59 Add, Subtract, and Multiply Radical Expressions

Learning Objectives

By the end of this section, you will be able to:

  • Add and subtract radical expressions
  • Multiply radical expressions
  • Use polynomial multiplication to multiply radical expressions

Before you get started, take this readiness quiz.

  1. Add: 3{x}^{2}+9x-5-\left({x}^{2}-2x+3\right).

    If you missed this problem, review (Figure).

  2. Simplify: \left(2+a\right)\left(4-a\right).

    If you missed this problem, review (Figure).

  3. Simplify: {\left(9-5y\right)}^{2}.

    If you missed this problem, review (Figure).

Add and Subtract Radical Expressions

Adding radical expressions with the same index and the same radicand is just like adding like terms. We call radicals with the same index and the same radicand like radicals to remind us they work the same as like terms.

Like Radicals

Like radicals are radical expressions with the same index and the same radicand.

We add and subtract like radicals in the same way we add and subtract like terms. We know that 3x+8x is 11x. Similarly we add 3\sqrt{x}+8\sqrt{x} and the result is 11\sqrt{x}.

Think about adding like terms with variables as you do the next few examples. When you have like radicals, you just add or subtract the coefficients. When the radicals are not like, you cannot combine the terms.

Simplify: 2\phantom{\rule{0.2em}{0ex}}\sqrt{2}-7\phantom{\rule{0.2em}{0ex}}\sqrt{2} 5\phantom{\rule{0.2em}{0ex}}\sqrt[3]{y}+4\phantom{\rule{0.2em}{0ex}}\sqrt[3]{y} 7\phantom{\rule{0.2em}{0ex}}\sqrt[4]{x}-2\phantom{\rule{0.2em}{0ex}}\sqrt[4]{y}.

\begin{array}{cccc}& & & \hfill \phantom{\rule{5em}{0ex}}2\phantom{\rule{0.2em}{0ex}}\sqrt{2}-7\phantom{\rule{0.2em}{0ex}}\sqrt{2}\hfill \\ \begin{array}{c}\text{Since the radicals are like, we subtract the}\hfill \\ \text{coefficients.}\hfill \end{array}\hfill & & & \hfill \phantom{\rule{5em}{0ex}}-5\phantom{\rule{0.2em}{0ex}}\sqrt{2}\hfill \end{array}

\begin{array}{cccc}& & & \hfill \phantom{\rule{7em}{0ex}}5\phantom{\rule{0.2em}{0ex}}\sqrt[3]{y}+4\phantom{\rule{0.2em}{0ex}}\sqrt[3]{y}\hfill \\ \begin{array}{c}\text{Since the radicals are like, we add the}\hfill \\ \text{coefficients.}\hfill \end{array}\hfill & & & \hfill \phantom{\rule{7em}{0ex}}9\phantom{\rule{0.2em}{0ex}}\sqrt[3]{y}\hfill \end{array}

\begin{array}{cccc}& & & \hfill \phantom{\rule{21.5em}{0ex}}7\phantom{\rule{0.2em}{0ex}}\sqrt[4]{x}-2\phantom{\rule{0.2em}{0ex}}\sqrt[4]{y}\hfill \end{array}

The indices are the same but the radicals are different. These are not like radicals. Since the radicals are not like, we cannot subtract them.

Simplify: 8\sqrt{2}-9\sqrt{2} 4\sqrt[3]{x}+7\sqrt[3]{x} 3\sqrt[4]{x}-5\sqrt[4]{y}.

\text{−}\sqrt{2}11\sqrt[3]{x}

3\sqrt[4]{x}-5\sqrt[4]{y}

Simplify: 5\sqrt{3}-9\sqrt{3} 5\sqrt[3]{y}+3\sqrt[3]{y} 5\sqrt[4]{m}-2\sqrt[3]{m}.

-4\sqrt{3}8\sqrt[3]{y}

5\sqrt[4]{m}-2\sqrt[3]{m}

For radicals to be like, they must have the same index and radicand. When the radicands contain more than one variable, as long as all the variables and their exponents are identical, the radicands are the same.

Simplify: 2\phantom{\rule{0.2em}{0ex}}\sqrt{5n}-6\phantom{\rule{0.2em}{0ex}}\sqrt{5n}+4\phantom{\rule{0.2em}{0ex}}\sqrt{5n} \sqrt[4]{3xy}+5\phantom{\rule{0.2em}{0ex}}\sqrt[4]{3xy}-4\phantom{\rule{0.2em}{0ex}}\sqrt[4]{3xy}.

\begin{array}{cccc}& & & \hfill \phantom{\rule{4em}{0ex}}2\phantom{\rule{0.2em}{0ex}}\sqrt{5n}-6\phantom{\rule{0.2em}{0ex}}\sqrt{5n}+4\phantom{\rule{0.2em}{0ex}}\sqrt{5n}\hfill \\ \text{Since the radicals are like, we combine them.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}0\phantom{\rule{0.2em}{0ex}}\sqrt{5n}\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}0\hfill \end{array}

\begin{array}{cccc}& & & \hfill \phantom{\rule{4em}{0ex}}\sqrt[4]{3xy}+5\phantom{\rule{0.2em}{0ex}}\sqrt[4]{3xy}-4\phantom{\rule{0.2em}{0ex}}\sqrt[4]{3xy}\hfill \\ \text{Since the radicals are like, we combine them.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}2\phantom{\rule{0.2em}{0ex}}\sqrt[4]{3xy}\hfill \end{array}

Simplify: \sqrt{7x}-7\phantom{\rule{0.2em}{0ex}}\sqrt{7x}+4\phantom{\rule{0.2em}{0ex}}\sqrt{7x} 4\phantom{\rule{0.2em}{0ex}}\sqrt[4]{5xy}+2\phantom{\rule{0.2em}{0ex}}\sqrt[4]{5xy}-7\phantom{\rule{0.2em}{0ex}}\sqrt[4]{5xy}.

-2\sqrt{7x}\text{−}\sqrt[4]{5xy}

Simplify: 4\phantom{\rule{0.2em}{0ex}}\sqrt{3y}-7\phantom{\rule{0.2em}{0ex}}\sqrt{3y}+2\phantom{\rule{0.2em}{0ex}}\sqrt{3y} 6\phantom{\rule{0.2em}{0ex}}\sqrt[3]{7mn}+\sqrt[3]{7mn}-4\phantom{\rule{0.2em}{0ex}}\sqrt[3]{7mn}.

\text{−}\sqrt{3y}3\sqrt[3]{7mn}

Remember that we always simplify radicals by removing the largest factor from the radicand that is a power of the index. Once each radical is simplified, we can then decide if they are like radicals.

Simplify: \sqrt{20}+3\sqrt{5} \sqrt[3]{24}-\sqrt[3]{375} \frac{1}{2}\sqrt[4]{48}-\frac{2}{3}\sqrt[4]{243}.

\begin{array}{cccc}& & & \hfill \phantom{\rule{8em}{0ex}}\sqrt{20}+3\phantom{\rule{0.2em}{0ex}}\sqrt{5}\hfill \\ \text{Simplify the radicals, when possible.}\hfill & & & \hfill \phantom{\rule{8em}{0ex}}\sqrt{4}·\sqrt{5}+3\phantom{\rule{0.2em}{0ex}}\sqrt{5}\hfill \\ & & & \hfill \phantom{\rule{8em}{0ex}}2\phantom{\rule{0.2em}{0ex}}\sqrt{5}+3\phantom{\rule{0.2em}{0ex}}\sqrt{5}\hfill \\ \text{Combine the like radicals.}\hfill & & & \hfill \phantom{\rule{8em}{0ex}}5\phantom{\rule{0.2em}{0ex}}\sqrt{5}\hfill \end{array}

\begin{array}{cccc}& & & \hfill \phantom{\rule{12em}{0ex}}\sqrt[3]{24}-\sqrt[3]{375}\hfill \\ \text{Simplify the radicals.}\hfill & & & \hfill \phantom{\rule{12em}{0ex}}\sqrt[3]{8}·\sqrt[3]{3}-\sqrt[3]{125}·\sqrt[3]{3}\hfill \\ & & & \hfill \phantom{\rule{12em}{0ex}}2\phantom{\rule{0.2em}{0ex}}\sqrt[3]{3}-5\phantom{\rule{0.2em}{0ex}}\sqrt[3]{3}\hfill \\ \text{Combine the like radicals.}\hfill & & & \hfill \phantom{\rule{12em}{0ex}}-3\sqrt[3]{3}\hfill \end{array}

\begin{array}{cccc}& & & \hfill \phantom{\rule{11em}{0ex}}\frac{1}{2}\phantom{\rule{0.2em}{0ex}}\sqrt[4]{48}-\frac{2}{3}\phantom{\rule{0.2em}{0ex}}\sqrt[4]{243}\hfill \\ \text{Simplify the radicals.}\hfill & & & \hfill \phantom{\rule{11em}{0ex}}\frac{1}{2}\phantom{\rule{0.2em}{0ex}}\sqrt[4]{16}·\sqrt[4]{3}-\frac{2}{3}\phantom{\rule{0.2em}{0ex}}\sqrt[4]{81}·\sqrt[4]{3}\hfill \\ & & & \hfill \phantom{\rule{11em}{0ex}}\frac{1}{2}·2·\sqrt[4]{3}-\frac{2}{3}·3·\sqrt[4]{3}\hfill \\ & & & \hfill \phantom{\rule{11em}{0ex}}\sqrt[4]{3}-2\phantom{\rule{0.2em}{0ex}}\sqrt[4]{3}\hfill \\ \text{Combine the like radicals.}\hfill & & & \hfill \phantom{\rule{11em}{0ex}}\text{−}\sqrt[4]{3}\hfill \end{array}

Simplify: \sqrt{18}+6\phantom{\rule{0.2em}{0ex}}\sqrt{2} 6\phantom{\rule{0.2em}{0ex}}\sqrt[3]{16}-2\phantom{\rule{0.2em}{0ex}}\sqrt[3]{250} \frac{2}{3}\phantom{\rule{0.2em}{0ex}}\sqrt[3]{81}-\frac{1}{2}\phantom{\rule{0.2em}{0ex}}\sqrt[3]{24}.

9\sqrt{2}2\sqrt[3]{2}\sqrt[3]{3}

Simplify: \sqrt{27}+4\phantom{\rule{0.2em}{0ex}}\sqrt{3} 4\phantom{\rule{0.2em}{0ex}}\sqrt[3]{5}-7\phantom{\rule{0.2em}{0ex}}\sqrt[3]{40} \frac{1}{2}\phantom{\rule{0.2em}{0ex}}\sqrt[3]{128}-\frac{5}{3}\phantom{\rule{0.2em}{0ex}}\sqrt[3]{54}.

7\sqrt{3}-10\sqrt[3]{5}-3\sqrt[3]{2}

In the next example, we will remove both constant and variable factors from the radicals. Now that we have practiced taking both the even and odd roots of variables, it is common practice at this point for us to assume all variables are greater than or equal to zero so that absolute values are not needed. We will use this assumption thoughout the rest of this chapter.

Simplify: 9\sqrt{50{m}^{2}}-6\sqrt{48{m}^{2}} \sqrt[3]{54{n}^{5}}-\sqrt[3]{16{n}^{5}}.

\begin{array}{cccc}& & & \hfill \phantom{\rule{4.5em}{0ex}}9\phantom{\rule{0.2em}{0ex}}\sqrt{50{m}^{2}}-6\phantom{\rule{0.2em}{0ex}}\sqrt{48{m}^{2}}\hfill \\ \text{Simplify the radicals.}\hfill & & & \hfill \phantom{\rule{4.5em}{0ex}}9\phantom{\rule{0.2em}{0ex}}\sqrt{25{m}^{2}}·\sqrt{2}-6\phantom{\rule{0.2em}{0ex}}\sqrt{16{m}^{2}}·\sqrt{3}\hfill \\ & & & \hfill \phantom{\rule{4.5em}{0ex}}9·5m·\sqrt{2}-6·4m·\sqrt{3}\hfill \\ & & & \hfill \phantom{\rule{4.5em}{0ex}}45m\phantom{\rule{0.2em}{0ex}}\sqrt{2}-24m\phantom{\rule{0.2em}{0ex}}\sqrt{3}\hfill \\ \begin{array}{c}\text{The radicals are not like and so cannot be}\hfill \\ \text{combined.}\hfill \end{array}\hfill & & & \end{array}

\begin{array}{cccc}& & & \hfill \phantom{\rule{11em}{0ex}}\sqrt[3]{54{n}^{5}}-\sqrt[3]{16{n}^{5}}\hfill \\ \text{Simplify the radicals.}\hfill & & & \hfill \phantom{\rule{11em}{0ex}}\sqrt[3]{27{n}^{3}}·\sqrt[3]{2{n}^{2}}-\sqrt[3]{8{n}^{3}}·\sqrt[3]{2{n}^{2}}\hfill \\ & & & \hfill \phantom{\rule{11em}{0ex}}3n\phantom{\rule{0.2em}{0ex}}\sqrt[3]{2{n}^{2}}-2n\phantom{\rule{0.2em}{0ex}}\sqrt[3]{2{n}^{2}}\hfill \\ \text{Combine the like radicals.}\hfill & & & \hfill \phantom{\rule{11em}{0ex}}n\phantom{\rule{0.2em}{0ex}}\sqrt[3]{2{n}^{2}}\hfill \end{array}

Simplify: \sqrt{32{m}^{7}}-\sqrt{50{m}^{7}} \sqrt[3]{135{x}^{7}}-\sqrt[3]{40{x}^{7}}.

\text{−}{m}^{3}\sqrt{2m}{x}^{2}\sqrt[3]{5x}

Simplify: \sqrt{27{p}^{3}}-\sqrt{48{p}^{3}} \sqrt[3]{256{y}^{5}}-\sqrt[3]{32{n}^{5}}.

\text{−}p\sqrt{3p}

4y\sqrt[3]{4{y}^{2}}-2n\sqrt[3]{4{n}^{2}}

Multiply Radical Expressions

We have used the Product Property of Roots to simplify square roots by removing the perfect square factors. We can use the Product Property of Roots ‘in reverse’ to multiply square roots. Remember, we assume all variables are greater than or equal to zero.

We will rewrite the Product Property of Roots so we see both ways together.

Product Property of Roots

For any real numbers, \sqrt[n]{a} and \sqrt[n]{b}, and for any integer n\ge 2

\sqrt[n]{ab}=\sqrt[n]{a}·\sqrt[n]{b}\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}\sqrt[n]{a}·\sqrt[n]{b}=\sqrt[n]{ab}

When we multiply two radicals they must have the same index. Once we multiply the radicals, we then look for factors that are a power of the index and simplify the radical whenever possible.

Multiplying radicals with coefficients is much like multiplying variables with coefficients. To multiply 4x·3y we multiply the coefficients together and then the variables. The result is 12xy. Keep this in mind as you do these examples.

Simplify: \left(6\phantom{\rule{0.2em}{0ex}}\sqrt{2}\right)\left(3\phantom{\rule{0.2em}{0ex}}\sqrt{10}\right) \left(-5\phantom{\rule{0.2em}{0ex}}\sqrt[3]{4}\right)\left(-4\phantom{\rule{0.2em}{0ex}}\sqrt[3]{6}\right).

\begin{array}{cccc}& & & \hfill \phantom{\rule{4.5em}{0ex}}\left(6\phantom{\rule{0.2em}{0ex}}\sqrt{2}\right)\left(3\phantom{\rule{0.2em}{0ex}}\sqrt{10}\right)\hfill \\ \text{Multiply using the Product Property.}\hfill & & & \hfill \phantom{\rule{4.5em}{0ex}}18\phantom{\rule{0.2em}{0ex}}\sqrt{20}\hfill \\ \text{Simplify the radical.}\hfill & & & \hfill \phantom{\rule{4.5em}{0ex}}18\phantom{\rule{0.2em}{0ex}}\sqrt{4}·\sqrt{5}\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{4.5em}{0ex}}18·2·\sqrt{5}\hfill \\ & & & \hfill \phantom{\rule{4.5em}{0ex}}36\phantom{\rule{0.2em}{0ex}}\sqrt{5}\hfill \end{array}

\begin{array}{cccc}& & & \hfill \phantom{\rule{4em}{0ex}}\left(-5\phantom{\rule{0.2em}{0ex}}\sqrt[3]{4}\right)\left(-4\phantom{\rule{0.2em}{0ex}}\sqrt[3]{6}\right)\hfill \\ \text{Multiply using the Product Property.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}20\phantom{\rule{0.2em}{0ex}}\sqrt[3]{24}\hfill \\ \text{Simplify the radical.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}20\phantom{\rule{0.2em}{0ex}}\sqrt[3]{8}·\sqrt[3]{3}\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}20·2·\sqrt[3]{3}\hfill \\ & & & \hfill \phantom{\rule{4em}{0ex}}40\phantom{\rule{0.2em}{0ex}}\sqrt[3]{3}\hfill \end{array}

Simplify: \left(3\sqrt{2}\right)\left(2\sqrt{30}\right) \left(2\phantom{\rule{0.2em}{0ex}}\sqrt[3]{18}\right)\left(-3\phantom{\rule{0.2em}{0ex}}\sqrt[3]{6}\right).

12\sqrt{15}-18\sqrt[3]{2}

Simplify: \left(3\sqrt{3}\right)\left(3\sqrt{6}\right) \left(-4\phantom{\rule{0.2em}{0ex}}\sqrt[3]{9}\right)\left(3\phantom{\rule{0.2em}{0ex}}\sqrt[3]{6}\right).

27\sqrt{2}-36\sqrt[3]{2}

We follow the same procedures when there are variables in the radicands.

Simplify: \left(10\phantom{\rule{0.2em}{0ex}}\sqrt{6{p}^{3}}\right)\left(4\phantom{\rule{0.2em}{0ex}}\sqrt{3p}\right) \left(2\phantom{\rule{0.2em}{0ex}}\sqrt[4]{20{y}^{2}}\right)\left(3\phantom{\rule{0.2em}{0ex}}\sqrt[4]{28{y}^{3}}\right).

\begin{array}{cccc}& & & \hfill \phantom{\rule{4em}{0ex}}\left(10\sqrt{6{p}^{3}}\right)\left(4\sqrt{3p}\right)\hfill \\ \text{Multiply.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}40\sqrt{18{p}^{4}}\hfill \\ \text{Simplify the radical.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}40\sqrt{9{p}^{4}}·\sqrt{2}\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}40·3{p}^{2}·\sqrt{3}\hfill \\ & & & \hfill \phantom{\rule{4em}{0ex}}120{p}^{2}\sqrt{3}\hfill \end{array}

When the radicands involve large numbers, it is often advantageous to factor them in order to find the perfect powers.

\begin{array}{cccc}& & & \hfill \phantom{\rule{4em}{0ex}}\left(2\sqrt[4]{20{y}^{2}}\right)\left(3\sqrt[4]{28{y}^{3}}\right)\hfill \\ \text{Multiply.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}6\phantom{\rule{0.2em}{0ex}}\sqrt[4]{4·5·4·7{y}^{5}}\hfill \\ \text{Simplify the radical.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}6\phantom{\rule{0.2em}{0ex}}\sqrt[4]{16{y}^{4}}·\sqrt[4]{35{y}^{}}\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}6·2y\phantom{\rule{0.2em}{0ex}}\sqrt[4]{35{y}^{}}\hfill \\ \text{Multiply.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}12y\phantom{\rule{0.2em}{0ex}}\sqrt[4]{35{y}^{}}\hfill \end{array}

Simplify: \left(6\sqrt{6{x}^{2}}\right)\left(8\sqrt{30{x}^{4}}\right) \left(-4\phantom{\rule{0.2em}{0ex}}\sqrt[4]{12{y}^{3}}\right)\left(\text{−}\sqrt[4]{8{y}^{3}}\right).

36{x}^{3}\sqrt{5}8y\sqrt[4]{3{y}^{2}}

Simplify: \left(2\sqrt{6{y}^{4}}\right)\left(12\sqrt{30y}\right) \left(-4\phantom{\rule{0.2em}{0ex}}\sqrt[4]{9{a}^{3}}\right)\left(3\phantom{\rule{0.2em}{0ex}}\sqrt[4]{27{a}^{2}}\right).

144{y}^{2}\sqrt{5y}-36\sqrt[4]{3a}

Use Polynomial Multiplication to Multiply Radical Expressions

In the next a few examples, we will use the Distributive Property to multiply expressions with radicals. First we will distribute and then simplify the radicals when possible.

Simplify: \sqrt{6\phantom{\rule{0.2em}{0ex}}}\left(\sqrt{2}+\sqrt{18}\right) \sqrt[3]{9}\phantom{\rule{0.2em}{0ex}}\left(5-\sqrt[3]{18}\right).

\begin{array}{cccc}& & & \hfill \phantom{\rule{6em}{0ex}}\sqrt{6}\phantom{\rule{0.2em}{0ex}}\left(\sqrt{2}+\sqrt{18}\right)\hfill \\ \text{Multiply.}\hfill & & & \hfill \phantom{\rule{6em}{0ex}}\sqrt{12}+\sqrt{108}\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{6em}{0ex}}\sqrt{4}·\sqrt{3}+\sqrt{36}·\sqrt{3}\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{6em}{0ex}}2\sqrt{3}+6\sqrt{3}\hfill \\ \text{Combine like radicals.}\hfill & & & \hfill \phantom{\rule{6em}{0ex}}8\sqrt{3}\hfill \end{array}

\begin{array}{cccc}& & & \hfill \phantom{\rule{12em}{0ex}}\sqrt[3]{9}\phantom{\rule{0.2em}{0ex}}\left(5-\sqrt[3]{18}\right)\hfill \\ \text{Distribute.}\hfill & & & \hfill \phantom{\rule{12em}{0ex}}5\sqrt[3]{9}-\sqrt[3]{162}\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{12em}{0ex}}5\phantom{\rule{0.2em}{0ex}}\sqrt[3]{9}-\sqrt[3]{27}·\sqrt[3]{6}\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{12em}{0ex}}5\phantom{\rule{0.2em}{0ex}}\sqrt[3]{9}-3\phantom{\rule{0.2em}{0ex}}\sqrt[3]{6}\hfill \end{array}

Simplify: \sqrt{6}\left(1+3\sqrt{6}\right) \sqrt[3]{4}\left(-2-\sqrt[3]{6}\right).

18+\sqrt{6}-2\sqrt[3]{4}-2\sqrt[3]{3}

Simplify: \sqrt{8}\left(2-5\sqrt{8}\right) \sqrt[3]{3}\left(\text{−}\sqrt[3]{9}-\sqrt[3]{6}\right).

-40+4\sqrt{2}-3-\sqrt[3]{18}

When we worked with polynomials, we multiplied binomials by binomials. Remember, this gave us four products before we combined any like terms. To be sure to get all four products, we organized our work—usually by the FOIL method.

Simplify: \left(3-2\sqrt{7}\right)\left(4-2\sqrt{7}\right) \left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x}+4\right).

\begin{array}{cccc}& & & \hfill \phantom{\rule{4em}{0ex}}\left(3-2\sqrt{7}\right)\left(4-2\sqrt{7}\right)\hfill \\ \text{Multiply}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}12-6\sqrt{7}-8\sqrt{7}+4·7\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}12-6\sqrt{7}-8\sqrt{7}+28\hfill \\ \text{Combine like terms.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}40-14\sqrt{7}\hfill \end{array}

\begin{array}{cccc}& & & \hfill \phantom{\rule{4em}{0ex}}\left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x}+4\right)\hfill \\ \text{Multiply.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}\sqrt[3]{{x}^{2}}+4\phantom{\rule{0.2em}{0ex}}\sqrt[3]{x}-2\phantom{\rule{0.2em}{0ex}}\sqrt[3]{x}-8\hfill \\ \text{Combine like terms.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}\sqrt[3]{{x}^{2}}+2\phantom{\rule{0.2em}{0ex}}\sqrt[3]{x}-8\hfill \end{array}

Simplify: \left(6-3\sqrt{7}\right)\left(3+4\sqrt{7}\right) \left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x}-3\right).

-66+15\sqrt{7}

\sqrt[3]{{x}^{2}}-5\sqrt[3]{x}+6

Simplify: \left(2-3\sqrt{11}\right)\left(4-\sqrt{11}\right) \left(\sqrt[3]{x}+1\right)\left(\sqrt[3]{x}+3\right).

41-14\sqrt{11}

\sqrt[3]{{x}^{2}}+4\sqrt[3]{x}+3

Simplify: \left(3\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}+4\sqrt{5}\right).

\begin{array}{cccc}& & & \hfill \phantom{\rule{4em}{0ex}}\left(3\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}+4\sqrt{5}\right)\hfill \\ \text{Multiply.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}3·2+12\sqrt{10}-\sqrt{10}-4·5\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}6+12\sqrt{10}-\sqrt{10}-20\hfill \\ \text{Combine like terms.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}-14+11\sqrt{10}\hfill \end{array}

Simplify: \left(5\sqrt{3}-\sqrt{7}\right)\left(\sqrt{3}+2\sqrt{7}\right)

1+9\sqrt{21}

Simplify: \left(\sqrt{6}-3\sqrt{8}\right)\left(2\sqrt{6}+\sqrt{8}\right)

-12-20\sqrt{3}

Recognizing some special products made our work easier when we multiplied binomials earlier. This is true when we multiply radicals, too. The special product formulas we used are shown here.

Special Products
*** QuickLaTeX cannot compile formula:
\begin{array}{}\\ \\ \hfill \mathbf{\text{Binomial Squares}}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}\mathbf{\text{Product of Conjugates}}\hfill \\ \hfill {\left(a+b\right)}^{2}={a}^{2}+2ab+{b}^{2}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}\left(a+b\right)\left(a-b\right)={a}^{2}-{b}^{2}\hfill \\ \hfill {\left(a-b\right)}^{2}={a}^{2}-2ab+{b}^{2}\hfill & & & \end{array}

*** Error message:
Missing # inserted in alignment preamble.
leading text: $\begin{array}{}
\mathbf allowed only in math mode.
leading text: ... \\ \hfill \mathbf{\text{Binomial Squares}}
Extra alignment tab has been changed to \cr.
leading text: ...ll \mathbf{\text{Binomial Squares}}\hfill &
Extra alignment tab has been changed to \cr.
leading text: ... \mathbf{\text{Binomial Squares}}\hfill & &
Extra alignment tab has been changed to \cr.
leading text: ...mathbf{\text{Binomial Squares}}\hfill & & &
\mathbf allowed only in math mode.
leading text: ...{0ex}}\mathbf{\text{Product of Conjugates}}
Missing $ inserted.
leading text: ...duct of Conjugates}}\hfill \\ \hfill {\left
Extra }, or forgotten $.
leading text: ...ugates}}\hfill \\ \hfill {\left(a+b\right)}
Missing } inserted.

We will use the special product formulas in the next few examples. We will start with the Product of Binomial Squares Pattern.

Simplify: {\left(2+\sqrt{3}\right)}^{2} {\left(4-2\sqrt{5}\right)}^{2}.

Be sure to include the 2ab term when squaring a binomial.

.
Multiply, using the Product of Binomial Squares Pattern. .
Simplify. .
Combine like terms. .

.
Multiply, using the Product of Binomial Squares Pattern. .
Simplify. .
.
Combine like terms. .

Simplify: {\left(10+\sqrt{2}\right)}^{2} {\left(1+3\sqrt{6}\right)}^{2}.

102+20\sqrt{2}55+6\sqrt{6}

Simplify: {\left(6-\sqrt{5}\right)}^{2} {\left(9-2\sqrt{10}\right)}^{2}.

41-12\sqrt{5}

121-36\sqrt{10}

In the next example, we will use the Product of Conjugates Pattern. Notice that the final product has no radical.

Simplify: \left(5-2\sqrt{3}\right)\left(5+2\sqrt{3}\right).

.
Multiply, using the Product of Conjugates Pattern. .
Simplify. .
.

Simplify: \left(3-2\sqrt{5}\right)\left(3+2\sqrt{5}\right)

-11

Simplify: \left(4+5\sqrt{7}\right)\left(4-5\sqrt{7}\right).

-159

Access these online resources for additional instruction and practice with adding, subtracting, and multiplying radical expressions.

Key Concepts

  • Product Property of Roots
    • For any real numbers, \sqrt[n]{a} and \sqrt[n]{b}, and for any integer n\ge 2

      \sqrt[n]{ab}=\sqrt[n]{a}·\sqrt[n]{b} and \sqrt[n]{a}·\sqrt[n]{b}=\sqrt[n]{ab}

  • Special Products

    \begin{array}{cccccc}\hfill \mathbf{\text{Binomial Squares}}\hfill & & & & & \hfill \mathbf{\text{Product of Conjugates}}\hfill \\ \hfill {\left(a+b\right)}^{2}={a}^{2}+2ab+{b}^{2}\hfill & & & & & \hfill \left(a+b\right)\left(a-b\right)={a}^{2}-{b}^{2}\hfill \\ \hfill {\left(a-b\right)}^{2}={a}^{2}-2ab+{b}^{2}\hfill & & & & & \end{array}

Practice Makes Perfect

Add and Subtract Radical Expressions

In the following exercises, simplify.

8\sqrt{2}-5\sqrt{2}

5\phantom{\rule{0.2em}{0ex}}\sqrt[3]{m}+2\phantom{\rule{0.2em}{0ex}}\sqrt[3]{m}

8\phantom{\rule{0.2em}{0ex}}\sqrt[4]{m}-2\phantom{\rule{0.2em}{0ex}}\sqrt[4]{n}

3\sqrt{2}7\sqrt[3]{m}6\sqrt[4]{m}

7\sqrt{2}-3\sqrt{2}

7\phantom{\rule{0.2em}{0ex}}\sqrt[3]{p}+2\phantom{\rule{0.2em}{0ex}}\sqrt[3]{p}

5\phantom{\rule{0.2em}{0ex}}\sqrt[3]{x}-3\phantom{\rule{0.2em}{0ex}}\sqrt[3]{x}

3\sqrt{5}+6\sqrt{5}

9\phantom{\rule{0.2em}{0ex}}\sqrt[3]{a}+3\phantom{\rule{0.2em}{0ex}}\sqrt[3]{a}

5\phantom{\rule{0.2em}{0ex}}\sqrt[4]{2z}+\sqrt[4]{2z}

9\sqrt{5}12\sqrt[3]{a}6\sqrt[4]{2z}

4\sqrt{5}+8\sqrt{5}

\sqrt[3]{m}-4\phantom{\rule{0.2em}{0ex}}\sqrt[3]{m}

\sqrt{n}+3\sqrt{n}

3\sqrt{2a}-4\sqrt{2a}+5\sqrt{2a}

5\phantom{\rule{0.2em}{0ex}}\sqrt[4]{3ab}-3\phantom{\rule{0.2em}{0ex}}\sqrt[4]{3ab}-2\phantom{\rule{0.2em}{0ex}}\sqrt[4]{3ab}

4\sqrt{2a} 0

\sqrt{11b}-5\sqrt{11b}+3\sqrt{11b}

8\phantom{\rule{0.2em}{0ex}}\sqrt[4]{11cd}+5\phantom{\rule{0.2em}{0ex}}\sqrt[4]{11cd}-9\phantom{\rule{0.2em}{0ex}}\sqrt[4]{11cd}

8\sqrt{3c}+2\sqrt{3c}-9\sqrt{3c}

2\phantom{\rule{0.2em}{0ex}}\sqrt[3]{4pq}-5\phantom{\rule{0.2em}{0ex}}\sqrt[3]{4pq}+4\phantom{\rule{0.2em}{0ex}}\sqrt[3]{4pq}

-2\sqrt{3}\sqrt[3]{4pq}

3\sqrt{5d}+8\sqrt{5d}-11\sqrt{5d}

11\phantom{\rule{0.2em}{0ex}}\sqrt[3]{2rs}-9\phantom{\rule{0.2em}{0ex}}\sqrt[3]{2rs}+3\phantom{\rule{0.2em}{0ex}}\sqrt[3]{2rs}

\sqrt{27}-\sqrt{75}

\sqrt[3]{40}-\sqrt[3]{320}

\frac{1}{2}\phantom{\rule{0.2em}{0ex}}\sqrt[4]{32}+\frac{2}{3}\phantom{\rule{0.2em}{0ex}}\sqrt[4]{162}

-2\sqrt{3}-2\sqrt[3]{5}3\sqrt[4]{2}

\sqrt{72}-\sqrt{98}

\sqrt[3]{24}+\sqrt[3]{81}

\frac{1}{2}\phantom{\rule{0.2em}{0ex}}\sqrt[4]{80}-\frac{2}{3}\phantom{\rule{0.2em}{0ex}}\sqrt[4]{405}

\sqrt{48}+\sqrt{27}

\sqrt[3]{54}+\sqrt[3]{128}

6\phantom{\rule{0.2em}{0ex}}\sqrt[4]{5}-\frac{3}{2}\phantom{\rule{0.2em}{0ex}}\sqrt[4]{320}

7\sqrt{3}7\sqrt[3]{2}3\sqrt[4]{5}

\sqrt{45}+\sqrt{80}

\sqrt[3]{81}-\sqrt[3]{192}

\frac{5}{2}\phantom{\rule{0.2em}{0ex}}\sqrt[4]{80}+\frac{7}{3}\phantom{\rule{0.2em}{0ex}}\sqrt[4]{405}

\sqrt{72{a}^{5}}-\sqrt{50{a}^{5}}

9\phantom{\rule{0.2em}{0ex}}\sqrt[4]{80{p}^{4}}-6\phantom{\rule{0.2em}{0ex}}\sqrt[4]{405{p}^{4}}

{a}^{2}\sqrt{2a} 0

\sqrt{48{b}^{5}}-\sqrt{75{b}^{5}}

8\phantom{\rule{0.2em}{0ex}}\sqrt[3]{64{q}^{6}}-3\phantom{\rule{0.2em}{0ex}}\sqrt[3]{125{q}^{6}}

\sqrt{80{c}^{7}}-\sqrt{20{c}^{7}}

2\phantom{\rule{0.2em}{0ex}}\sqrt[4]{162{r}^{10}}+4\phantom{\rule{0.2em}{0ex}}\sqrt[4]{32{r}^{10}}

2{c}^{3}\sqrt{5c}14{r}^{2}\sqrt[4]{2{r}^{2}}

\sqrt{96{d}^{9}}-\sqrt{24{d}^{9}}

5\phantom{\rule{0.2em}{0ex}}\sqrt[4]{243{s}^{6}}+2\phantom{\rule{0.2em}{0ex}}\sqrt[4]{3{s}^{6}}

3\phantom{\rule{0.2em}{0ex}}\sqrt{128{y}^{2}}+4y\phantom{\rule{0.2em}{0ex}}\sqrt{162}-8\phantom{\rule{0.2em}{0ex}}\sqrt{98{y}^{2}}

4y\sqrt{2}

3\phantom{\rule{0.2em}{0ex}}\sqrt{75{y}^{2}}+8y\phantom{\rule{0.2em}{0ex}}\sqrt{48}-\sqrt{300{y}^{2}}

Multiply Radical Expressions

In the following exercises, simplify.

\left(-2\sqrt[]{3}\right)\left(3\sqrt[]{18}\right)

\left(8\phantom{\rule{0.2em}{0ex}}\sqrt[3]{4}\right)\left(-4\phantom{\rule{0.2em}{0ex}}\sqrt[3]{18}\right)

-18\sqrt{6}-64\sqrt[3]{9}

\left(-4\sqrt[]{5}\right)\left(5\sqrt[]{10}\right)

\left(-2\phantom{\rule{0.2em}{0ex}}\sqrt[3]{9}\right)\left(7\phantom{\rule{0.2em}{0ex}}\sqrt[3]{9}\right)

\left(5\sqrt[]{6}\right)\left(\text{−}\sqrt[]{12}\right)

\left(-2\phantom{\rule{0.2em}{0ex}}\sqrt[4]{18}\right)\left(\text{−}\phantom{\rule{0.2em}{0ex}}\sqrt[4]{9}\right)

-30\sqrt{2}) 6\sqrt[4]{2}

\left(-2\sqrt{7}\right)\left(-2\sqrt{14}\right)

\left(-3\phantom{\rule{0.2em}{0ex}}\sqrt[4]{8}\right)\left(-5\phantom{\rule{0.2em}{0ex}}\sqrt[4]{6}\right)

\left(4\sqrt{12{z}^{3}}\right)\left(3\sqrt{9z}\right)

\left(5\phantom{\rule{0.2em}{0ex}}\sqrt[3]{3{x}^{3}}\right)\left(3\phantom{\rule{0.2em}{0ex}}\sqrt[3]{18{x}^{3}}\right)

72{z}^{2}\sqrt{3}45{x}^{2}\sqrt[3]{2}

\left(3\sqrt{2{x}^{3}}\right)\left(7\sqrt{18{x}^{2}}\right)

\left(-6\phantom{\rule{0.2em}{0ex}}\sqrt[3]{20{a}^{2}}\right)\left(-2\phantom{\rule{0.2em}{0ex}}\sqrt[3]{16{a}^{3}}\right)

\left(-2\sqrt{7{z}^{3}}\right)\left(3\sqrt{14{z}^{8}}\right)

\left(2\phantom{\rule{0.2em}{0ex}}\sqrt[4]{8{y}^{2}}\right)\left(-2\phantom{\rule{0.2em}{0ex}}\sqrt[4]{12{y}^{3}}\right)

-42{z}^{5}\sqrt{2z}-8y\sqrt[4]{6y}

\left(4\sqrt{2{k}^{5}}\right)\left(-3\sqrt{32{k}^{6}}\right)

\left(\text{−}\phantom{\rule{0.2em}{0ex}}\sqrt[4]{6{b}^{3}}\right)\left(3\phantom{\rule{0.2em}{0ex}}\sqrt[4]{8{b}^{3}}\right)

Use Polynomial Multiplication to Multiply Radical Expressions

In the following exercises, multiply.

\sqrt{7}\left(5+2\sqrt{7}\right)

\sqrt[3]{6}\phantom{\rule{0.2em}{0ex}}\left(4+\sqrt[3]{18}\right)

14+5\sqrt{7}4\sqrt[3]{6}+3\sqrt[3]{4}

\sqrt{11}\left(8+4\sqrt{11}\right)

\sqrt[3]{3}\phantom{\rule{0.2em}{0ex}}\left(\sqrt[3]{9}+\sqrt[3]{18}\right)

\sqrt{11}\left(-3+4\sqrt{11}\right)

\sqrt[4]{3}\phantom{\rule{0.2em}{0ex}}\left(\sqrt[4]{54}+\sqrt[4]{18}\right)

44-3\sqrt{11}3\sqrt[4]{2}+\sqrt[4]{54}

\sqrt{2}\left(-5+9\sqrt{2}\right)

\sqrt[4]{2}\phantom{\rule{0.2em}{0ex}}\left(\sqrt[4]{12}+\sqrt[4]{24}\right)

\left(7+\sqrt{3}\right)\left(9-\sqrt{3}\right)

60+2\sqrt{3}

\left(8-\sqrt{2}\right)\left(3+\sqrt{2}\right)

\left(9-3\sqrt{2}\right)\left(6+4\sqrt{2}\right)

\left(\sqrt[3]{x}-3\right)\left(\sqrt[3]{x}+1\right)

30+18\sqrt{2}

\sqrt[3]{{x}^{2}}-2\sqrt[3]{x}-3

\left(3-2\sqrt{7}\right)\left(5-4\sqrt{7}\right)

\left(\sqrt[3]{x}-5\right)\left(\sqrt[3]{x}-3\right)

\left(1+3\sqrt{10}\right)\left(5-2\sqrt{10}\right)

\left(2\phantom{\rule{0.2em}{0ex}}\sqrt[3]{x}+6\right)\left(\sqrt[3]{x}+1\right)

-54+13\sqrt{10}

2\sqrt[3]{{x}^{2}}+8\sqrt[3]{x}+6

\left(7-2\sqrt{5}\right)\left(4+9\sqrt{5}\right)

\left(3\phantom{\rule{0.2em}{0ex}}\sqrt[3]{x}+2\right)\left(\sqrt[3]{x}-2\right)

\left(\sqrt{3}+\sqrt{10}\right)\left(\sqrt{3}+2\sqrt{10}\right)

23+3\sqrt{30}

\left(\sqrt{11}+\sqrt{5}\right)\left(\sqrt{11}+6\sqrt{5}\right)

\left(2\sqrt{7}-5\sqrt{11}\right)\left(4\sqrt{7}+9\sqrt{11}\right)

-439-2\sqrt{77}

\left(4\sqrt{6}+7\sqrt{13}\right)\left(8\sqrt{6}-3\sqrt{13}\right)

{\left(3+\sqrt{5}\right)}^{2}{\left(2-5\sqrt{3}\right)}^{2}

14+6\sqrt{5}79-20\sqrt{3}

{\left(4+\sqrt{11}\right)}^{2}{\left(3-2\sqrt{5}\right)}^{2}

{\left(9-\sqrt{6}\right)}^{2}{\left(10+3\sqrt{7}\right)}^{2}

87-18\sqrt{6}

163+60\sqrt{7}

{\left(5-\sqrt{10}\right)}^{2}{\left(8+3\sqrt{2}\right)}^{2}

\left(4+\sqrt{2}\right)\left(4-\sqrt{2}\right)

14

\left(7+\sqrt{10}\right)\left(7-\sqrt{10}\right)

\left(4+9\sqrt{3}\right)\left(4-9\sqrt{3}\right)

-227

\left(1+8\sqrt{2}\right)\left(1-8\sqrt{2}\right)

\left(12-5\sqrt{5}\right)\left(12+5\sqrt{5}\right)

19

\left(9-4\sqrt{3}\right)\left(9+4\sqrt{3}\right)

\left(\sqrt[3]{3x}+2\right)\left(\sqrt[3]{3x}-2\right)

\sqrt[3]{9{x}^{2}}-4

\left(\sqrt[3]{4x}+3\right)\left(\sqrt[3]{4x}-3\right)

Mixed Practice

\frac{2}{3}\sqrt{27}+\frac{3}{4}\sqrt{48}

5\sqrt{3}

\sqrt{175{k}^{4}}-\sqrt{63{k}^{4}}

\frac{5}{6}\sqrt{162}+\frac{3}{16}\sqrt{128}

9\sqrt{2}

\sqrt[3]{24}+\sqrt[3]{\text{/}81}

\frac{1}{2}\phantom{\rule{0.2em}{0ex}}\sqrt[4]{80}-\frac{2}{3}\phantom{\rule{0.2em}{0ex}}\sqrt[4]{405}

\text{−}\sqrt[4]{5}

8\sqrt[4]{13}-4\sqrt[4]{13}-3\sqrt[4]{13}

5\sqrt{12{c}^{4}}-3\sqrt{27{c}^{6}}

10{c}^{2}\sqrt{3}-9{c}^{3}\sqrt{3}

\sqrt{80{a}^{5}}-\sqrt{45{a}^{5}}

\frac{3}{5}\sqrt{75}-\frac{1}{4}\sqrt{48}

2\sqrt{3}

21\phantom{\rule{0.2em}{0ex}}\sqrt[3]{9}-2\phantom{\rule{0.2em}{0ex}}\sqrt[3]{9}

8\phantom{\rule{0.2em}{0ex}}\sqrt[3]{64{q}^{6}}-3\phantom{\rule{0.2em}{0ex}}\sqrt[3]{125{q}^{6}}

17{q}^{2}

11\sqrt{11}-10\sqrt{11}

\sqrt{3}·\sqrt{21}

3\sqrt{7}

\left(4\sqrt{6}\right)\left(\text{−}\sqrt{18}\right)

\left(7\sqrt[3]{4}\right)\left(-3\sqrt[3]{18}\right)

-42\sqrt[3]{9}

\left(4\sqrt{12{x}^{5}}\right)\left(2\sqrt{6{x}^{3}}\right)

{\left(\sqrt{29}\right)}^{2}

29

\left(-4\sqrt{17}\right)\left(-3\sqrt{17}\right)

\left(-4+\sqrt{17}\right)\left(-3+\sqrt{17}\right)

29-7\sqrt{17}

\left(3\phantom{\rule{0.2em}{0ex}}\sqrt[4]{8{a}^{2}}\right)\left(\sqrt[4]{12{a}^{3}}\right)

{\left(6-3\sqrt{2}\right)}^{2}

72-36\sqrt{2}

\sqrt{3}\left(4-3\sqrt{3}\right)

\sqrt[3]{3}\phantom{\rule{0.2em}{0ex}}\left(2\phantom{\rule{0.2em}{0ex}}\sqrt[3]{9}+\sqrt[3]{18}\right)

6+3\sqrt[3]{2}

\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}+6\sqrt{3}\right)

Writing Exercises

Explain the when a radical expression is in simplest form.

Answers will vary.

Explain the process for determining whether two radicals are like or unlike. Make sure your answer makes sense for radicals containing both numbers and variables.

Explain why {\left(\text{−}\sqrt{n}\right)}^{2} is always non-negative, for n\ge 0.

Explain why -{\left(\sqrt{n}\right)}^{2} is always non-positive, for n\ge 0.

Answers will vary.

Use the binomial square pattern to simplify {\left(3+\sqrt{2}\right)}^{2}. Explain all your steps.

Self Check

After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

This table has 3 rows and 4 columns. The first row is a header row and it labels each column. The first column header is “I can…”, the second is “Confidently”, the third is “With some help”, and the fourth is “No, I don’t get it”. Under the first column are the phrases “add and subtract radical expressions.”, “ multiply radical expressions”, and “use polynomial multiplication to multiply radical expressions”. The other columns are left blank so that the learner may indicate their mastery level for each topic.

On a scale of 1-10, how would you rate your mastery of this section in light of your responses on the checklist? How can you improve this?

Glossary

like radicals
Like radicals are radical expressions with the same index and the same radicand.

License

Icon for the Creative Commons Attribution 4.0 International License

Intermediate Algebra but cloned this time not imported Copyright © 2017 by OSCRiceUniversity is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book