13 Math 2362 – Symmetric matrices and diagonalization (7.2)

MATH 2362 – Symmetric matrices and diagonalization (7.2)

Example (last time): Diagonalize the symmetric matrix

A=[211121112]{“version”:”1.1″,”math”:”A=\left[\begin{array}{lll} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array}\right]”}

Characteristic polynominal: f(λ)=(λ1)2(λ4)

{“version”:”1.1″,”math”:”f(\lambda)=(\lambda-1)^{2}(\lambda-4)”}

Eigenvectors: λ=1:v1=[110],v2=[101] (and their non-zero linear combinations)

λ=4:v3=[111]{“version”:”1.1″,”math”:”\underline{\lambda=4}: \vec{v}_{3}=\left[\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right]”} (and its no-zero multiples)

Then P=[v1v2v3]=[111101011]{“version”:”1.1″,”math”:”P=\left[\begin{array}{lll} \vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3} \end{array}\right]=\left[\begin{array}{ccc} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right]”} diagonalizes A, with P1AP=D=[100010004]{“version”:”1.1″,”math”:”\small P^{-1} A P=D=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{array}\right]”}

 

 

Theorem: If A is symmetric, any two eigenvectors associated with distinct eigenvalues are orthogonal.

Definition: A square matrix P is called orthogonal is P is invertible and P1=PT.{“version”:”1.1″,”math”:”\small P^{-1}=P^{T} \text {. }”}

 

Theorem: A matrix is orthogonal if and only if the columns (and rows) of form an orthonormal set.

 

MATH 2362 – Orthogonal Diagonalization (7.2)

Defintion: A square matrix A is called orthogonally diagonalizable if there is an orthogonal matrix diagonalizing A, i.e. there is an orthogonal such that P1AP=D{“version”:”1.1″,”math”:”\small P^{-1} A P=D”}.

Theorem: An n matrix A is orthogonally diagonalizable if and only if A is symmetric.

Proof:

{“version”:”1.1″,”math”:”\small \Longleftarrow”}

Idea of proof: if is symmetric matrix, all its eigenspaces are full-dimensional (i.e. geometric multiplicity=algebraic multiplicity for every eigenvalue).

{“version”:”1.1″,”math”:”\small \Longrightarrow”}

 

Corollary: Symmetric matrices are always diagonalizable.

Example: Orthogonally diagonalize the symmetric matrix A=[211121112]{“version”:”1.1″,”math”:”\small A=\left[\begin{array}{lll} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array}\right]”}

 

Characteristic polynominal: f(λ)=(λ1)2(λ4){“version”:”1.1″,”math”:”\small f(\lambda)=(\lambda-1)^{2}(\lambda-4)”}

 

Eigenvectors:

λ=1:v1=[110],v2=[101]{“version”:”1.1″,”math”:”\underline{\lambda=1}: \vec{v}_{1}=\left[\begin{array}{c} -1 \\ 1 \\ 0 \end{array}\right], \vec{v}_{2}=\left[\begin{array}{c} -1 \\ 0 \\ 1 \end{array}\right]”} (and their non-zero linear combinations)

 

λ=4:v3=[111]{“version”:”1.1″,”math”:”\underline{\lambda=4}: \vec{v}_{3}=\left[\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right]”} (and its no-zero multiples)

Then P=[v1v2v3]=[111101011]{“version”:”1.1″,”math”:”P=\left[\begin{array}{lll} \vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3} \end{array}\right]=\left[\begin{array}{ccc} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right]”} diagonalizes A, with  P1AP=D=[100010004]{“version”:”1.1″,”math”:”\small P^{-1} A P=D=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{array}\right]”}

 

License

Langara Sandbox Copyright © by Luke McKnight. All Rights Reserved.

Share This Book