51 LaTeX support – Julia Langham
Practice Set 15.3: Calculating weight based doses
Calculate the dose for each of the following medication orders:
- atropine 0.02 mg/kg/dose IV Q5 min x 2 doses prn, child weighs 14.5 kg
- morphine 0.08 mg/kg/dose PO Q3-4H PRN, child weighs 22 lbs
- naproxen 7 mg/kg/dose PO Q8-12H, child weighs 82 lbs
- digoxin 10 mcg/kg/24 hr PO once daily, child weighs 31 lbs
- octreotide 2 mcg/kg/dose IV bolus over 2-5 min, child weighs 24.6 kgs
- adenosine initial dose 0.1 mg/kg rapid IV within 1-2 sec, child weighs 16 lbs
- meropenem 20 mg/kg/dose IV Q8H, child weighs 12.7 kgs
- prednisone 0.25 mg/kg/dose PO BID, child weighs 47.6 lbs
- piperacillin-tazobactam 75 mg/kg/dose IV Q6H, child weighs 24.5 kg
- norepinephrine 0.1 mcg/kg/min, child weighs 13.7 kgs
Answers:
- 0.29 mg/dose
- 0.79 mg/dose
[latex]\dfrac{\text{0.08 mg}}{\text{1 kg}}\times\text{9.97 kg} = \text{0.79 mg/dose}[/latex]
- 260 mg/dose
[latex]\dfrac{\text{7 mg}}{\text{1 kg}}\times\text{37.19 kg} = \text{260 mg/dose}[/latex]
- 140.1 mcg/dose
[latex]\dfrac{\text{10 mcg}}{\text{1 kg}}\times\text{14.01 kg} = \text{140.1 mcg/dose}[/latex]
- 49.2 mcg/dose
- 0.73 mg/dose
[latex]\dfrac{\text{0.1 mg}}{\text{1 kg}}\times\text{7.25 kg} = \text{0.73 mg/dose}[/latex]
- 254 mg/dose
- 5.4 mg/dose
[latex]\dfrac{\text{0.25 mg}}{\text{1 kg}}\times\text{21.6 kg} = \text{5.4 mg/dose}[/latex]
- 1837.5 mg/dose
- 1.37 mcg/min
Practice Set 19.4: Calculating Median
Calculate the median of the following data sets:
- 12, 16, 18, 18, 18, 20, 22, 25, 27, 27, 29, 30
- 0, 0, 2, 5, 8, 9, 15, 17, 17, 32
- 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7
- 4, 6, 8, 12, 13, 16, 17, 19, 20
- 30, 32, 35, 37, 37, 40, 60, 77, 88, 99, 137, 150
Answers:
- 21
- 8.5
- 4
- 13
- 50
Recall the median is the value in the physical middle of the data set. The following formula can be used to calculate the location of the median. You might not have used a formula to find the location in these very small data sets.
In a data set with an odd number of values the median will equal the number at this location.
In a data set with an even number of values, the median is equivalent to the mean of the values to the right and left of this location.
Use the following formula to find the mean in a data set with an even number of values:
[latex]\begin{aligned}[t]
\text{value of median} &= \dfrac{{a}+{b}}{2} \\ \\
&= \dfrac{20+22}{2} \\ \\
&=21\end{aligned}[/latex][latex]\begin{aligned}[t]
\text{value of median} &= \dfrac{{a}+{b}}{2} \\ \\
&= \dfrac{8+9}{2} \\ \\
&=8.5\end{aligned}[/latex]
-
(1)
-
(2)
[latex]\begin{equation}\begin{split}
\text{value of median} &= \dfrac{{a}+{b}}{2} \\ \\
&= \dfrac{40+60}{2} \\ \\
&=50\end{split}\end{equation}[/latex]
- text1: “Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.”
- Text 3:
(3)
[latex]\begin{equation}\begin{split}
\text{value of median} &= \dfrac{{a}+{b}}{2} \\ \\
&= \dfrac{20+22}{2} \\ \\
&=21\end{split}\end{equation}[/latex] - text3: “Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?”
-
(4)
[latex]\begin{equation}\begin{split}
\text{value of median} &= \dfrac{{a}+{b}}{2} \\ \\
&= \dfrac{8+9}{2} \\ \\
&=8.5\end{split}\end{equation}[/latex] - “But I must explain to you how all this mistaken idea of denouncing pleasure and praising pain was born and I will give you a complete account of the system, and expound the actual teachings of the great explorer of the truth, the master-builder of human happiness. No one rejects, dislikes, or avoids pleasure itself, because it is pleasure, but because those who do not know how to pursue pleasure rationally encounter consequences that are extremely painful. Nor again is there anyone who loves or pursues or desires to obtain pain of itself, because it is pain, but because occasionally circumstances occur in which toil and pain can procure him some great pleasure. To take a trivial example, which of us ever undertakes laborious physical exercise, except to obtain some advantage from it? But who has any right to find fault with a man who chooses to enjoy a pleasure that has no annoying consequences, or one who avoids a pain that produces no resultant pleasure?”
2−6
.