a BG model for the electrical circuit shown. Use , ,  for simulation. 
Report voltages across each element for a direct source voltage of . Also, run the model for a range of 
capacitance , ,  using Parameter Sweep and report the across the inductance for 
these values. Draw the sketch.

 

3. For the electrical system shown in the sketch, build the BG model. 
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4. A modified Wheatstone bridge circuit is shown in the sketch. Build a BG model and show that the voltage 
across the bridge resistor (R6) is null when the bridge is balanced. 
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5. An electrical circuit is shown in the below sketch below. The circuit consists of two capacitors, two 
inductors, and one resistor. Build the corresponding BG model. 
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6. Modify the example given in section 7.7 by making the components branching from node  to be laid out 
in parallel. Build the BG model for the modified circuit. 

7. For the example given in above section 7-9, use the corresponding BG model and the following data to 
simulate the system: , , , , , 

, , , transformer parameter 2:1. 
8. Build the BG model for the electrical circuit shown below. After building the model in 20-sim, simplify it 

and interpret the simplified model. Perform a parametric sweep analysis for the capacitor and inductor. 

166  |  Bond Graph Models for Electrical Systems

https://pressbooks.bccampus.ca/engineeringsystems/wp-content/uploads/sites/1041/2021/02/ch-7-problem-5.png


Media Attributions 

• Gustav Robert Kirchhoff is licensed under a Public Domain license 
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8. Bond Graph Models for Hydraulic 
Systems 

8.1       Overview 

The generalized BG elements and relations apply to the modelling of dynamics of 
hydraulic systems in a similar way that the mechanical or electrical systems were treated; 
i.e.; they are analogous (see Table 3‑1). In this chapter, we define the effort and flow for 
hydraulic systems and derive the relations for hydraulic capacitance, inertance, and 
resistance corresponding to BG elements , , and , respectively. Note that the 
complexity of fluid behaviour in static or dynamic flow conditions require us to pay more 
attention to identify these quantities and relations as compared to those for mechanical 
and electrical systems. 

For modelling hydraulic systems, we are usually interested in having a relationship 
between pressure and fluid volume in static conditions and between pressure drop and 
fluid volume flow rate in dynamic conditions. For example, we might be interested to 
know the pressure drop for a given flow rate in a pipe, or we might want to know the 
pressure at a given depth in a storage tank, as sketched in Figure 8‑1. 

Figure 8-1 Sketches for pressure drop in a pipe and in a storage tank 
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8.2       Definitions of Effort, Flow, and Momentum for 
Hydraulic Systems 

Recall that power is the quantity of interest in BG method (see section 3.2). Considering a 
control volume   of an incompressible fluid flowing under pressure  , we can write the 
power  as the product of the force   exerting on the fluid, resulted from applied 
pressure, and the velocity  of the fluid flowing through the volume, or  But the 
velocity of the fluid can be written as , using the continuity relation, where   is 
volume flow rate of the fluid and   is the cross-sectional area of the control volume. 

Therefore, after substitution, we get , or equivalently rate of energy 

. Comparing the relation  with the BG generalized relation for power, i.e.,  , 
we can write   and . In other words, for hydraulic systems, pressure is 
equivalent to BG effort, and fluid volume flow rate is the BG flow. Similarly, we can write 
the generalized BG displacement   as the volume of the fluid, or . 

In BG method, the generalized momentum is the integral of effort. Therefore, we can 
write the fluid momentum  as the integral of pressure, or  . Summarizing 
these relations, we have 

    

For hydraulic systems, fluid pressure is equivalent to generalized BG effort, and fluid volume flow rate is the 
generalized BG flow. 
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8.3       Fluid Compliance: C-element 

Fluid compliance or hydraulic capacitance describes potential energy storage with a 
fluid, e.g., the height of fluid in a tank. It is equivalent to mechanical spring compliance or 
electrical capacitor capacitance. For a -element in BG method, we have  . Using 
equivalent quantities for hydraulic systems, we can write , or fluid compliance is 
volume change per unit of pressure acting on the fluid volume. For an incompressible 
fluid with density , the hydrostatic pressure at depth  is  and the volume of the 
fluid is  . After substitution, we get  , or after rearranging and simplifying, the 
hydraulic capacitance for incompressible fluid is 

(8.1)   

where  is the gravitational acceleration. The dimension of fluid compliance can be 

worked out as   = [ ] = . 

Note that the pressure could be replaced by total dynamic pressure for fluid in motion. 

If the fluid is compressible, we use the bulk modulus of elasticity  for calculating the 
change in volume. By definition,  is pressure needed to change fluid volume per unit of 
volume, or .  Therefore, . 

 

(8.2)   

 

For more complex flow and non-uniform, flexible tubes, consult with chapter 4 of Dean, 
Karnopp, Margolis, and Rosenberg [20]. 

Having the hydraulic capacitance, we can write the relation between the flow rate and 
the pressure as , useful to calculate the flow rate for given pressure. 

Similarly, we can write , useful for calculating pressure for 

given flow rates. 
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(8.3)   

Note the similarity between relations given by Equation (8.3) and those given for 
mechanical spring (when pressure is replaced by force and fluid volume flow rate by 
velocity) and electrical capacitance (when pressure is replaced by voltage and fluid 
volume flow rate by current). 

8.4       Fluid Inertia: I-element 

Fluid inertia, or hydraulic inertance, describes kinetic energy storage with a fluid or the 
inertia, e.g., of a fluid flowing in a pipe. It is equivalent to inertia related to mass in 
mechanical or inductance in electrical systems. For an -element in BG method, 
describes the relation between generalized momentum and flow. Using equivalent 
quantities for hydraulic systems, we can write , or fluid pressure momentum is 
the product of fluid inertia by its volume flow rate. To derive the relation for , we 
require to have the relationship between the momentum and volume flow rate of the 
fluid flow. For derivation, we consider a control volume with length   and cross-sectional 
area  of the fluid with density  , as shown in Figure 8-2. 
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Figure 8-2 Sketch for a control volume of flowing fluid in a pipe 

Assuming a pressure difference  between two ends of the control volume acting on 

the fluid, we can write Newton’s second law for the fluid motion as  . 

Rearranging the terms and integrating the pressure, we get the pressure momentum 

. But volume is . After substituting, we get the relationship between 

pressure momentum and the volume flow rate as 

(8.4)   

Comparing Equation (8.4) with the generalized momentum equation for -element, 
we can write the fluid inertia as 

(8.5)   

The dimension of fluid inertia can be worked out as . 

From Equation (8.5), we can conclude that a fluid has larger inertia when flowing in small 
diameter tubes, compared to in larger tubes because  is inversely proportional to . This 
effect is counterintuitive and is sometimes misinterpreted with the wrong assumption 
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that large-size tubes should exhibit larger inertia effects. Note that we consider only 
force due to pressure, and not friction due to viscosity, assuming an ideal fluid. 

For more complex flow and non-uniform and/or flexible tubes, consult with chapters 4 
and 12 of Dean, Karnopp, Margolis, and Rosenberg [20]. For example, if the cross-section 
of the pipe and the density of fluid change along its -axis, then we get 

(8.6)   

Having the hydraulic inertance, we can write the relation between the flow rate and the 
pressure as  , useful to calculate the flow rate for given 

pressure. Similarly, we can write , useful for calculating pressure for 

given flow rates. 

(8.7)   

Note the similarity between relations given by Equation (8.7) and those given for 
mechanical systems (when pressure is replaced by force, fluid flow rate by velocity, and 
inertance by mass) and electrical systems (when pressure is replaced by voltage, fluid 
flow rate by current, and inertance by inductance). 
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Gotthilf Hagen, (1797–1884) 

Jean-Léonard-Marie 
Poiseuille, (1797–1869) 

8.5        Fluid Resistance: R-Element 

Fluid, or hydraulic, resistance describes energy dissipation 
with a fluid, e.g., friction of a fluid flowing in a pipe. Fluid 
resistance is equivalent to dampers in mechanical or 
resistors in electrical systems. For an -element in BG 
method, we have  Using equivalent quantities for 
hydraulic systems, we can write 

(8.8)   

or fluid resistance is equal to pressure change per unit 
volume flow rate. This relationship depends on the state of 
the flow (e.g., laminar, turbulent) and the fluid properties 
(e.g., ideal, viscous,) [26], [27], [28]. Note the similarity 
between relations given by Equation (8.8) and those given for mechanical systems (when 
pressure is replaced by force and fluid flow rate by velocity) and electrical systems (when 
pressure is replaced by voltage and fluid flow rate by current). 

To demonstrate the derivation of the relation for , we 
consider a laminar flow of a viscous incompressible fluid in a 
pipe (so-called Hagen-Poiseuille flow) and write Newton’s 
second law for a cylindrical differential control volume of the 
fluid with length  along the pipe axis and a cross-section 
with radius  , as shown in Figure 8‑3. This flow is 
axisymmetric, and the velocity profile changes along the 
radius related to a cylindrical coordinate system 
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Figure 8-3 Sketch of velocity profile for a Hager-Poisseville flow in a pipe 

For a steady flow (i.e., non-transient), we have . But the forces applied on the 
fluid are due to pressures  at point  and  at point  and the viscous-
induced shear stress  . Hence,  where  is the radial 
dimension in the  plane parallel to the pipe cross-section. We need the relation for 
fluid friction effect due to viscosity. According to Newton’s law for a viscous fluid, we 

have , assuming the shear stress due to the fluid’s viscosity be proportional to 

the velocity gradient along the radius with the proportionality constant being the 
dynamic viscosity  . Note that velocity profile at any cross-section of the pipe is only a 
function of radius, or velocity vector is  . After substitution, we 
have  . After simplifying and rearranging the terms, we have 

 . Integrating the latter relation, noting that velocity is not a function of , 

gives  , or  . Now, we rearrange the terms and 

let , the length of the control volume, and use the pressure difference as a 
positive constant quantity  in the direction of the fluid flow. Hence, 

. Integrating both sides (the left-hand side with respect to  and the right-hand 

side with respect to  ) gives  . The constant of integration can be 

obtained using the information at the boundary of the pipe assuming the no-slip 

condition, or  , where D  is the pipe diameter. Therefore,  . 

Hence, after back substitution, we get the velocity profile  . This relation 
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is the famous parabolic velocity profile for the flow in a pipe and can be written in its 
functional form as 

(8.9)   

Using Equation (8.9), we can calculate the velocity for any given value of , e.g., 

 at the centre-line of the pipe or  at the interior wall of the pipe. 

Now, to find the volume flow rate, we integrate the velocity  over the whole cross-
section of the pipe using a differential area element . Or, the volume of the fluid 
passing through the whole cross-section of the pipe per unit of time is given by 

, or 

(8.10)   

Comparing Equation (8.10) with Equation (8.8), we can write the fluid resistance as 

(8.11)   

The fluid resistance can be interpreted as the amount of pressure drop per unit of 
volume flow rate of the fluid in the pipe. The dimension of fluid resistance can be worked 
out as . 

Other BG elements for hydraulic systems are sources of flow (e.g., centrifugal pumps) 
and efforts (e.g., reservoirs, tanks, displacement pumps). Pumps provide flow of a fluid at 
a certain flow rate according to their types and specifications. Reservoirs or pressure 
chambers provide certain pressure to the system as an effort source. The transformers 
elements are those like piston-cylinder (plunger), and gyrators are those elements like 
reaction turbines or hydraulic motors. Sketches below show some related elements. 

Typical hydraulic components are shown in Table 8‑1. 
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Table 8-1 Typical hydraulic componen

-element 
(valve) 

-element 
(storage) 

-element 
(fluid mass) 

8.6        Sign Convention for BG Modelling of Hydraulic 
Systems 

The sign convention for hydraulic systems can be defined by specifying the relative 
high/low pressure points in the system and, hence, the positive fluid flow direction 
along the pressure drop. The pressure reference is commonly taken to be the 
atmospheric pressure (i.e., one atm for absolute and zero for gauge pressures). For BG 
modelling, it is recommended to have all pressures in gauge and define a zero-pressure 
point for reference atmospheric pressure. If the results are required in absolute pressure 
units, then one unit of atmospheric pressure can be added to the obtained values from 
the BG model. 

8.7        Guidelines for Drawing BG for Hydraulic Systems 

As mentioned in chapter 4, the general guidelines for drawing BG models can be applied 

178  |  Bond Graph Models for Hydraulic Systems



to hydraulic systems, along with causality assignment rules. For hydraulic systems, we 
follow the guidelines given for electrical systems (see section 7.3) as described in the 
following steps: 

1) Assign sign convention for fluid flow directions. 

2) Assign 0-junction for each distinct pressure point in the system. 

3) Assign 1-junction for each element in the system. This is for taking care of relative 
pressure drops related to each element located between two adjacent 0-junctions, 
since 1-junction is effort summator. 

4) Select a node in the system as a reference, i.e., the atmospheric pressure point, 
and assign a 0-junction element to it. If gauge pressures are used, then this 
0-junction and all connected power bonds can be eliminated to simplify the model. 

5) Assign -element for storage/capacitors, -element for friction, -element for 
fluid mass, and  for pressure and  for flow sources. 

6) Assign -element for hydraulic transformers and -element for hydraulic 
gyrators. 

7) Connect the elements with power bonds and assign causalities. Simplify by 
neglecting the bonds and the 0-junction which are connected to the 0-junction 
representing the atmospheric pressure. 

Similarly, a 1-junction-based approach can be used for distinct flow rates and hence 
simplifying the BG model, as we demonstrated in the previous chapter with electrical 
systems. 

8.8        Example: Hydraulic Reservoir-Valve System 

Figure 8‑4 shows a hydraulic system consisting of two tanks, pipes, and valves. Build a BG 
model for this system. 
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Figure 8-4 Sketch for a two-tank hydraulic system 

Solution: 

We follow the systematic procedure for building the BG model, listed in section 8.7. For 
this system, we can easily identify two pressure points located at the bottom of tanks. We 
assign two 0-junctions for each. For flow input, we assign a flow source element, and for 
the output, an effort source element to define the atmospheric pressure at that location. 
For the tanks, we only consider capacitance, assuming slow fluid motion and neglect 
inertia and friction (i.e., no inertance nor resistance). For the pipe sections, we consider 
inertance and resistance. As well, we assign 1-junctions for flows in the pipes that 
represent the pressure changes for these components. Figure 8-5 shows the resulting BG 
model. 

Figure 8-5 Bond graph model for a two-tank hydraulic 
system 
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8.9        Example: Hydraulic Reservoir-Valve System 
Simulation 

In this example, we use the BG model developed in section 8.8, along with data assigned 
to parameters for simulation. Considering water as the fluid ( ) 
and the data given in Table 8‑2, we can calculate the related , , and  of the elements in 
the system. The diameter of the pipes is 15 cm, and . 

The following video shows how to build and run the model for this example in 20-sim. 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=70 

Table 8‑2 Data for system components in example 8-9 

Component -section area 
[ ] 

Length 
[ ] [ ] 

Eq. (8.1) 
[ ] 
Eq. (8.5) 

[  ] 
Eq. (8.11) 

Storage tanks 2 – – – 

Pipe1 0.01767 4 – 226372.4 322 

Pipe2 0.01767 2 – 113186.2 161 
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8.10       Example: Hydraulic Pump-Reservoir-Valve System 

In this example, we use the BG model developed in section 8.8, adding a pump to the 
system as shown in Figure 8‑6. In this example we discuss in more detail the BG model of 
a pump. For further details related to BG modelling of pumps, consult with references 
cited as [21] and [29]. 

Figure 8-6 A hydraulic system with a pump 

The following video shows how to build and run the model for this example in 20-sim. 
The resulting BG model is shown in Figure 8‑7. 

 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=70 
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Blaise Pascal (1623-1662) 

Figure 8-7 Bond graph model for the pump-reservoir-valve hydraulic system 

8.11        Example: A Hydraulic Lift System 

In this example, we consider a hydraulic lift, as sketched in 
Figure 8‑8. We build a BG model for this hydraulic system. The 
continuity relation applies to the fluid motion and Pascal’s law 
defines the pressure distribution of the fluid in the cylinders. 
Two transformer elements are used in the BG model to convert 
linear velocities of the pistons to/from volume flow rate and 
convert forces to pressures (see Figure 8‑9). The transformers’ 
parameters are explained in the video clip. 
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Figure 8‑8 A hydraulic lift system 

The following video shows how to build and run the model for this example in 20-sim. 

 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=70 

The BG model is shown in Figure 8‑9, along with the detail of the transformers’ inputs 
and outputs. 
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Figure 8-9 Bond graph model for hydraulic lift system 

 

Exercise Problems for Chapter 8 

Exercises 

1. Build the bond graph for a two-way safety valve. 
2. Repeat the example in section 8-9 and perform a parametric sweep for some parameters in the 

simulation, for example pipe diameters and lengths. 
3. Expand the BG model given in section 8.10 with running simulation with some data for the system 

parameters, similar to those given in section 8.9. Also, expand the model of the pump using some pump-
chart (H-Q). 

4. Use some data and run simulation for the example given in section 8.11, the hydraulic lift. 
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• Blaise Pascal © Janmad is licensed under a CC BY (Attribution) license 
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9. Bond Graph Models for 
Multi-Domain Systems 

9.1         Overview 

As mentioned in previous sections (see chapter 3), the universality of BG elements for 
application to analogous quantities is the main strength of this method for modelling and 
simulation of multi-domain systems. In practice, many systems are composed of multi-
energy domains, e.g., an electric motor turning a mechanical shaft, a car engine 
generating and transferring power to the torsion shaft, a wind turbine, a robot. The BG 
modelling method can serve as a powerful tool for modelling these real-world systems. 

In this chapter, we present several examples of multi-domain systems and build their BG 
models. We emphasize that the control sub-system is a major part of any engineering 
system. In this textbook, however, we focus on BG method and how to build BG models 
for systems. The full treatment of the topic of control is left for a possible future volume. 
For information about control theory and modelling, consult with references such as 
those cited as [20], [21], [30], and [31]. 

9.2         Example: Car Brake System 

For this example we consider a car brake system as shown in Figure 9‑1. The driver 
applies a force on the brake pedal, which is transferred to the brake discs through the 
hydro-mechanical system. The process of force transfer is modelled with using several 
transformer elements ( ). 
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Figure 9-1 A car brake hydro-mechanical system 

 

The following video shows how to build and run the model for this example in 20-sim. 
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A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=72 

 

The BG model for this system is shown in Figure 9‑2. For further reading, consult with 
the reference cited as [32]. 

 

Figure 9‑2 BG model for the car brake hydro-mechanical system 

9.3         Example: Electro-mechanical Hoist System 

For this example, we consider an electro-mechanical hoist system as shown in Figure 9‑3. 
The electric motor is connected to a shaft-drum mechanical system. The load is 
represented by a mass connected by an elastic extensible string to the hoist drum. A 
gyrator ( ) and a transformer ( ) elements are used in this model. The -element 
models the electric motor by transforming the motor voltage (current) to the angular 
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velocity (torque) of the drum/shaft and the -element transforms the angular velocity 
of the drum to the linear velocity of the mass. 

 

Figure 9‑3 An electro-mechanical system with load 

 

The following video shows how to build and run the model for this example in 20-sim. 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=72 
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Figure 9‑4 shows the BG model for this system. For further reading, consult with the 
references cited as [21] and [33]. 

 

Figure 9‑4 BG model for an electro-mechanical system 

9.4         Example: Drive Shaft-Load Mechanical System 

For this example, we consider a mechanical drive shaft system carrying a torsional load 
as shown in Figure 9‑5. The applied torque is transferred to the gear-shaft system. The 
load can be applied through an electric motor (not shown). This model uses several 
transformer elements ( ). The -elements exchange the angular velocity of the gears, 
using compatibility requirement. 
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Figure 9‑5 A drive shaft mechanical system carrying a torsional load 

The following video shows how to build and run the model for this example in 20-sim. 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=72 

The BG model for this system is shown in Figure 9‑6. For further reading, consult with 
the references cited as [20] and [34]. 
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Figure 9‑6 BG model for drive shaft mechanical system carrying a torsional load 

 

9.5         Example: Inverted Double Pendulum 

For this example, we consider an inverted double pendulum system pivoted to a moving 
mass,  as shown in Figure 9‑7. The rods are pinned together, and each has one 
rotational DOF, represented by  and . The centre of mass is located at the mid-points 

 and  of each rod, represented by  and ; associated mass by  and ; and 

rotational moment of inertia by  and . The motion is measured with reference to a 
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fixed coordinate system, , initially at origin. Applied force  is exerted on mass , 
moving horizontally with its displacement designated by . 

The coordinates of the centre of mass for the rods are given as , 

, and , . Therefore, the 

corresponding velocities are , , 

, and . Assuming small angles, or  and , we get 

 and 

    

 

Figure 9-7 An inverted double pendulum system 
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The following video shows how to build and run the model for this example in 20-sim. 

A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=72 

 

Figure 9‑8 shows the BG model for this system. For further reading, consult with the 
references cited as [20] and [32]. 
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Figure 9‑8 BG model for the inverted double pendulum 

 

Exercise Problems for Chapter 9 
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Exercises 

1. Use the BG model given in section 9.2 to complete the following: 

a. Build the BG model. 
b. Reset the causalities and manually apply them to identify the algebraic loop and related power 

bonds. List all the options that might exist. 
c. Using some typical numerical values for the car-brake system parameters, build the model and run 

some simulation scenarios. 

2. Use the BG model given in section 9.3 to complete the following: 

a. Build the BG model. 
b. Reset the causalities and manually apply them to related power bonds. 
c. Draw the arrows for showing the streams of flow and effort in the whole system. 
d. Using some typical numerical values (as shown below) for the hoist system parameters, build the 

model and run some simulation scenarios. Make graphs of mass velocity and study the effects of 
string elasticity and drum moment of inertia using the Parameter Sweep tool in 20-sim. 
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10. Frequency Analysis: Bode Plots and 
Transfer Function 

10.1         Overview 

Studying the behaviour of systems with respect to time is the primary approach for 
systems modelling and analysis. However, when a system behaves in a repetitive mode 
under some applied load and/or boundary conditions—a quasi-static mode—we are 
interested in the changes in terms of the inherently-involved frequencies of the system 
rather than the details of instantaneous variations with respect to time. Therefore, 
transforming the domain of analysis from time to frequency provides us with useful and 
important information about the behaviour of systems. For example, identifying 
characteristics of a system—such as its natural frequency, behaviour at large and small 
frequencies, and magnitude of certain quantities at specific frequencies—provides useful 
insights in terms of system analysis, design, and control. 

In this section, we present a brief background of frequency analysis and methods with 
focus on Bode plot method and transfer function, with worked-out examples. However, 
this textbook does not present a full discussion of control theory and related methods for 
system analysis. 

For further reading, consult with references cited in this chapter. 20-sim has tools for 
performing frequency analysis using BG models and for drawing Bode plots for systems. 
Through some examples, we will demonstrate how to use these tools. 
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Pierre-Simon Laplace (1749 – 1827) 

10.2         Background 

Performing analysis in frequency domain requires a 
transformation from time domain to frequency 
domain. Having a mathematical model describing 
the behaviour of a system, we can use a transformer 
to convert the governing equations from time 
domain to frequency domain . Using applied 
engineering mathematics, we usually employ 
Laplace and/or Fourier transforms for such an 
operation. The Laplace transform (defined in 
complex -domain) is a more general case of 
Fourier’s transform (defined in -domain), as given 
below for transforming a function of time , [12], 
[35]. 

(10.1)   

where  and for  these two transforms are comparable. Note that, in 
principle,  but the real part,  of complex variable , is not included here since 
we are interested in equilibrium at a steady state in frequency analysis. Application of 
these transforms greatly simplifies the solutions of system equations, both for ODEs and 
PDEs. The original functions in time domain can be calculated back using the inverse 
transforms of Laplace and Fourier, given as 
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Jean Baptiste Joseph Fourier 
(1768–1830) 

(10.2)  

In control theory for systems, several methods are 
used for studying system behaviour and design, 
including Bode and Nichols plots requiring 
frequency-domain response representation, root-
locus method requiring complex-domain pole-zero 
representation, and polynomial-domain design 
requiring transfer-function representation [31], [36]. 
A transfer function, by definition, is the ratio of the 
output signal (i.e., magnitude, power) of a system over selected input signal values. 
Among these methods, we focus on Bode plots for application in system design using BG 
models. Bode plots are used for linear systems or linearized non-linear systems. For 
more detail, see Reference Manual 20-sim 4.6. To access the manual, from the 20-sim 
Editor window, go to Help, and then select Manual (PDF). 

10.3         Motivational Example: A Linear System 

A linear system, or LTI (linear time invariant), is a system for which the linear 
combination of output of a set of inputs is equal to the sum of outputs resulting from 
each input, e.g., as shown in Figure 10‑1. 
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Figure 10-1 Linear system sketch for processing inputs and outputs 

Considering a proportional integral (PI) controller (for which the output is equal to the 
input multiplied by a constant and added to the integral of the input), we provide a 
sinusoidal signal input with frequency of 0.5 rad/s (or ) given as 0.5 . Assuming the 

constant multiplier to be 2, we get the output as 
). From the output, we observe that the 

frequency remains the same as that of the input. Now, by multiplying  to the 

output, we rewrite it as a single sinusoidal function, or: 

Therefore, the input amplitude is magnified by a factor of , frequency remains the 
same as mentioned, and a phase change of  is introduced to the output signal 

by the PI controller. But one can ask the question: what would be the controller response 
to a similar signal with a different frequency? For example, if we repeat the same 

calculation for an input signal given as , we get the response . To 

find the response to a spectrum of input frequencies, in principle we can repeat similar 
calculations and analyze the system behaviour. Table 10‑1 shows some typical response 
result for input signals of the form  into a PI controller. 
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Table 10‑1 Response of a PI controller to a sinusoidal signal, 

Frequency (rad/s), Response Amplitude Response Phase (deg.) 

0.1 10.198 -78.690 

0.2 5.385 -68.199 

0.3 3.887 -59.036 

0.4 3.202 -51.340 

0.5 2.828 -45.000 

0.6 2.603 -39.806 

0.7 2.458 -35.538 

0.8 2.358 -32.005 

0.9 2.288 -29.055 

1 2.236 -26.565 

2 2.062 -14.036 

3 2.028 -9.462 

4 2.016 -7.125 

5 2.010 -5.711 

6 2.007 -4.764 

7 2.005 -4.086 

8 2.004 -3.576 

9 2.003 -3.180 

10 2.002 -2.862 

One can make graphs of the response amplitude and phase changes versus input 
frequency to study the behaviour of the PI controller used in this example. 
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Hendrik Wade Bode 
(1905–1982) 

10.4         Bode Plots and Cutoff Frequency 

The results of the calculations mentioned in section 10.3 
motivate us to look for a more general and practical method of 
frequency analysis of systems. The calculations presented are 
laborious, although new computer tools, e.g., Excel or even 
computer coding can speed up the process. However, Hendrik 
Wade Bode, working at Bell Labs in the 1930s, suggested a more 
practical and now commonly used graphical method—Bode plots, 
[21], [31], [37], [38]. This method has a wide range of applications 
in system dynamics, control, and design. An important outcome 
of having Bode plots for a system is a quick visual insight into the 
system’s dynamical behaviour for a wide range of frequencies. 

In this section, we present the basic idea and some formulas related to Bode plots and 
what they intend to represent when applied to a system. 

Following the example presented in section 10.3, we assume, without losing generality, to 
have an input sinusoidal signal to the PI controller with frequency  given as . The 
output is, then,  with amplitude  and phase . The relations for the output 
amplitude and phase angle depend on the PI controller specifications. For our example 
having a proportionality factor of two and an integration, using similar manipulations as 
those given in section 10.3, we find  and . Now, after 

transforming the input and output signals to the Laplace -domain, using Laplace 
transform (see Equation (10.1)), we get  and 

. The transfer function  (also referred to 

as gain function) is defined as the ratio of the output amplitude over input amplitude. For 
our examples, we get, after some simplifications, . Having the transfer 

function, we can substitute , to transform from -domain to -domain, guided by 
Equation (10.1). Therefore, , or the transfer function in frequency 

domain. This is a function of a complex variable and can be written, in general, as its real 
and imaginary parts or . Therefore, after some manipulations, we get 

. This gives the real part  and imaginary part . 
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Therefore, the magnitude of the transfer function is . The relations for 
transfer function including its magnitude and phase are summarized in Equation (10.3). 

(10.3)   

A set of plots consisting of magnitude  and  versus logarithm (at base 10) of  is 
called Bode plots. However, magnitude is traditionally measured in decibel (dB), phase 
angle in degrees, and frequency as logarithm of frequency in rad/s (or in Hz). 

Recall that dB (one tenth of a bel) is a unit for measuring the power of a signal with 
reference to a threshold. For example, the threshold for human hearing is , 
given as power intensity; dB is measured in logarithm of the power ratios at base ten, or 

. But since power of a wave signal is proportional to its amplitude 

squared, then we get , or 

(10.4)   

Therefore, Bode plots are composed of two charts: signal gain in dB and phase in degrees 
versus logarithm of , usually given in a single graph chart. The graphs in Figure 10‑4 
show the Bode plots for the PI controller, generated using 20-sim. The tools available for 
drawing Bode plots in 20-sim can also be used when a transfer function is available or 
calculated and also after a BG model is built for systems. For this example, we calculated 
the transfer function and used it to draw the corresponding Bode plots. For drawing the 
corresponding Bode plots, follow these steps: 

1. From the Editor window, go to Tools, select Frequency Domain Toolbox, and then 
select Linear System Editor. The 20-sim Linear System Editor window opens, as 
shown in Figure 10‑2. 
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Figure 10‑2 Linear System Editor interface in 20-sim 

2. Select Transfer Function and click on the Edit A window opens in which you can 
enter the coefficients of the transfer function, as shown in Figure 10‑3. 

3. Enter the desired transfer function as a polynomial fraction with numerator and 
denominator polynomials with their corresponding coefficients in descending power 
of . For this example, having  the coefficients for the numerator 

polynomial are (2, 1) and for the denominator polynomial are (1, 0). Note the zero 
term, i.e., the coefficient for the term , or the constant term. A space can be used 
instead of a comma, to separate the coefficients. 

4. Click on Apply and then OK This takes you back to the Linear System Editor window 
with the transfer function listed. Double check the resulted transfer function to 
make sure it is entered correctly into 20-sim. 
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Figure 10‑3 Transfer Function Editor interface in 20-sim 

5. From the 20-sim System Editor window (see Figure 10‑2) under Plots, select Bode. 
The Bode Plot window opens with the corresponding Bode plots, as shown in Figure 
10‑4. From these plots, we can conclude that the PI controller is a high-pass filter 
system because it passes through the high frequency signals but attenuates low 
frequency signals. The gain for low frequency signals decreases linearly with a slope 
of 20 dB per decade from 40 dB. The phase change is from close to  at low 
frequencies to null at high frequencies. Therefore, the PI controller is in phase with 
the input signals at high frequencies and out of phase, by about , at low 
frequencies. 

6. The asymptotes to the high frequency and low frequency gains intersect at a point 
defined as the cutoff frequency,  (also referred to as corner or break frequency). 
This frequency is defined when the output power reaches to 50% of the input signal 
power (so-called half-power point), or 

. 

The 3dB-point is the standard method of finding cut off frequency from the Bode 
plot gain chart. For this example, the asymptote to the high frequency gain (i.e., the 
horizontal line as the frequency ) is at about 6.02 dB. Hence, the cutoff 
frequency corresponds to the point at 6.02+3=9.02 dB, or  using 
Equation (10.4). This gives the cutoff frequency of  rad/s, using 

. At the cutoff frequency the phase reads  deg, using 
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, after conversion. 

Figure 10-4 Bode plots for a PI controller 

By following the steps presented in the following section, we can also draw Bode plots 
using 20-sim when a BG model of a system is available. 

10.4.1         Guideline for Drawing Bode Plots for BG Models 

After using 20-sim to build a BG model, to draw related Bode plots, click on Tools and 
select the options in the Frequency Domain Toolbox to draw related Bode plots. We can 
draw Bode plots using transfer function, either manually or using computer graphing 
tools. The following steps can be used for drawing Bode plots, by either (A) using 20-sim 
software tool or (B) manually: 

A. Drawing Bode plots using 20-sim (See the 20-sim Reference Manual.) 

1. Build BG model. Include data for related variables. 
2. From the Editor window, go to Tools, select Frequency Domain Toolbox, 
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and then select Model Linearization. The 20-sim Model Linearization 
window opens, as shown in Figure 10‑5. 

Figure 10‑5 Model 
Linearization interface in 
20-sim 

2. Select the input and output variables for which you want to draw the Bode plots. 
The resulting transfer function is related to this selection. Click on the Variable 
Chooser icon to get a list of model variables to choose from. Leave the rest of 
options as selected by default. Note that unless output is used as feedback, 
usually Open Loop is selected. Select OK. 

3. The 20-sim System Editor interface window opens (see Figure 10‑2). The transfer 
function, based on input/output selection appears. From the selections under 
Plots, choose the Bode The corresponding Bode plots appear in a new window 
as shown in Figure 10‑6. 
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Figure 10‑6 Typical Bode plots for a system 

5. Go to Properties and select Plots to edit plots for title, axes scales, labels, 
legends, etc. 

A. Manual drawing of Bode plots using transfer function 

1. Derive transfer function and transform it to -domain, , using Laplace 
transform. 

2. Plug in  into transfer function, to get . 
3. Calculate the real and imaginary parts of the . 
4. Calculate magnitude  and power, using Equation (10.4). 
5. Calculate the phase angle in degrees, using Equation (10.3). 

Alternatively, Bode plots can be drawn using 20-sim after having the desired transfer 
function  from step 1 above, by following the guideline given in section 10.4. 
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10.5         Example: Bode Plots Using Transfer Function 

A system’s transfer function  is given. Find expressions for 

magnitude and phase angle and draw the corresponding Bode plots. Consider the 
frequency range 0.01–1000 rad/s. Discuss the system dynamical behaviour at low and 
high frequencies, including cutoff frequency. 

Solution: 

Using the guidelines, we substitute  in . Therefore, 
  After multiplying and dividing by the conjugate of 

the denominator, we get 

. From this expression, 

we get the real and imaginary parts as  and . Using 

the real and imaginary parts and Equation (10.3), we can calculate the magnitude and 
phase as  and . Note that at  and at 

. We can draw the Bode plots, manually or using 20-sim, for example. The 
cutoff frequency can be calculated as follows. The gain magnitude at  reads 

. Therefore, the corresponding power is . The 
cutoff frequency corresponds to . Therefore, the 
corresponding gain is , using . After substituting for  and 
using , we get cutoff frequency . The phase at the cutoff 

frequency can be calculated using  or . 

Following the steps given in section 10.4, we can use 20-sim and the transfer function 
 to draw the Bode plots. The coefficients for the polynomials are (1) for 

numerator, and (1, 6, 8) for denominator. The resulting Bode plots are shown in Figure 
10‑7. 

The following video shows how to build and run the model for this example in 20-sim. 

Frequency Analysis: Bode Plots and Transfer Function  |  211



A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=74 

Figure 10‑7 Bode plots for the transfer function 

10.6         Example: Bode Plots Using a BG Model 

Build the BG model and its Bode plots considering transfer function based on force  as 
input and displacement of the spring  as output. Use the mechanical system as shown 
in Figure 10‑8 with 
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, , , , , , 
, and . 

The damper  connects mass  and the wall at the right side. Repeat the simulation for 
the following cases: 

a. Use given damper coefficient values  to study 
its effect on the system with Parameter Sweep tool in 20-sim (available at 
the 20-sim Simulator window: select Tools > Time Domain Toolbox 
>Parameter Sweep). During the sweep, monitor the displacement of mass 

. 
b. Use a pulse-type signal as the applied force with amplitude 200 , start time 

2 sec, and stop time 3.5 sec. 

Figure 10-8 Mechanical system sketch for example given in 
section 10-6 

Solution: 

The following video shows how to build and run the model for this example in 20-sim. 
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A Vimeo element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.bccampus.ca/engineeringsystems/?p=74 

Figure 10‑9 shows the resulting Bode plots. Note that in this video, the force is applied to 
mass , in the first try and then moved to mass according to the sketch shown in Figure 
10‑8. 

Figure 10-9 Bode plots for mechanical system given in section 10-6 

Media Attributions 

• Pierre Simon Laplace © James Posselwhite is licensed under a Public Domain license 
• Jean Baptiste Joseph Fourier © Louis-Léopold Boilly is licensed under a Public 

Domain license 
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• Hendrik Wade Bode is licensed under a Public Domain license 
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11. Miscellaneous Topics 

11.1         Overview 

This chapter discusses several topics pertinent to modelling and simulation of systems 
dynamics with focus on BG method. The reader can consult with these sections as 
independent topics or as supplementary to previously discussed topics. 

11.2         Energy and Power Conjugate Variables 

The product of conjugate variables related to a physical quantity should, by definition, 
give the corresponding quantity. In chapter 3, sections 3.2 and 3.5, we discussed the 
power variables (effort  and flow ) and their relations to the state variables (momentum 

 and displacement ). The product ( ) is power—so-called power variables—and 
integrating them, with respect to time, gives  and , respectively. Hence the  and  are 
called energy variables. However, further attention to the dimension of the product of 
the variables, i.e., ( ), indicates that the dimension of this quantity is not equivalent to 
that of energy. For example, in the SI system of units, we get . 
Therefore, we can call  and  conjugate power variables because the product ( ) is 
power. But this definition does not apply to the product ( ). Instead, the product ( ) or 
product ( ) can be defined as true conjugate energy variables. 

One can ask the question, what is the relationship among these variables? To investigate 
further and provide a possible answer, we consider the system energy function . 
This functional form is legitimate, since we know that the energy stored, in storage 
elements  and , is uniquely defined by state variables (see section 3.5). The total 
differential change of energy is then . In principle, . But the 

partial derivative  can be ignored at equilibrium state of the system, or when  and 
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are kept constant and energy is not changing with time
1
. Now, the total differential 

change of power  can be written as the time derivative of , or 
. But  and , the effort and flow in BG method, 

respectively. Therefore, we can write 

(11.1)   

Equation (11.1) clearly defines the relationship among power variables (effort  and flow ) 
and state variables (momentum  and displacement ) with respect to the power ( ) and 
energy ( ) of the system. Note that for a system, we can write this equation for each 
component and sum it up to get the relation for the system. 

From Equation (11.1), we can conclude that by dimensional analysis,  has the dimension 

of flow and  the dimension of effort, according to BG terminology. We define these 

quantities as system flow and effort, or (note that the partial derivative definition is 
explicitly shown here) 

(11.2)   

For example, considering a mass, represented by an -element, its kinetic energy can be 

written as , but , the velocity of the mass or the flow associated 

with the -element. Similarly, considering a mechanical spring with stiffness , 
represented by a -element, its potential energy can be written as , but 

, the force acting on the spring or the effort associated with the 

-element. Equation (11.2) applies analogously to mechanical, electrical, hydraulic, or 
thermal systems. Note that the energy function  relates to the Hamiltonian of the 
system, [13]. 

1. 
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11.3         Including Gravity in BG Models 

Forces due to gravitational acceleration  can be implemented in a BG model using effort 
source element . But it feeds power to the system when the assigned positive direction 
of displacement/velocity and the gravitational acceleration vector are in the same 
direction. Otherwise, the system feeds power into the gravity field, or loses power. In 
manually drawn BG, the direction of the power bond is drawn from  toward the system 
when the gravity and displacement directions are matched; otherwise, the power bond 
should be toward the  element. In 20-sim, however, it is not possible to draw a power 
bond pointing toward an  element because it is defined as a source element. Hence, a 
negative value of  is assigned to the associated parameter in the corresponding equation 
model, i.e., −9.81  (see Figure 11-1). 

Figure 11-1 Implementing gravity force for a BG model in 20-sim. 

11.4         Extracting System Equations from BG Models 

Although graphics of BG models can give us some insights into the dynamics of systems 
before actually solving the systems equations, having the mathematical model consisting 
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of a system of equations is the ultimate goal resulting from a BG model, or for that 
matter, any model. In the previous sections, we discussed that for a BG model with 
integral causalities, we can derive a system of ODEs in terms of state variables, i.e.,  and 
 (see section 3.5). For such a system, the number of equations,  is equal to the sum of 

number of  associated with – elements and number of  associated with the – 
elements. In other words, the system equations are coupled first-order ODEs explicitly 
given in terms of state variables and can be solved simultaneously using numerical 
schemes. The solution of these coupled equations is, obviously, easier to obtain for linear 
systems rather than it is for non-linear systems. 

In this section we discuss the procedure and guidelines of how to extract system 
equations from a BG model. For now, we assume that all storage elements (i.e., – and – 
elements) in the system are assigned with integral causality strokes. In the next section, 
we discuss cases when derivative causality and/or algebraic-loop situations may exist in 
a BG model, along with the definitions and resulting consequences for such systems 
equations. 

Referring to the energy management of a system, we have already discussed that the 
energy input to a system is partially stored in storages and the rest is dissipated through 
dissipaters. Therefore, the storage elements are key elements for studying the dynamics 
of any system. This principle also applies to the BG models, and we use it to extract 
system equations. 

The system equations can be given in a general form as  where , the 
vector representing time derivative of state variables,  , the vector representing the 
inputs, with indices  and . One can expand this functional to get 

(11.3)   

After building the BG model for a system, we ask the following two key questions, [21]: 

Q1: What does each component/element send to the system? 

Q2: What does the system send back to the storage components/elements? 
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Each question guides us to list the corresponding relations involving the state variables 
and performing some manipulations to write the system equations in terms of the state 
variables, using the general guideline of  on  and  on . The following steps can be 
used to extract the system equations: 

1. Build the BG model and assign causalities, with preferred integral causalities. 
2. Simplify the BG model, as far as possible. 
3. Assign labels as numbers to each power bond in the BG model. The order of 

numbering is arbitrary. 
4. Answer Q1, in terms of all efforts or flows input into the system. 
5. Answer Q2, in terms of all ’s on ’s and all ’s on ’s, or momenta (or their 

derivatives) associated with the inertia elements and displacements (or their 
derivatives) associated with the capacity elements. 

6. Apply constraints implemented by 1- and 0- junction elements and perform algebraic 
manipulations to write the system equations only in terms of state variables, as 
independent variables with inputs and components’ properties as parameters. 

Now, we present some worked-out examples to demonstrate the application of the above 
mentioned procedure. 

11.4.1         Example: System Equations for a Mechanical System 

For this example, we consider a mechanical system as shown in Figure 11-2. This systems 
has three DOF associated with three masses. The number of state variables is seven, 
associated with the storage elements, three masses, and four springs. The positive 
displacements are considered as shown, and tension forces are positive (+T). 

Figure 11-2 A mechanical system sketch 
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Solution: 

We first build the BG model, either manually or using the tools available through 20-sim, 
with all power bonds labelled, as shown in Figure 11-3. As mentioned, the labels are 
arbitrary; they merely help bookkeeping of the variables involved without affecting final 
solution of the system equations. Therefore, the state variables are:  associated 
with the momenta of the masses and  displacements of the mechanical 
springs. The corresponding power bonds to these elements are colour coded (see Figure 
11-3). The system equations are ODEs consisting of these state variables. To extract the 
system equations, we ask two key questions (see section 11.4) and list their corresponding 
answers, using the power bond labels and causality assignments in terms of BG symbols 
and , as follows: 

 

Figure 11-3 BG model for the mechanical system with labelled power bonds 

Q1: What does each component/element send to the system? 

The inputs to the system are from elements at the boundary of the system associated 
with bonds 1, 2, 4, 6, 10, 11, 13, 15, 17, and 19, as listed in Table 11-1. 
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Table 11-1 Inputs to the mechanical system by all elements—Q1 question 

Power bond label # System input/relation 

1 

2 

4 

6 

10 

11 

13 

15 

17 

19 

Next, we list the relations to answer the second question: 

Q2: What does the system send back to the storage components/elements? 

Here, we are only interested in storage elements, as shown by colour-coded bonds in 
Figure 11-3. For example, considering power bond number 2, the system sends an effort 
signal (or rate of momentum) to the -element representing the mass . Therefore, we 
can write . Similarly, considering power bond number 15, the system sends a 
flow signal (or rate of displacement) to the -element representing the spring . 
Therefore, we can write . Table 11-2 lists all relations corresponding to storage 
elements. 
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Table 11-2 Outputs from the mechanical system to all storage elements—Q2 question 

Power bond 
label 

#(element) 

Storage 
element/
relation 

Relations, using constraints 

2 ( ) 

4 ( ) 

6 ( ) 

10 ( ) 

13 ( ) 

15 ( ) 

19 ( ) 

In the relations listed in the third column of Table 11-2, we used the constraints resulted 
from 1- and 0-junctions and elements’ constitutive equations, and included the relations 
from Table 11-1. The final relations are given in bold. Finally, after some manipulations, we 
can write the system equations in terms of seven state variables in matrix form, as given 
in Equation (11.4). 
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(11.4)   

11.4.2         Example: System Equations for an Electrical System 

For this example, we consider the electrical system and BG model given in section 7.6 
and shown in Figure 7-8. The system has two loops. The number of state variables is 
three, associated with the storage elements, two inductors and one capacitor. 

Solution: 

Figure 11-4 shows the BG model with labelled power bonds for this system. The power 
bonds associated with storage elements, hence state variables, are colour coded. 
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Figure 11-4 BG model for the electrical system with labelled power 
bonds 

 

As mentioned, the labels are arbitrary and they merely help bookkeeping of the variables 
involved without affecting final solution of the system equations. The state variables are: 

 associated with the momenta of the inductors, and , electrical charge of the 
capacitor. The system equations are ODEs consisting of these variables. To extract the 
system equations, we ask two key questions (see section 11.4) and list their corresponding 
answers, using the power bond labels and causality assignments in terms of BG symbols 
e and f, as follows: 

Q1: What does each component/element send to the system? 

The inputs to the system are from elements at the boundary of the system associated 
with bonds 
1, 2, 3, 4, 5, and 6, as listed in Table 11-3. 
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Table 11-3 Inputs to the electrical system by all elements—Q1 question 

Power bond label System input/relation 

1 

2 

3 

4 

5 

6 

Next, we list the relations to answer the second question: 

Q2: What does the system send back to the storage components/elements? 

Here, we are only interested in storage elements, as shown by colour-coded bonds in 
Figure 11-4. For example, considering power bond number 2, the system sends an effort 
signal (or rate of momentum/flux linkage) to the -element representing the inductor . 
Therefore, we can write .  Similarly, considering power bond number 4, the 
system sends a flow signal (i.e., current or rate of charge) to the -element representing 
the capacitor . Therefore, we can write . Table 11-4 lists all relations corresponding 
to storage elements. 

Table 11-4 Outputs from the electrical system to all storage elements—Q2 question 

Power 
bond 
label 

(element) 

Storage 
element/
relation 

Relations, using constraints 

2 ( ) 

4 ( ) 

5 ( ) 
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Note that . In the relations listed in the third column of 

Table 11-4, we use the constraints resulted from 1- and 0-junctions and elements’ 
constitutive equations, and included the relations from Table 11-3. The final relations are 
given in bold. Finally, we can write the system equations, after some manipulations, in 
terms of three state variables in matrix form, as given in Equation (11.5). 

(11.5)   

11.5         Derivative Causality and Algebraic Loop: Implicit 
System Equations 

When assigning causality strokes to a BG model, three scenarios may occur [20], [21]. 
These scenarios are: 

1. all causality strokes are possible to be assigned as preferred integral causalities; 
2. at least one storage element ( – or – element) cannot be assigned with integral 

causality; instead derivative causality is forced upon the element; or 
3. there is more than one option for having a BG model with assigned integral 

causalities for the given system, a so-called algebraic loop. 

All of these scenarios are legitimate in terms of BG modelling rules, and with red colour-
coded causality strokes, 20-sim provides warnings, not errors, for scenarios 2 and 3 as 
listed above. As mentioned, scenario 1 is desirable and preferred. For this scenario, the 
system equations can be derived explicitly in terms of state variables as a system of 
coupled first-order ODEs. The solution of the system of equations provides the answers 
for the generalized momenta and displacements associated with storage elements. After 
having the solutions for system equations, we can calculate other desired quantities 
related to the system. 
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For the second scenario, the system equations are not independent, i.e., implicit. In other 
words, the equations related to the storage elements with integral causalities are 
independent; pertinent state variables can be uniquely calculated by solving these 
equations, simultaneously. But the equation related to the storage element with 
derivative causality is not independent; it relates algebraically to the independent 
equations. Therefore, the related state variable for the element with derivative causality 
can be calculated using the solution of those of the independent variables. The 
mathematical dependence of the equation for the derivatively causalled element 
indicates that the dynamics of the element are related to and defined by the other 
storage elements in the system. In addition, for the derivative causality case, we may 
have to force more 
than one element having non-integral causalities. 

For the third scenario, after assigning integral causalities for some of the elements in a 
definite manner, we face one or more options and have to make choices for one or more 
elements and arbitrarily assign them with causalities. The resulting system equations are 
again independent coupled ODEs and can be simultaneously solved to find their 
solutions. However, during the manipulation, we encounter an implicit equation (or 
equations) for a particular state variable (or its derivative) which is a function of inputs 
and itself as well—an algebraic loop. For linear systems/elements, the algebraic-loop 
situation does not pose a problem; however, for non-linear systems/components, this 
makes it more difficult to manipulate the equations to find their solutions. 

Note that an algebraic loop may occur at several levels and, hence, make it harder to 
manipulate the equations. This is when, after selecting an assigning causality stroke for 
an element arbitrarily, further selection(s) should be made to proceed. 

For both scenarios, derivative causalities and algebraic loop, the fact that they appear in a 
BG model is useful information about the system and/or assumptions made for the 
model, even before solving the resulting equations. In many cases, the modeller can 
improve the system with additional components, usually of the types of – element. 

As mentioned, 20-sim sends warning messages, but no error messages when derivative 
causalities and algebraic loop exist. The resulted system equations can be solved by 
solvers available, and the system simulation and design can proceed as usual. 

In further sections, we present some examples to demonstrate the derivative causality 
and algebraic-loop cases. 
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11.5.1         Example: BG Model with Derivative Causality 

We consider the BG model shown in Figure 11-5. The colour-coded bonds associated with 
two inertia -elements are forced, having non-integral causalities or derivative causality. 
This can be vividly explored by starting assigning causality from -element sending a 
flow signal to the adjacent 1-junction. Therefore, all other connecting bonds to this 
1-junction should have their causality strokes at the ports connecting to this 1-junction. 
This requirement forces the associated -element to have a derivative causality, or 
sending effort signal, instead of receiving it for being integrally causalled, to the 
1-junction. Similarly, the -element  is forced to have derivative causality. As a result, 
the momenta of these two -elements (i.e.  and  ) will depend on the remaining storage 
elements, i.e., -element  and -element , and can be calculated having the 
corresponding solutions for – and – elements. For further reading, consult with 
references cited as [5], [20], [21], and [30]. 

As mentioned, in 20-sim a warning message appears on the screen when derivative 
causality exists in the BG model. But the software solver tools take care of this and solve 
the system equations. This capability is useful for practical applications in design of the 
systems. 

Figure 11-5 A BG model with derivative causality, colour coded 
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11.5.2         Example: BG Model with Algebraic Loop 

We consider the BG model shown in Figure 11-6. Starting with the process of assigning 
causalities, we realize that the colour-coded bonds can’t be integrally assigned and 
present options. In other words, to proceed further with assigning causalities to the 
whole system’s BG model, we require to make a selection arbitrarily. Usually, the 
selection can be more easily made with -elements, since it can be assigned with neutral 
causality. For example, if we select the element  and assign causality stroke to it 
such that it sends a flow signal to the adjacent 1-junction, then the remaining bonds’ 
causality strokes can be assigned, as shown colour coded in Figure 11-7. Alternatively, 
element  or  could be selected as an option. The corresponding BG models 
and related assigned causalities are shown in Figure 11-8 and Figure 11-9, respectively. 
For further reading, consult with references cited as [5], [20], [21], and [30]. 

Figure 11-6 A BG model with algebraic-loop causality 

 

Figure 11-7 The BG model with removed algebraic loop—selecting 
R3 
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Figure 11-8 The BG model with removed algebraic 
loop—selecting R2 

 

Figure 11-9 The BG model with removed algebraic 
loop—selecting R1 

As mentioned, in 20-sim, a warning message appears on the screen when algebraic loop 
causality exists in the BG model. But the software solver tools take care of this and solve 
the system equations. This capability is useful for practical applications in design of the 
systems. 

11.6         Thermal Systems: Pseudo Bond Graph 

Thermal systems are unique in terms of BG modelling. They are closely analogous to 
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electrical systems. In practice, to analyze thermal systems, we use this analogy to build 
models as thermal networks, similar to electrical networks, [39], [40]. 

Considering heat conduction through a solid slab, e.g., the temperature difference 
(analogous to voltage) and heat flow rate  (analogous to electrical current) satisfy 

. The quantity  (analogous to electrical resistance) is thermal 

resistance with dimension [K/W], in , where,  is the length across which the 
applies;  is the cross-sectional area for heat flow, and  is the thermal conductivity of 
the material. Intuitively, this analogy suggests to consider temperature as the effort and 
the heat flow rate as the flow when building BG models for thermal systems. With this 
assumption at hand, the product ( ) would be considered as power variables, or the 
dimension of this quantity should be as of that for power. However, close examination of 
the dimension for the product ( ) gives its dimension as , or 

. Therefore, according to BG modelling rules, we cannot accept temperature 
and heat flow rate as conjugate power variables. This discrepancy leads us to call such a 
BG model a pseudo bond graph (pseudo BG), for which temperature is the effort and heat 
flow rate is the flow. This is acceptable as far as the thermal system is the only system 
involved and the modeller is aware of the fact that the “power” variables are not defined 
fully and correctly in the related thermal pseudo BG model. However, for multi-domain 
systems, the exchange of power between a thermal sub-system part and other domains 
of the system becomes problematic. 

The solution to this challenge comes from the second law of thermodynamics, which 
guides us to consider the flow in the BG model as the entropy rate, instead of heat flow 
rate. Recall that entropy is a state function, and for a reversible system, we have the 
relationship  for exchange of heat  and entropy  using temperature , 
[41]. Therefore, the heat flow rate is . The dimension of , the entropy rate, 
is then [ ]. Therefore the dimension of the power variables, or ( ) is [ ], as it 
should be; hence, we can accept the temperature as the effort and entropy rate as the 
flow in BG model for a thermal system. Table 11-5 shows the variables involved in Pseudo 
BG and BG models for thermal systems. 

Miscellaneous Topics  |  233



Table 11-5 Definitions for effort and flow for BG and pseudo BG models, thermal systems 

Model Effort Flow Power System 

Pseudo BG temperature heat flow rate ill-defined single thermal domain 

BG temperature entropy rate defined multi-domain 
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