58 Simplify Rational Exponents

Learning Objectives

By the end of this section, you will be able to:

  • Simplify expressions with {a}^{\frac{1}{n}}
  • Simplify expressions with {a}^{\frac{m}{n}}
  • Use the properties of exponents to simplify expressions with rational exponents

Before you get started, take this readiness quiz.

  1. Add: \frac{7}{15}+\frac{5}{12}.

    If you missed this problem, review (Figure).

  2. Simplify: {\left(4{x}^{2}{y}^{5}\right)}^{3}.

    If you missed this problem, review (Figure).

  3. Simplify: {5}^{-3}.

    If you missed this problem, review (Figure).

Simplify Expressions with {a}^{\frac{1}{n}}

Rational exponents are another way of writing expressions with radicals. When we use rational exponents, we can apply the properties of exponents to simplify expressions.

The Power Property for Exponents says that {\left({a}^{m}\right)}^{n}={a}^{m·n} when m and n are whole numbers. Let’s assume we are now not limited to whole numbers.

Suppose we want to find a number p such that {\left({8}^{p}\right)}^{3}=8. We will use the Power Property of Exponents to find the value of p.

\begin{array}{cccccccc}& & & & & \hfill {\left({8}^{p}\right)}^{3}& =\hfill & 8\hfill \\ \text{Multiply the exponents on the left.}\hfill & & & & & \hfill {8}^{3p}& =\hfill & 8\hfill \\ \text{Write the exponent 1 on the right.}\hfill & & & & & \hfill {8}^{3p}& =\hfill & {8}^{1}\hfill \\ \text{Since the bases are the same, the exponents must be equal.}\hfill & & & & & \hfill 3p& =\hfill & 1\hfill \\ \text{Solve for}\phantom{\rule{0.2em}{0ex}}p.\hfill & & & & & \hfill p& =\hfill & \frac{1}{3}\hfill \end{array}

So {\left({8}^{\frac{1}{3}}\right)}^{3}=8. But we know also {\left(\sqrt[3]{8}\right)}^{3}=8. Then it must be that {8}^{\frac{1}{3}}=\sqrt[3]{8}.

This same logic can be used for any positive integer exponent n to show that {a}^{\frac{1}{n}}=\sqrt[n]{a}.

Rational Exponent {a}^{\frac{1}{n}}

If \sqrt[n]{a} is a real number and n\ge 2, then

{a}^{\frac{1}{n}}=\sqrt[n]{a}

The denominator of the rational exponent is the index of the radical.

There will be times when working with expressions will be easier if you use rational exponents and times when it will be easier if you use radicals. In the first few examples, you’ll practice converting expressions between these two notations.

Write as a radical expression: {x}^{\frac{1}{2}} {y}^{\frac{1}{3}} {z}^{\frac{1}{4}}.

We want to write each expression in the form \sqrt[n]{a}.

\begin{array}{cccc}& & & \hfill \phantom{\rule{5em}{0ex}}{x}^{\frac{1}{2}}\hfill \\ \begin{array}{c}\text{The denominator of the rational exponent is 2, so}\hfill \\ \text{the index of the radical is 2. We do not show the}\hfill \\ \text{index when it is 2.}\hfill \end{array}\hfill & & & \hfill \phantom{\rule{5em}{0ex}}\sqrt{x}\hfill \end{array}

\begin{array}{cccc}& & & \hfill \phantom{\rule{7em}{0ex}}{y}^{\frac{1}{3}}\hfill \\ \begin{array}{c}\text{The denominator of the exponent is 3, so the}\hfill \\ \text{index is 3.}\hfill \end{array}\hfill & & & \hfill \phantom{\rule{7em}{0ex}}\sqrt[3]{y}\hfill \end{array}

\begin{array}{cccc}& & & \hfill \phantom{\rule{7em}{0ex}}{z}^{\frac{1}{4}}\hfill \\ \begin{array}{c}\text{The denominator of the exponent is 4, so the}\hfill \\ \text{index is 4.}\hfill \end{array}\hfill & & & \hfill \phantom{\rule{7em}{0ex}}\sqrt[4]{z}\hfill \end{array}

Write as a radical expression: {t}^{\frac{1}{2}} {m}^{\frac{1}{3}} {r}^{\frac{1}{4}}.

\sqrt{t}\sqrt[3]{m}\sqrt[4]{r}

Write as a radial expression: {b}^{\frac{1}{6}} {z}^{\frac{1}{5}} {p}^{\frac{1}{4}}.

\sqrt[6]{b}\sqrt[5]{z}\sqrt[4]{p}

In the next example, we will write each radical using a rational exponent. It is important to use parentheses around the entire expression in the radicand since the entire expression is raised to the rational power.

Write with a rational exponent: \sqrt{5y} \sqrt[3]{4x} 3\sqrt[4]{5z}.

We want to write each radical in the form {a}^{\frac{1}{n}}.

\begin{array}{cccc}& & & \hfill \phantom{\rule{4em}{0ex}}\sqrt{5y}\hfill \\ \begin{array}{c}\text{No index is shown, so it is 2.}\hfill \\ \text{The denominator of the exponent will be 2.}\hfill \end{array}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left(5y\right)}^{\frac{1}{2}}\hfill \\ \begin{array}{c}\text{Put parentheses around the entire}\hfill \\ \text{expression}\phantom{\rule{0.2em}{0ex}}5y.\hfill \end{array}\hfill & & & \end{array}

*** QuickLaTeX cannot compile formula:
\begin{array}{cccc}& & & \hfill \phantom{\rule{5em}{0ex}}\sqrt[3]{4x}\hfill \\ \begin{array}{c}\text{The index is 3, so the denominator of the}\hfill \\ \text{exponent is 3. Include parentheses}\phantom{\rule{0.2em}{0ex}}\left(4x\right).\hfill \end{array}\hfill & & & \hfill \begin{array}{}\\ \\ \hfill \phantom{\rule{5em}{0ex}}{\left(4x\right)}^{\frac{1}{3}}\hfill \end{array}\hfill \end{array}

*** Error message:
Missing # inserted in alignment preamble.
leading text: ...d{array}\hfill & & & \hfill \begin{array}{}
Missing $ inserted.
leading text: ...\ \\ \hfill \phantom{\rule{5em}{0ex}}{\left
Extra }, or forgotten $.
leading text: ... \phantom{\rule{5em}{0ex}}{\left(4x\right)}
Missing } inserted.
leading text: ...(4x\right)}^{\frac{1}{3}}\hfill \end{array}
Extra }, or forgotten $.
leading text: ...(4x\right)}^{\frac{1}{3}}\hfill \end{array}
Missing } inserted.
leading text: ...(4x\right)}^{\frac{1}{3}}\hfill \end{array}
Extra }, or forgotten $.
leading text: ...(4x\right)}^{\frac{1}{3}}\hfill \end{array}
Missing } inserted.
leading text: ...(4x\right)}^{\frac{1}{3}}\hfill \end{array}
Extra }, or forgotten $.
leading text: ...(4x\right)}^{\frac{1}{3}}\hfill \end{array}

*** QuickLaTeX cannot compile formula:
\begin{array}{cccc}& & & \hfill \phantom{\rule{4em}{0ex}}3\phantom{\rule{0.2em}{0ex}}\sqrt[4]{5z}\hfill \\ \begin{array}{c}\text{The index is 4, so the denominator of the}\hfill \\ \text{exponent is 4. Put parentheses only around}\hfill \\ \text{the}\phantom{\rule{0.2em}{0ex}}5z\phantom{\rule{0.2em}{0ex}}\text{since 3 is not under the radical sign.}\hfill \end{array}\hfill & & & \hfill \begin{array}{}\\ \\ \\ \\ \hfill \phantom{\rule{4em}{0ex}}3{\left(5z\right)}^{\frac{1}{4}}\hfill \end{array}\hfill \end{array}

*** Error message:
Missing # inserted in alignment preamble.
leading text: ...d{array}\hfill & & & \hfill \begin{array}{}
Missing $ inserted.
leading text: ... \\ \hfill \phantom{\rule{4em}{0ex}}3{\left
Extra }, or forgotten $.
leading text: ...\phantom{\rule{4em}{0ex}}3{\left(5z\right)}
Missing } inserted.
leading text: ...(5z\right)}^{\frac{1}{4}}\hfill \end{array}
Extra }, or forgotten $.
leading text: ...(5z\right)}^{\frac{1}{4}}\hfill \end{array}
Missing } inserted.
leading text: ...(5z\right)}^{\frac{1}{4}}\hfill \end{array}
Extra }, or forgotten $.
leading text: ...(5z\right)}^{\frac{1}{4}}\hfill \end{array}
Missing } inserted.
leading text: ...(5z\right)}^{\frac{1}{4}}\hfill \end{array}
Extra }, or forgotten $.
leading text: ...(5z\right)}^{\frac{1}{4}}\hfill \end{array}

Write with a rational exponent: \sqrt{10m} \sqrt[5]{3n} 3\sqrt[4]{6y}.

{\left(10m\right)}^{\frac{1}{2}}{\left(3n\right)}^{\frac{1}{5}}

3{\left(6y\right)}^{\frac{1}{4}}

Write with a rational exponent: \sqrt[7]{3k} \sqrt[4]{5j} 8\sqrt[3]{2a}.

{\left(3k\right)}^{\frac{1}{7}}{\left(5j\right)}^{\frac{1}{4}}

8{\left(2a\right)}^{\frac{1}{3}}

In the next example, you may find it easier to simplify the expressions if you rewrite them as radicals first.

Simplify: {25}^{\frac{1}{2}} {64}^{\frac{1}{3}} {256}^{\frac{1}{4}}.

\begin{array}{cccc}& & & \hfill \phantom{\rule{11em}{0ex}}{25}^{\frac{1}{2}}\hfill \\ \text{Rewrite as a square root.}\hfill & & & \hfill \phantom{\rule{11em}{0ex}}\sqrt{25}\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{11em}{0ex}}5\hfill \end{array}

\begin{array}{cccc}& & & \hfill \phantom{\rule{8.5em}{0ex}}{64}^{\frac{1}{3}}\hfill \\ \text{Rewrite as a cube root.}\hfill & & & \hfill \phantom{\rule{8.5em}{0ex}}\sqrt[3]{64}\hfill \\ \text{Recognize 64 is a perfect cube.}\hfill & & & \hfill \phantom{\rule{8.5em}{0ex}}\sqrt[3]{{4}^{3}}\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{8.5em}{0ex}}4\hfill \end{array}

\begin{array}{cccc}& & & \hfill \phantom{\rule{4em}{0ex}}{256}^{\frac{1}{4}}\hfill \\ \text{Rewrite as a fourth root.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}\sqrt[4]{256}\hfill \\ \text{Recognize 256 is a perfect fourth power.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}\sqrt[4]{{4}^{4}}\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}4\hfill \end{array}

Simplify: {36}^{\frac{1}{2}} {8}^{\frac{1}{3}} {16}^{\frac{1}{4}}.

6 2 2

Simplify: {100}^{\frac{1}{2}} {27}^{\frac{1}{3}} {81}^{\frac{1}{4}}.

10 3 3

Be careful of the placement of the negative signs in the next example. We will need to use the property {a}^{\text{−}n}=\frac{1}{{a}^{n}} in one case.

Simplify: {\left(-16\right)}^{\frac{1}{4}} \text{−}{16}^{\frac{1}{4}} {\left(16\right)}^{-\frac{1}{4}}.

\begin{array}{cccc}& & & \hfill \phantom{\rule{9em}{0ex}}{\left(-16\right)}^{\frac{1}{4}}\hfill \\ \text{Rewrite as a fourth root.}\hfill & & & \hfill \phantom{\rule{9em}{0ex}}\sqrt[4]{-16}\hfill \\ & & & \hfill \phantom{\rule{9em}{0ex}}\sqrt[4]{{\left(-2\right)}^{4}}\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{9em}{0ex}}\text{No real solution.}\hfill \end{array}

\begin{array}{cccc}& & & \hfill \phantom{\rule{5.5em}{0ex}}\text{−}{16}^{\frac{1}{4}}\hfill \\ \begin{array}{c}\text{The exponent only applies to the 16.}\hfill \\ \text{Rewrite as a fouth root.}\hfill \end{array}\hfill & & & \hfill \phantom{\rule{5.5em}{0ex}}\text{−}\sqrt[4]{16}\hfill \\ \text{Rewrite 16 as}\phantom{\rule{0.2em}{0ex}}{2}^{4}.\hfill & & & \hfill \phantom{\rule{5.5em}{0ex}}\text{−}\sqrt[4]{{2}^{4}}\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{5.5em}{0ex}}-2\hfill \end{array}

\begin{array}{cccc}& & & \hfill \phantom{\rule{4.5em}{0ex}}{\left(16\right)}^{-\frac{1}{4}}\hfill \\ \text{Rewrite using the property}\phantom{\rule{0.2em}{0ex}}{a}^{\text{−}n}=\frac{1}{{a}^{n}}.\hfill & & & \hfill \phantom{\rule{4.5em}{0ex}}\frac{1}{{\left(16\right)}^{\frac{1}{4}}}\hfill \\ \text{Rewrite as a fourth root.}\hfill & & & \hfill \phantom{\rule{4.5em}{0ex}}\frac{1}{\sqrt[4]{16}}\hfill \\ \text{Rewrite 16 as}\phantom{\rule{0.2em}{0ex}}{2}^{4}.\hfill & & & \hfill \phantom{\rule{4.5em}{0ex}}\frac{1}{\sqrt[4]{{2}^{4}}}\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{4.5em}{0ex}}\frac{1}{2}\hfill \end{array}

Simplify: {\left(-64\right)}^{-\frac{1}{2}} \text{−}{64}^{\frac{1}{2}} {\left(64\right)}^{-\frac{1}{2}}.

No real solution -8

\frac{1}{8}

Simplify: {\left(-256\right)}^{\frac{1}{4}} \text{−}{256}^{\frac{1}{4}} {\left(256\right)}^{-\frac{1}{4}}.

No real solution -4

\frac{1}{4}

Simplify Expressions with {a}^{\frac{m}{n}}

We can look at {a}^{\frac{m}{n}} in two ways. Remember the Power Property tells us to multiply the exponents and so {\left({a}^{\frac{1}{n}}\right)}^{m} and {\left({a}^{m}\right)}^{{}^{\frac{1}{n}}} both equal {a}^{\frac{m}{n}}. If we write these expressions in radical form, we get

{a}^{\frac{m}{n}}={\left({a}^{\frac{1}{n}}\right)}^{m}={\left(\sqrt[n]{a}\right)}^{m}\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}{a}^{\frac{m}{n}}={\left({a}^{m}\right)}^{{}^{\frac{1}{n}}}=\sqrt[n]{{a}^{m}}

This leads us to the following definition.

Rational Exponent {a}^{\frac{m}{n}}

For any positive integers m and n,

{a}^{\frac{m}{n}}={\left(\sqrt[n]{a}\right)}^{m}\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}{a}^{\frac{m}{n}}=\sqrt[n]{{a}^{m}}

Which form do we use to simplify an expression? We usually take the root first—that way we keep the numbers in the radicand smaller, before raising it to the power indicated.

Write with a rational exponent: \sqrt{{y}^{3}} {\left(\sqrt[3]{2x}\right)}^{4} \sqrt{{\left(\frac{3a}{4b}\right)}^{3}}.

We want to use {a}^{\frac{m}{n}}=\sqrt[n]{{a}^{m}} to write each radical in the form {a}^{\frac{m}{n}}.

.

.

.

Write with a rational exponent: \sqrt{{x}^{5}} {\left(\sqrt[4]{3y}\right)}^{3} \sqrt{{\left(\frac{2m}{3n}\right)}^{5}}.

{x}^{\frac{5}{2}}{\left(3y\right)}^{\frac{3}{4}}{\left(\frac{2m}{3n}\right)}^{\frac{5}{2}}

Write with a rational exponent: \sqrt[5]{{a}^{2}} {\left(\sqrt[3]{5ab}\right)}^{5} \sqrt{{\left(\frac{7xy}{z}\right)}^{3}}.

{a}^{\frac{2}{5}}{\left(5ab\right)}^{\frac{5}{3}}

{\left(\frac{7xy}{z}\right)}^{\frac{3}{2}}

Remember that {a}^{\text{−}n}=\frac{1}{{a}^{n}}. The negative sign in the exponent does not change the sign of the expression.

Simplify: {125}^{\frac{2}{3}} {16}^{-\frac{3}{2}} {32}^{-\frac{2}{5}}.

We will rewrite the expression as a radical first using the defintion, {a}^{\frac{m}{n}}={\left(\sqrt[n]{a}\right)}^{m}. This form lets us take the root first and so we keep the numbers in the radicand smaller than if we used the other form.

\begin{array}{cccc}& & & \hfill \phantom{\rule{4em}{0ex}}{125}^{\frac{2}{3}}\hfill \\ \begin{array}{c}\text{The power of the radical is the numerator of the exponent, 2.}\hfill \\ \text{The index of the radical is the denominator of the}\hfill \\ \text{exponent, 3.}\hfill \end{array}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left(\sqrt[3]{125}\right)}^{2}\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left(5\right)}^{2}\hfill \\ & & & \hfill \phantom{\rule{4em}{0ex}}25\hfill \end{array}

We will rewrite each expression first using {a}^{\text{−}n}=\frac{1}{{a}^{n}} and then change to radical form.

\begin{array}{cccc}& & & \hfill \phantom{\rule{4em}{0ex}}{16}^{-\frac{3}{2}}\hfill \\ \\ \\ \text{Rewrite using}\phantom{\rule{0.2em}{0ex}}{a}^{\text{−}n}=\frac{1}{{a}^{n}}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}\frac{1}{{16}^{\frac{3}{2}}}\hfill \\ \\ \\ \begin{array}{c}\text{Change to radical form. The power of the radical is the}\hfill \\ \text{numerator of the exponent, 3. The index is the denominator}\hfill \\ \text{of the exponent, 2.}\hfill \end{array}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}\frac{1}{{\left(\sqrt{16}\right)}^{3}}\hfill \\ \\ \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}\frac{1}{{4}^{3}}\hfill \\ \\ \\ & & & \hfill \phantom{\rule{4em}{0ex}}\frac{1}{64}\hfill \end{array}

\begin{array}{cccc}& & & \hfill \phantom{\rule{15em}{0ex}}{32}^{-\frac{2}{5}}\hfill \\ \\ \\ \text{Rewrite using}\phantom{\rule{0.2em}{0ex}}{a}^{\text{−}n}=\frac{1}{{a}^{n}}.\hfill & & & \hfill \phantom{\rule{15em}{0ex}}\frac{1}{{32}^{\frac{2}{5}}}\hfill \\ \\ \\ \text{Change to radical form.}\hfill & & & \hfill \phantom{\rule{15em}{0ex}}\frac{1}{{\left(\sqrt[5]{32}\right)}^{2}}\hfill \\ \\ \\ \text{Rewrite the radicand as a power.}\hfill & & & \hfill \phantom{\rule{15em}{0ex}}\frac{1}{{\left(\sqrt[5]{{2}^{5}}\right)}^{2}}\hfill \\ \\ \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{15em}{0ex}}\frac{1}{{2}^{2}}\hfill \\ \\ \\ & & & \hfill \phantom{\rule{15em}{0ex}}\frac{1}{4}\hfill \end{array}

Simplify: {27}^{\frac{2}{3}} {81}^{-\frac{3}{2}} {16}^{-\frac{3}{4}}.

9 \frac{1}{729} \frac{1}{8}

Simplify: {4}^{\frac{3}{2}} {27}^{-\frac{2}{3}} {625}^{-\frac{3}{4}}.

8 \frac{1}{9} \frac{1}{125}

Simplify: \text{−}{25}^{\frac{3}{2}} \text{−}{25}^{-\frac{3}{2}} {\left(-25\right)}^{\frac{3}{2}}.

\begin{array}{cccc}& & & \hfill \phantom{\rule{14em}{0ex}}\text{−}{25}^{\frac{3}{2}}\hfill \\ \text{Rewrite in radical form.}\hfill & & & \hfill \phantom{\rule{14em}{0ex}}\text{−}{\left(\sqrt{25}\right)}^{3}\hfill \\ \text{Simplify the radical.}\hfill & & & \hfill \phantom{\rule{14em}{0ex}}\text{−}{\left(5\right)}^{3}\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{14em}{0ex}}-125\hfill \end{array}

\begin{array}{cccc}& & & \hfill \phantom{\rule{13em}{0ex}}\text{−}{25}^{-\frac{3}{2}}\hfill \\ \text{Rewrite using}\phantom{\rule{0.2em}{0ex}}{a}^{\text{−}n}=\frac{1}{{a}^{n}}.\hfill & & & \hfill \phantom{\rule{13em}{0ex}}\text{−}\left(\frac{1}{{25}^{\frac{3}{2}}}\right)\hfill \\ \text{Rewrite in radical form.}\hfill & & & \hfill \phantom{\rule{13em}{0ex}}\text{−}\left(\frac{1}{{\left(\sqrt{25}\right)}^{3}}\right)\hfill \\ \text{Simplify the radical.}\hfill & & & \hfill \phantom{\rule{13em}{0ex}}\text{−}\left(\frac{1}{{\left(5\right)}^{3}}\right)\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{13em}{0ex}}-\frac{1}{125}\hfill \end{array}

\begin{array}{cccc}& & & \hfill \phantom{\rule{4em}{0ex}}{\left(-25\right)}^{\frac{3}{2}}\hfill \\ \text{Rewrite in radical form.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left(\sqrt{-25}\right)}^{3}\hfill \\ \begin{array}{c}\text{There is no real number whose square root}\hfill \\ \text{is}\phantom{\rule{0.2em}{0ex}}-25.\hfill \end{array}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}\text{Not a real number.}\hfill \end{array}

Simplify: {-16}^{\frac{3}{2}} {-16}^{-\frac{3}{2}} {\left(-16\right)}^{-\frac{3}{2}}.

-64-\frac{1}{64} not a real number

Simplify: {-81}^{\frac{3}{2}} {-81}^{-\frac{3}{2}} {\left(-81\right)}^{-\frac{3}{2}}.

-729-\frac{1}{729} not a real number

Use the Properties of Exponents to Simplify Expressions with Rational Exponents

The same properties of exponents that we have already used also apply to rational exponents. We will list the Properties of Exponenets here to have them for reference as we simplify expressions.

Properties of Exponents

If a and b are real numbers and m and n are rational numbers, then

\begin{array}{cccccc}\mathbf{\text{Product Property}}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{a}^{m}·{a}^{n}& =\hfill & {a}^{m+n}\hfill \\ \mathbf{\text{Power Property}}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left({a}^{m}\right)}^{n}& =\hfill & {a}^{m·n}\hfill \\ \mathbf{\text{Product to a Power}}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left(ab\right)}^{m}& =\hfill & {a}^{m}{b}^{m}\hfill \\ \mathbf{\text{Quotient Property}}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}\frac{{a}^{m}}{{a}^{n}}& =\hfill & {a}^{m-n},\phantom{\rule{0.2em}{0ex}}a\ne 0\hfill \\ \mathbf{\text{Zero Exponent Definition}}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{a}^{0}& =\hfill & 1,\phantom{\rule{0.2em}{0ex}}a\ne 0\hfill \\ \mathbf{\text{Quotient to a Power Property}}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left(\frac{a}{b}\right)}^{m}& =\hfill & \frac{{a}^{m}}{{b}^{m}},\phantom{\rule{0.2em}{0ex}}b\ne 0\hfill \\ \mathbf{\text{Negative Exponent Property}}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{a}^{\text{−}n}& =\hfill & \frac{1}{{a}^{n}},\phantom{\rule{0.2em}{0ex}}a\ne 0\hfill \end{array}

We will apply these properties in the next example.

Simplify: {x}^{\frac{1}{2}}·{x}^{\frac{5}{6}} {\left({z}^{9}\right)}^{\frac{2}{3}} \frac{{x}^{\frac{1}{3}}}{{x}^{\frac{5}{3}}}.

The Product Property tells us that when we multiply the same base, we add the exponents.

\begin{array}{cccc}& & & \hfill \phantom{\rule{5em}{0ex}}{x}^{\frac{1}{2}}·{x}^{\frac{5}{6}}\hfill \\ \\ \\ \begin{array}{c}\text{The bases are the same, so we add the}\hfill \\ \text{exponents.}\hfill \end{array}\hfill & & & \hfill \phantom{\rule{5em}{0ex}}{x}^{\frac{1}{2}+\frac{5}{6}}\hfill \\ \\ \\ \text{Add the fractions.}\hfill & & & \hfill \phantom{\rule{5em}{0ex}}{x}^{\frac{8}{6}}\hfill \\ \\ \\ \text{Simplify the exponent.}\hfill & & & \hfill \phantom{\rule{5em}{0ex}}{x}^{\frac{4}{3}}\hfill \end{array}

The Power Property tells us that when we raise a power to a power, we multiply the exponents.

\begin{array}{cccc}& & & \hfill \phantom{\rule{4.5em}{0ex}}{\left({z}^{9}\right)}^{\frac{2}{3}}\hfill \\ \begin{array}{c}\text{To raise a power to a power, we multiply}\hfill \\ \text{the exponents.}\hfill \end{array}\hfill & & & \hfill \phantom{\rule{4.5em}{0ex}}{z}^{9·\frac{2}{3}}\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{4.5em}{0ex}}{z}^{6}\hfill \end{array}

The Quotient Property tells us that when we divide with the same base, we subtract the exponents.

\begin{array}{cccc}& & & \hfill \phantom{\rule{4em}{0ex}}\frac{{x}^{\frac{1}{3}}}{{x}^{\frac{5}{3}}}\hfill \\ \\ \\ & & & \hfill \phantom{\rule{4em}{0ex}}\frac{{x}^{\frac{1}{3}}}{{x}^{\frac{5}{3}}}\hfill \\ \\ \\ \begin{array}{c}\text{To divide with the same base, we subtract}\hfill \\ \text{the exponents.}\hfill \end{array}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}\frac{1}{{x}^{\frac{5}{3}-\frac{1}{3}}}\hfill \\ \\ \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}\frac{1}{{x}^{\frac{4}{3}}}\hfill \end{array}

Simplify: {x}^{\frac{1}{6}}·{x}^{\frac{4}{3}} {\left({x}^{6}\right)}^{\frac{4}{3}} \frac{{x}^{\frac{2}{3}}}{{x}^{\frac{5}{3}}}.

{x}^{\frac{3}{2}}{x}^{8}\frac{1}{x}

Simplify: {y}^{\frac{3}{4}}·{y}^{\frac{5}{8}} {\left({m}^{9}\right)}^{\frac{2}{9}} \frac{{d}^{\frac{1}{5}}}{{d}^{\frac{6}{5}}}.

{y}^{\frac{11}{8}}{m}^{2}\frac{1}{d}

Sometimes we need to use more than one property. In the next example, we will use both the Product to a Power Property and then the Power Property.

Simplify: {\left(27{u}^{\frac{1}{2}}\right)}^{\frac{2}{3}} {\left({m}^{\frac{2}{3}}{n}^{\frac{1}{2}}\right)}^{\frac{3}{2}}.

\begin{array}{cccc}& & & \hfill \phantom{\rule{4em}{0ex}}{\left(27{u}^{\frac{1}{2}}\right)}^{\frac{2}{3}}\hfill \\ \begin{array}{c}\text{First we use the Product to a Power}\hfill \\ \text{Property.}\hfill \end{array}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left(27\right)}^{\frac{2}{3}}{\left({u}^{\frac{1}{2}}\right)}^{\frac{2}{3}}\hfill \\ \text{Rewrite 27 as a power of 3.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left({3}^{3}\right)}^{\frac{2}{3}}{\left({u}^{\frac{1}{2}}\right)}^{\frac{2}{3}}\hfill \\ \begin{array}{c}\text{To raise a power to a power, we multiply}\hfill \\ \text{the exponents.}\hfill \end{array}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}\left({3}^{2}\right)\left({u}^{\frac{1}{3}}\right)\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}9{u}^{\frac{1}{3}}\hfill \end{array}

\begin{array}{cccc}& & & \hfill \phantom{\rule{4em}{0ex}}{\left({m}^{\frac{2}{3}}{n}^{\frac{1}{2}}\right)}^{\frac{3}{2}}\hfill \\ \begin{array}{c}\text{First we use the Product to a Power}\hfill \\ \text{Property.}\hfill \end{array}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left({m}^{\frac{2}{3}}\right)}^{\frac{3}{2}}{\left({n}^{\frac{1}{2}}\right)}^{\frac{3}{2}}\hfill \\ \begin{array}{c}\text{To raise a power to a power, we multiply}\hfill \\ \text{the exponents.}\hfill \end{array}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}m{n}^{\frac{3}{4}}\hfill \end{array}

Simplify: {\left(32{x}^{\frac{1}{3}}\right)}^{\frac{3}{5}} {\left({x}^{\frac{3}{4}}{y}^{\frac{1}{2}}\right)}^{\frac{2}{3}}.

8{x}^{\frac{1}{5}}{x}^{\frac{1}{2}}{y}^{\frac{1}{3}}

Simplify: {\left(81{n}^{\frac{2}{5}}\right)}^{\frac{3}{2}} {\left({a}^{\frac{3}{2}}{b}^{\frac{1}{2}}\right)}^{\frac{4}{3}}.

729{n}^{\frac{3}{5}}{a}^{2}{b}^{\frac{2}{3}}

We will use both the Product Property and the Quotient Property in the next example.

Simplify: \frac{{x}^{\frac{3}{4}}·{x}^{-\frac{1}{4}}}{{x}^{-\frac{6}{4}}} {\left(\frac{16\phantom{\rule{0.2em}{0ex}}{x}^{\frac{4}{3}}{y}^{-\frac{5}{6}}}{{x}^{-\frac{2}{3}}{y}^{\frac{1}{6}}}\right)}^{\frac{1}{2}}.

\begin{array}{cccc}& & & \hfill \phantom{\rule{4em}{0ex}}\frac{{x}^{\frac{3}{4}}·{x}^{-\frac{1}{4}}}{{x}^{-\frac{6}{4}}}\hfill \\ \\ \\ \begin{array}{c}\text{Use the Product Property in the numerator,}\hfill \\ \text{add the exponents.}\hfill \end{array}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}\frac{{x}^{\frac{2}{4}}}{{x}^{-\frac{6}{4}}}\hfill \\ \\ \\ \begin{array}{c}\text{Use the Quotient Property, subtract the}\hfill \\ \text{exponents.}\hfill \end{array}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{x}^{\frac{8}{4}}\hfill \\ \\ \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{x}^{2}\hfill \end{array}

Follow the order of operations to simplify inside the parenthese first.

\begin{array}{cccc}& & & \hfill \phantom{\rule{4em}{0ex}}{\left(\frac{16\phantom{\rule{0.2em}{0ex}}{x}^{\frac{4}{3}}{y}^{-\frac{5}{6}}}{{x}^{-\frac{2}{3}}{y}^{\frac{1}{6}}}\right)}^{\frac{1}{2}}\hfill \\ \begin{array}{c}\text{Use the Quotient Property, subtract the}\hfill \\ \text{exponents.}\hfill \end{array}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left(\frac{16{x}^{\frac{6}{3}}}{{y}^{\frac{6}{6}}}\right)}^{\frac{1}{2}}\hfill \\ \text{Simplify.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left(\frac{16{x}^{2}}{y}\right)}^{\frac{1}{2}}\hfill \\ \begin{array}{c}\text{Use the Product to a Power Property,}\hfill \\ \text{multiply the exponents.}\hfill \end{array}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}\frac{4x}{{y}^{\frac{1}{2}}}\hfill \end{array}

Simplify: \frac{{m}^{\frac{2}{3}}·{m}^{-\frac{1}{3}}}{{m}^{-\frac{5}{3}}} {\left(\frac{25{m}^{\frac{1}{6}}{n}^{\frac{11}{6}}}{{m}^{\frac{2}{3}}{n}^{-\frac{1}{6}}}\right)}^{\frac{1}{2}}.

{m}^{2}\frac{5n}{{m}^{\frac{1}{4}}}

Simplify: \frac{{u}^{\frac{4}{5}}·{u}^{-\frac{2}{5}}}{{u}^{-\frac{13}{5}}} {\left(\frac{27{x}^{\frac{4}{5}}{y}^{\frac{1}{6}}}{{x}^{\frac{1}{5}}{y}^{-\frac{5}{6}}}\right)}^{\frac{1}{3}}.

{u}^{3}3{x}^{\frac{1}{5}}{y}^{\frac{1}{3}}

Access these online resources for additional instruction and practice with simplifying rational exponents.

Key Concepts

  • Rational Exponent {a}^{\frac{1}{n}}
    • If \sqrt[n]{a} is a real number and n\ge 2, then {a}^{\frac{1}{n}}=\sqrt[n]{a}.
  • Rational Exponent {a}^{\frac{m}{n}}
    • For any positive integers m and n,

      {a}^{\frac{m}{n}}={\left(\sqrt[n]{a}\right)}^{m} and {a}^{\frac{m}{n}}=\sqrt[n]{{a}^{m}}

  • Properties of Exponents
    • If a, b are real numbers and m, n are rational numbers, then
      • Product Property{a}^{m}·{a}^{n}={a}^{m+n}
      • Power Property{\left({a}^{m}\right)}^{n}={a}^{m·n}
      • Product to a Power{\left(ab\right)}^{m}={a}^{m}{b}^{m}
      • Quotient Property\frac{{a}^{m}}{{a}^{n}}={a}^{m-n},\phantom{\rule{0.2em}{0ex}}a\ne 0
      • Zero Exponent Definition{a}^{0}=1,a\ne 0
      • Quotient to a Power Property{\left(\frac{a}{b}\right)}^{m}=\frac{{a}^{m}}{{b}^{m}},\phantom{\rule{0.2em}{0ex}}b\ne 0
      • Negative Exponent Property{a}^{\text{−}n}=\frac{1}{{a}^{n}},a\ne 0

Practice Makes Perfect

Simplify expressions with {a}^{\frac{1}{n}}

In the following exercises, write as a radical expression.

{x}^{\frac{1}{2}}{y}^{\frac{1}{3}}{z}^{\frac{1}{4}}

\sqrt{x}\sqrt[3]{y}\sqrt[4]{z}

{r}^{\frac{1}{2}}{s}^{\frac{1}{3}}{t}^{\frac{1}{4}}

{u}^{\frac{1}{5}}{v}^{\frac{1}{9}}{w}^{\frac{1}{20}}

\sqrt[5]{u}\sqrt[9]{v}\sqrt[20]{w}

{g}^{\frac{1}{7}}{h}^{\frac{1}{5}}{j}^{\frac{1}{25}}

In the following exercises, write with a rational exponent.

\sqrt[7]{x}\sqrt[9]{y}\sqrt[5]{f}

\frac{1}{{x}^{7}}\frac{1}{{y}^{9}}{f}^{\frac{1}{5}}

\sqrt[8]{r}\sqrt[10]{s}\sqrt[4]{t}

\sqrt[3]{7c}\sqrt[7]{12d}2\sqrt[4]{6b}

{\left(7c\right)}^{\frac{1}{4}}{\left(12d\right)}^{\frac{1}{7}}

2{\left(6b\right)}^{\frac{1}{4}}

\sqrt[4]{5x}\sqrt[8]{9y}7\sqrt[5]{3z}

\sqrt{21p}\sqrt[4]{8q}4\sqrt[6]{36r}

{\left(21p\right)}^{\frac{1}{2}}{\left(8q\right)}^{\frac{1}{4}}

4{\left(36r\right)}^{\frac{1}{6}}

\sqrt[3]{25a}\sqrt{3b}\sqrt[8]{40c}

In the following exercises, simplify.

{81}^{\frac{1}{2}}

{125}^{\frac{1}{3}}

{64}^{\frac{1}{2}}

9 5 8

{625}^{\frac{1}{4}}

{243}^{\frac{1}{5}}

{32}^{\frac{1}{5}}

{16}^{\frac{1}{4}}

{16}^{\frac{1}{2}}

{625}^{\frac{1}{4}}

2 4 5

{64}^{\frac{1}{3}}

{32}^{\frac{1}{5}}

{81}^{\frac{1}{4}}

{\left(-216\right)}^{\frac{1}{3}}

\text{−}{216}^{\frac{1}{3}}

{\left(216\right)}^{-\frac{1}{3}}

-6-6\frac{1}{6}

{\left(-1000\right)}^{\frac{1}{3}}

\text{−}{1000}^{\frac{1}{3}}

{\left(1000\right)}^{-\frac{1}{3}}

{\left(-81\right)}^{\frac{1}{4}}

\text{−}{81}^{\frac{1}{4}}

{\left(81\right)}^{-\frac{1}{4}}

not real -3 \frac{1}{3}

{\left(-49\right)}^{\frac{1}{2}}

\text{−}{49}^{\frac{1}{2}}

{\left(49\right)}^{-\frac{1}{2}}

{\left(-36\right)}^{\frac{1}{2}}

\text{−}{36}^{\frac{1}{2}}

{\left(36\right)}^{-\frac{1}{2}}

not real -6 \frac{1}{6}

{\left(-16\right)}^{\frac{1}{4}}

\text{−}{16}^{\frac{1}{4}}

{16}^{-\frac{1}{4}}

{\left(-100\right)}^{\frac{1}{2}}

\text{−}{100}^{\frac{1}{2}}

{\left(100\right)}^{-\frac{1}{2}}

not real -10 \frac{1}{10}

{\left(-32\right)}^{\frac{1}{5}}

{\left(243\right)}^{-\frac{1}{5}}

\text{−}{125}^{\frac{1}{3}}

Simplify Expressions with {a}^{\frac{m}{n}}

In the following exercises, write with a rational exponent.

\sqrt{{m}^{5}}

{\left(\sqrt[3]{3y}\right)}^{7}

\sqrt[5]{{\left(\frac{4x}{5y}\right)}^{3}}

{m}^{\frac{5}{2}}{\left(3y\right)}^{\frac{7}{3}}{\left(\frac{4x}{5y}\right)}^{\frac{3}{5}}

\sqrt[4]{{r}^{7}}

{\left(\sqrt[5]{2pq}\right)}^{3}

\sqrt[4]{{\left(\frac{12m}{7n}\right)}^{3}}

\sqrt[5]{{u}^{2}}

{\left(\sqrt[3]{6x}\right)}^{5}

\sqrt[4]{{\left(\frac{18a}{5b}\right)}^{7}}

{u}^{\frac{2}{5}}{\left(6x\right)}^{\frac{5}{3}}{\left(\frac{18a}{5b}\right)}^{\frac{7}{4}}

\sqrt[3]{a}

{\left(\sqrt[4]{21v}\right)}^{3}

\sqrt[4]{{\left(\frac{2xy}{5z}\right)}^{2}}

In the following exercises, simplify.

{64}^{\frac{5}{2}}

{81}^{\frac{-3}{2}}

{\left(-27\right)}^{\frac{2}{3}}

32,768 \frac{1}{729} 9

{25}^{\frac{3}{2}}

{9}^{-\frac{3}{2}}

{\left(-64\right)}^{\frac{2}{3}}

{32}^{\frac{2}{5}}

{27}^{-\frac{2}{3}}

{\left(-25\right)}^{\frac{1}{2}}

4 \frac{1}{9} not real

{100}^{\frac{3}{2}}

{49}^{-\frac{5}{2}}

{\left(-100\right)}^{\frac{3}{2}}

\text{−}{9}^{\frac{3}{2}}

\text{−}{9}^{-\frac{3}{2}}

{\left(-9\right)}^{\frac{3}{2}}

-27-\frac{1}{27} not real

\text{−}{64}^{\frac{3}{2}}

\text{−}{64}^{-\frac{3}{2}}

{\left(-64\right)}^{\frac{3}{2}}

Use the Laws of Exponents to Simplify Expressions with Rational Exponents

In the following exercises, simplify. Assume all variables are positive.

{c}^{\frac{1}{4}}·{c}^{\frac{5}{8}}

{\left({p}^{12}\right)}^{\frac{3}{4}}

\frac{{r}^{\frac{4}{5}}}{{r}^{\frac{9}{5}}}

{c}^{\frac{7}{8}}{p}^{9}\frac{1}{r}

{6}^{\frac{5}{2}}·{6}^{\frac{1}{2}}

{\left({b}^{15}\right)}^{\frac{3}{5}}

\frac{{w}^{\frac{2}{7}}}{{w}^{\frac{9}{7}}}

{y}^{\frac{1}{2}}·{y}^{\frac{3}{4}}

{\left({x}^{12}\right)}^{\frac{2}{3}}

\frac{{m}^{\frac{5}{8}}}{{m}^{\frac{13}{8}}}

{y}^{\frac{5}{4}}{x}^{8}\frac{1}{m}

{q}^{\frac{2}{3}}·{q}^{\frac{5}{6}}

{\left({h}^{6}\right)}^{\frac{4}{3}}

\frac{{n}^{\frac{3}{5}}}{{n}^{\frac{8}{5}}}

{\left(27{q}^{\frac{3}{2}}\right)}^{\frac{4}{3}}

{\left({a}^{\frac{1}{3}}{b}^{\frac{2}{3}}\right)}^{\frac{3}{2}}

81{q}^{2}{a}^{\frac{1}{2}}b

{\left(64{s}^{\frac{3}{7}}\right)}^{\frac{1}{6}}

{\left({m}^{\frac{4}{3}}{n}^{\frac{1}{2}}\right)}^{\frac{3}{4}}

{\left(16\phantom{\rule{0.2em}{0ex}}{u}^{\frac{1}{3}}\right)}^{\frac{3}{4}}

{\left(4\phantom{\rule{0.2em}{0ex}}{p}^{\frac{1}{3}}{q}^{\frac{1}{2}}\right)}^{\frac{3}{2}}

8{u}^{\frac{1}{4}}8{p}^{\frac{1}{2}}{q}^{\frac{3}{4}}

{\left(625\phantom{\rule{0.2em}{0ex}}{n}^{\frac{8}{3}}\right)}^{\frac{3}{4}}

{\left(9\phantom{\rule{0.2em}{0ex}}{x}^{\frac{2}{5}}{y}^{\frac{3}{5}}\right)}^{\frac{5}{2}}

\frac{{r}^{\frac{5}{2}}·{r}^{-\frac{1}{2}}}{{r}^{-\frac{3}{2}}}

{\left(\frac{36\phantom{\rule{0.2em}{0ex}}{s}^{\frac{1}{5}}{t}^{-\frac{3}{2}}}{{s}^{-\frac{9}{5}}{t}^{\frac{1}{2}}}\right)}^{\frac{1}{2}}

{r}^{\frac{7}{2}}\frac{6s}{t}

\frac{{a}^{\frac{3}{4}}·{a}^{-\frac{1}{4}}}{{a}^{-\frac{10}{4}}}

{\left(\frac{27\phantom{\rule{0.2em}{0ex}}{b}^{\frac{2}{3}}{c}^{-\frac{5}{2}}}{{b}^{-\frac{7}{3}}{c}^{\frac{1}{2}}}\right)}^{\frac{1}{3}}

\frac{{c}^{\frac{5}{3}}·{c}^{-\frac{1}{3}}}{{c}^{-\frac{2}{3}}}

{\left(\frac{8\phantom{\rule{0.2em}{0ex}}{x}^{\frac{5}{3}}\phantom{\rule{0.2em}{0ex}}{y}^{-\frac{1}{2}}}{27\phantom{\rule{0.2em}{0ex}}{x}^{-\frac{4}{3}}\phantom{\rule{0.2em}{0ex}}{y}^{\frac{5}{2}}}\right)}^{\frac{1}{3}}

{c}^{2}\frac{2x}{3y}

\frac{{m}^{\frac{7}{4}}·{m}^{-\frac{5}{4}}}{{m}^{-\frac{2}{4}}}

{\left(\frac{16\phantom{\rule{0.2em}{0ex}}{m}^{\frac{1}{5}}\phantom{\rule{0.2em}{0ex}}{n}^{\frac{3}{2}}}{81\phantom{\rule{0.2em}{0ex}}{m}^{\frac{9}{5}}\phantom{\rule{0.2em}{0ex}}{n}^{-\frac{1}{2}}}\right)}^{\frac{1}{4}}

Writing Exercises

Show two different algebraic methods to simplify {4}^{\frac{3}{2}}. Explain all your steps.

Answers will vary.

Explain why the expression {\left(-16\right)}^{\frac{3}{2}} cannot be evaluated.

Self Check

After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

This table has 4 rows and 4 columns. The first row is a header row and it labels each column. The first column header is “I can…”, the second is “Confidently”, the third is “With some help”, and the fourth is “No, I don’t get it”. Under the first column are the phrases “simplify expressions with a to the power of 1 divided by n.”, “simplify expression with a to the power of m divided by n”, and “use the laws of exponents to simplify expression with rational exponents”. The other columns are left blank so that the learner may indicate their mastery level for each topic.

What does this checklist tell you about your mastery of this section? What steps will you take to improve?

License

Icon for the Creative Commons Attribution 4.0 International License

Intermediate Algebra but cloned this time not imported Copyright © 2017 by OSCRiceUniversity is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book