"

26 Testing phantom

 

\begin{array}{ccccccc}{\text{front}}=L\timesW\hfill & & & {\text{side}}=L\timesW\hfill & & & {\text{top}}=L\timesW\hfill \\ {\text{front}}=4\cdot3\hfill & & & {\text{side}}=2\cdot3\hfill & & & {\text{top}}=4\cdot2\hfill \\ {\text{front}}=12\hfill & & & {\text{side}}=6\hfill & & & {\text{top}}=8\hfill \end{array}

\begin{array}{ccccccc}{A}_{\text{front}}=L\timesW\hfill & & & {A}_{\text{side}}=L\timesW\hfill & & & {A}_{\text{top}}=L\timesW\hfill \\ {A}_{\text{front}}=4\cdot3\hfill & & & {A}_{\text{side}}=2\cdot3\hfill & & & {A}_{\text{top}}=4\cdot2\hfill \\ {A}_{\text{front}}=12\hfill & & & {A}_{\text{side}}=6\hfill & & & {A}_{\text{top}}=8\hfill \end{array}

96°°

 

11\phantom{\rule{1.5em}{0ex}}

22\phantom{\rule{1.5em}{0ex}}

33\phantom{\rule{1.5em}{0ex}}

aa\phantom{\rule{1.5em}{0ex}}

•·

 

The expressions < a<b \text{ and } a\phantom{\rule{0.2em}{0ex}} > b{\rule{0.2em}{0ex}}

and \text{ and} \text{and} \phantom{\rule{0.2em}{0ex}}

 

The expressions a<b\phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}a > \phantom{\rule{0.2em}{0ex}}b can be read from left-to-right or right-to-left, though in English we usually read from left-to-right. In general,

 

 

\begin{array}{l}a<b\phantom{\rule{0.2em}{0ex}}\text{is equivalent to}\phantom{\rule{0.2em}{0ex}}b>a.\phantom{\rule{2em}{0ex}}\text{For example,}\phantom{\rule{0.2em}{0ex}}7<11\phantom{\rule{0.2em}{0ex}}\text{is equivalent to}\phantom{\rule{0.2em}{0ex}}11>7.\hfill \\ a>b\phantom{\rule{0.2em}{0ex}}\text{is equivalent to}\phantom{\rule{0.2em}{0ex}}b<a.\phantom{\rule{2em}{0ex}}\text{For example,}\phantom{\rule{0.2em}{0ex}}17>4\phantom{\rule{0.2em}{0ex}}\text{is equivalent to}\phantom{\rule{0.2em}{0ex}}4<17.\hfill \end{array}

\begin{array}{l}a<b\phantom{\rule{0.2em}{0ex}}\text{is equivalent to}\phantom{\rule{0.2em}{0ex}}b>a.\phantom{\rule{2em}{0ex}}\text{For example,}\phantom{\rule{0.2em}{0ex}}7<11\phantom{\rule{0.2em}{0ex}}\text{is equivalent to}\phantom{\rule{0.2em}{0ex}}11>7.\hfill \\ a>b\phantom{\rule{0.2em}{0ex}}\text{is equivalent to}\phantom{\rule{0.2em}{0ex}}b<a.\phantom{\rule{2em}{0ex}}\text{For example,}\phantom{\rule{0.2em}{0ex}}17>4\phantom{\rule{0.2em}{0ex}}\text{is equivalent to}\phantom{\rule{0.2em}{0ex}}4<17.\hfill \end{array}

License

Icon for the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Harper Book Title Copyright © by hfriedman is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, except where otherwise noted.

Share This Book