6.2 Multiply Polynomials

Learning Objectives

By the end of this section, you will be able to:

  • Multiply a polynomial by a monomial
  • Multiply a binomial by a binomial
  • Multiply a trinomial by a binomial

Multiply a Polynomial by a Monomial

We have used the Distributive Property to simplify expressions like 2\left(x-3\right). You multiplied both terms in the parentheses, x and 3, by 2, to get 2x-6. With this chapter’s new vocabulary, you can say you were multiplying a binomial, x-3, by a monomial, 2

Multiplying a binomial by a monomial is nothing new for you! Here’s an example:

EXAMPLE 1

Multiply: 4\left(x+3\right).

Solution
4 times x plus 3. Two arrows extend from 4, terminating at x and 3.
Distribute. 4 {\color{red}\cdot} x + 4 {\color{red}\cdot} 3
Simplify. 4x+12

TRY IT 1.1

Multiply: 5\left(x+7\right).

Show answer

5x+35

TRY IT 1.2

Multiply: 3\left(y+13\right).

Show answer

3y+39

EXAMPLE 2

Multiply: y\left(y-2\right).

Solution
y times y minus 2. Two arrows extend from the coefficient y, terminating at the y and minus 2 in parentheses.
Distribute. y {\color{red}\cdot} y - y {\color{red}\cdot} 2
Simplify. y^2-2y

TRY IT 2.1

Multiply: x\left(x-7\right).

Show answer

{x}^{2}-7x

TRY IT 2.2

Multiply: d\left(d-11\right).

Show answer

{d}^{2}-11d

EXAMPLE 3

Multiply: 7x\left(2x+y\right).

Solution
7 x times 2 x plus y. Two arrows extend from 7x, terminating at 2x and y.
Distribute. 7x {\color{red}\cdot} 2x + 7x {\color{red}\cdot} y
Simplify. 14x^2 + 7xy

TRY IT 3.1

Multiply: 5x\left(x+4y\right).

Show answer

5{x}^{2}+20xy

TRY IT 3.2

Multiply: 2p\left(6p+r\right).

Show answer

12{p}^{2}+2pr

EXAMPLE 4

Multiply: -2y\left(4{y}^{2}+3y-5\right).

Solution
Negative 2 y times 4 y squared plus 3 y minus 5. Three arrows extend from negative 2 y, terminating at 4 y squared, 3 y, and minus 5.
Distribute. -2 y {\color{red} \cdot} 4 y^2+(-2 y) {\color{red} \cdot} 3 y-(-2 y) {\color{red} \cdot} 5
Simplify. -8 y^3-6 y^2+10 y

TRY IT 4.1

Multiply: -3y\left(5{y}^{2}+8y-7\right).

Show answer

-15{y}^{3}-24{y}^{2}+21y

TRY IT 4.2

Multiply: 4{x}^{2}\left(2{x}^{2}-3x+5\right).

Show answer

8{x}^{4}-12{x}^{3}+20{x}^{2}

EXAMPLE 5

Multiply: 2{x}^{3}\left({x}^{2}-8x+1\right).

Solution
2 x cubed times x squared minus 8 x plus 1. Three arrows extend from 2 x cubed, terminating at x squared, minus 8 x, and 1.
Distribute. 2 x^3 {\color{red} \cdot} x^2+\left(2 x^3\right) {\color{red} \cdot}(-8 x)+\left(2 x^3\right) {\color{red} \cdot} 1
Simplify. 2 x^5-16 x^4+2 x^3

TRY IT 5.1

Multiply: 4x\left(3{x}^{2}-5x+3\right).

Show answer

12{x}^{3}-20{x}^{2}+12x

TRY IT 5.2

Multiply: -6{a}^{3}\left(3{a}^{2}-2a+6\right).

Show answer

-18{a}^{5}\ + 12{a}^{4}-36{a}^{3}

EXAMPLE 6

Multiply: \left(x+3\right)p.

Solution
The monomial is the second factor. x plus 3, in parentheses, times p. Two arrows extend from the p, terminating at x and 3.
Distribute. x {\color{red} \cdot} p + 3{\color{red} \cdot} p
Simplify. xp+3p

TRY IT 6.1

Multiply: \left(x+8\right)p.

Show answer

xp+8p

TRY IT 6.2

Multiply: \left(a+4\right)p.

Show answer

ap+4p

Multiply a Binomial by a Binomial

Just like there are different ways to represent multiplication of numbers, there are several methods that can be used to multiply a binomial times a binomial. We will start by using the Distributive Property.

Multiply a Binomial by a Binomial Using the Distributive Property

Look at the table below, where we multiplied a binomial by a monomial.

x plus 3, in parentheses, times p. Two arrows extend from the p, terminating at x and 3.
We distributed the p to get: x p plus 3 p.
What if we have (x + 7) instead of p? x plus 3 multiplied by x plus 7. Two arrows extend from x plus 7, terminating at the x and the 3 in the first binomial.
Distribute (x + 7). The sum of two products. The product of x and x plus 7, plus the product of 3 and x plus 7.
Distribute again. x squared plus 7 x plus 3 x plus 21.
Combine like terms. x squared plus 10 x plus 21.

Notice that before combining like terms, you had four terms. You multiplied the two terms of the first binomial by the two terms of the second binomial—four multiplications.

EXAMPLE 7

Multiply: \left(y+5\right)\left(y+8\right).

Solution
The product of two binomials, y plus 5 and y plus 8. Two arrows extend from y plus 8, terminating at the y and the 5 in the first binomial.
Distribute (y + 8). y {\color{red}{(y+8)}}+5{\color{red}{(y+8)}}
Distribute again y {\color{red}{\cdot}} y +y {\color{red}{\cdot}} 8 + 5 {\color{red}{\cdot}} y + 5 {\color{red}{\cdot}} 8

y^2+8 y+5 y+40

Combine like terms. y^2+13 y+40

TRY IT 7.1

Multiply: \left(x+8\right)\left(x+9\right).

Show answer

{x}^{2}+17x+72

TRY IT 7.2

Multiply: \left(5x+9\right)\left(4x+3\right).

Show answer

20{x}^{2}+51x+27

EXAMPLE 8

Multiply: \left(2y+5\right)\left(3y+4\right).

Solution
The product of two binomials, 2 y plus 5 and 3 y plus 4. Two arrows extend from 3y plus 4, terminating at 2y and 5 in the first binomial.
Distribute (3y + 4). 2 y {\color{red}(3 y+4)}+5 {\color{red}(3 y+4)}
Distribute again 2y {\color{red}{\cdot}} 3y + 2y {\color{red}{\cdot}} 4 + 5 {\color{red}{\cdot}} 3y + 5 {\color{red}{\cdot}} 4

6 y^2+8 y+15 y+20

Combine like terms. 6 y^2+23 y+20

TRY IT 8.1

Multiply: \left(3b+5\right)\left(4b+6\right).

Show answer

12{b}^{2}+38b+30

TRY IT 8.2

Multiply: \left(a+10\right)\left(a+7\right).

Show answer

{a}^{2}+17a+70

EXAMPLE 9

Multiply: \left(4y+3\right)\left(2y-5\right).

Solution
The product of two binomials, 4y plus 3 and 2 y minus 5. Two arrows extend from 2y minus 5, terminating at 4 y and 3 in the first binomial.
Distribute. 4 y {\color{red}{(2 y-5)}}+3{\color{red}{(2 y-5)}}
Distribute again. 4y {\color{red}{\cdot}} 2y + 4y {\color{red}{\cdot}} (-5) + 3 {\color{red}{\cdot}} 2y + 3 {\color{red}{\cdot}} (-5)

8 y^2-20 y+6 y-15

Combine like terms. 8 y^2-14 y-15

TRY IT 9.1

Multiply: \left(5y+2\right)\left(6y-3\right).

Show answer

30{y}^{2}-3y-6

TRY IT 9.2

Multiply: \left(3c+4\right)\left(5c-2\right).

Show answer

15{c}^{2}+14c-8

EXAMPLE 10

Multiply: \left(x+2\right)\left(x-y\right).

Solution
The product of two binomials, x minus 2 and x minus y. Two arrows extend from x minus y, terminating at x and 2 in the first binomial.
Distribute. x {\color{red}{(x-y)}}-2{\color{red}{(x-y)}}
Distribute again. x {\color{red}{\cdot}} (x) + x {\color{red}{\cdot}} (-y) + (-2) {\color{red}{\cdot}} (x) + (-2) {\color{red}{\cdot}} (-y)

x^2-x y-2 x+2 y

There are no like terms to combine. x^2-x y-2 x+2 y

TRY IT 10.1

Multiply: \left(a+7\right)\left(a-b\right).

Show answer

{a}^{2}-ab+7a-7b

TRY IT 10.2

Multiply: \left(x+5\right)\left(x-y\right).

Show answer

{x}^{2}-xy+5x-5y

Multiply a Binomial by a Binomial Using the FOIL Method

Remember that when you multiply a binomial by a binomial you get four terms. Sometimes you can combine like terms to get a trinomial, but sometimes, like in the above example, there are no like terms to combine.

Let’s look at the last example again and pay particular attention to how we got the four terms.

\begin{array}{c}\hfill \left(x-2\right)\left(x-y\right)\hfill \\ \hfill {x}^{2}-xy-2x+2y\hfill \end{array}

Where did the first term, {x}^{2}, come from?

This figure explains how to multiply a binomial using the FOIL method. It has two columns, with written instructions on the left and math on the right. At the top of the figure, the text in the left column says “It is the product of x and x, the first terms in x minus 2 and x minus y.” In the right column is the product of x minus 2 and x minus y. An arrow extends from the x in x minus 2, and terminates at the x in x minus y. Below this is the word “First.” One row down, the text in the left column says “The next terms, negative xy, is the product of x and negative y, the two outer terms.” In the right column is the product of x minus 2 and x minus y, with another arrow extending from the x in x minus 2 to the y in x minus y. Below this is the word “Outer.” One row down, the text in the left column says “The third term, negative 2 x, is the product of negative 2 and x, the two inner terms.” In the right column is the product of x minus 2 and x minus y with a third arrow extending from minus 2 in x minus 2 and terminating at the x in x minus y. Below this is the word “Inner.” In the last row, the text in the left column says “And the last term, plus 2y, came from multiplying the two last terms, negative 2 and negative y.” In the right column is the product of x minus 2 and x minus y, with a fourth arrow extending from the minus 2 in x minus 2 to the minus y in x minus y. Below this is the word “Last.”

We abbreviate “First, Outer, Inner, Last” as FOIL. The letters stand for ‘First, Outer, Inner, Last’. The word FOIL is easy to remember and ensures we find all four products.
FOIL image

(x-2)(x-y)

\begin{matrix}{x}^{2}- xy- 2x+ 2y \\ F \quad \enspace O \quad \enspace I \quad \enspace L \end{matrix}

Let’s look at \left(x+3\right)\left(x+7\right).

Distibutive Property FOIL
The product of x plus 3 and x plus 7. The product of x plus 3 and x plus y. An arrow extends from the x in x plus 3 to the x in x plus 7. A second arrow extends from the x in x plus 3 to the 7 in x plus 7. A third arrow extends from the 3 in x plus 3 to the x in x plus 7. A fourth arrow extends from the 3 in x plus 3 to the 7 in x plus 7.
The sum of two products, the product of x and x plus 7, and the product of 3 and x plus 7.
x squared plus 7 x plus 3 x plus 21. Below x squared is the letter F, below 7 x is the letter O, below 3 x is the letter I, and below 21 is the letter L, spelling FOIL. x squared plus 7 x plus 3 x plus 21. Below x squared is the letter F, below 7 x is the letter O, below 3 x is the letter I, and below 21 is the letter L, spelling FOIL.
x squared plus 10 x plus 21. x squared plus 10 x plus 21.

Notice how the terms in third line fit the FOIL pattern.

Now we will do an example where we use the FOIL pattern to multiply two binomials.

EXAMPLE 11

How to Multiply a Binomial by a Binomial using the FOIL Method

Multiply using the FOIL method: \left(x+5\right)\left(x+9\right).

Solution
\left(x+5\right)\left(x+9\right)
Step 1.
Multiply the First terms, \color{red} x \cdot x
the product of binomials x plus 5 and x plus 9. Below this is the product of x plus 5 and x plus 9 again, with an arrow extending from the x in the first binomial to the x in the second binomial.

 \begin{array}{ccccccc} {\color{red}{x^2}} & + & \rule{.5cm}{0.4pt} & + & \rule{.5cm}{0.4pt} & + & \rule{.5cm}{0.4pt} \\ F & & O & & I & & L \\ \end{array}

Step 2.
Multiply the Outer terms, \color{red} x \cdot 9
the product of x plus 5 and x plus 9 again, with an arrow extending from x in the first binomial to the 9 in the second binomial. \begin{array}{ccccccc} x^2 & {\color{red}{+}} &{\color{red}{9x}} & + & \rule{.5cm}{0.4pt} & + & \rule{.5cm}{0.4pt} \\ F & & O & & I & & L \\ \end{array}
Step 3.
Multiply the Inner terms, \color{red} 5 \cdot x
contains the product of x plus 5 and x plus 9 again, with an arrow extending from 5 in the first binomial to the x in the second binomial. \begin{array}{ccccccc} x^2 & + & 9x & + & {\color{red}{5x}} & + & \rule{.5cm}{0.4pt} \\ F & & O & & I & & L \\ \end{array}
Step 4.
Multiply the Last terms, \color{red} 5 \cdot 9
the product of x plus 5 and x plus 9 again, with an arrow extending from 5 in the first binomial to 9 in the second binomial. \begin{array}{ccccccc} x^2 & + & 9x & + & 5x & {\color{red}{+}}& {\color{red}{45}} \\ F & & O & & I & & L \\ \end{array}
Step 5. Combine like terms. x^2+14x+45

TRY IT 11.1

Multiply using the FOIL method: \left(x+6\right)\left(x+8\right).

Show answer

{x}^{2}+14x+48

TRY IT 11.2

Multiply using the FOIL method: \left(y+17\right)\left(y+3\right).

Show answer

{y}^{2}+20y+51

We summarize the steps of the FOIL method below. The FOIL method only applies to multiplying binomials, not other polynomials!

HOW TO: Multiply two binomials using the FOIL method

.

When you multiply by the FOIL method, drawing the lines will help your brain focus on the pattern and make it easier to apply.

EXAMPLE 12

Multiply: \left(y-7\right)\left(y+4\right).

Solution
\left(y-7\right)\left(y+4\right)
Multiply the First terms, \color{red} y \cdot y This image shows the product of two binomials, y minus 7 and y plus 4, with an arrow extending from the y in the first binomial to the y in the second binomial.

 \begin{array}{ccccccc} {\color{red}{y^2}} & + & \rule{.5cm}{0.4pt} & + & \rule{.5cm}{0.4pt} & + & \rule{.5cm}{0.4pt} \\ F & & O & & I & & L \\ \end{array}

Multiply the Outer terms, \color{red} y \cdot 4 This image shows the product of y minus 7 and y plus 4 again, with a second arrow extending from y in the first binomial to 4 in the second binomial. \begin{array}{ccccccc} y^2 & {\color{red}{+}} &{\color{red}{4y}} & + & \rule{.5cm}{0.4pt} & + & \rule{.5cm}{0.4pt} \\ F & & O & & I & & L \\ \end{array}
Multiply the Inner terms, \color{red} -7 \cdot y This image shows the product of y minus 7 and y plus 4 again, with a third arrow extending from the minus 7 in the first binomial to the y in the second binomial. \begin{array}{ccccccc} y^2 & + & 4y & {\color{red}{-}} & {\color{red}{7y}} & + & \rule{.5cm}{0.4pt} \\ F & & O & & I & & L \\ \end{array}
Multiply the Last terms, \color{red} -7 \cdot 4 This image shows the product of y minus 7 and y plus 4 again, with a fourth arrow extending from minus 7 in the first binomial to 4 in the second binomial. \begin{array}{ccccccc} y^2 & + & 4y & - & 7y & {\color{red}{-}}& {\color{red}{28}} \\ F & & O & & I & & L \\ \end{array}
Combine like terms. y^2-3y-28

 

TRY IT 12.1

Multiply: \left(x-7\right)\left(x+5\right).

Show answer

{x}^{2}-2x-35

TRY IT 12.2

Multiply: \left(b-3\right)\left(b+6\right).

Show answer

{b}^{2}+3b-18

EXAMPLE 13

Multiply: \left(4x+3\right)\left(2x-5\right).

Solution
\left(4x+3\right)\left(2x-5\right)
Multiply the First terms, \color{red} 4x \cdot 2x

 \begin{array}{ccccccc} {\color{red}{8x^2}} & + & \rule{.5cm}{0.4pt} & + & \rule{.5cm}{0.4pt} & + & \rule{.5cm}{0.4pt} \\ F & & O & & I & & L \\ \end{array}

Multiply the Outer terms, \color{red} 4x \cdot (-5) \begin{array}{ccccccc} 8x^2 & {\color{red}{-}} &{\color{red}{20x}} & + & \rule{.5cm}{0.4pt} & + & \rule{.5cm}{0.4pt} \\ F & & O & & I & & L \\ \end{array}
Multiply the Inner terms, \color{red} 3 \cdot 2x \begin{array}{ccccccc} 8x^2 & - & 20x & {\color{red}{+}} & {\color{red}{6x}} & + & \rule{.5cm}{0.4pt} \\ F & & O & & I & & L \\ \end{array}
Multiply the Last terms, \color{red} 3 \cdot (-5) \begin{array}{ccccccc} 8x^2 & - &20x & + & 6x & {\color{red}{-}}& {\color{red}{15}} \\ F & & O & & I & & L \\ \end{array}
Combine like terms. 8x^2-14x-15

 

TRY IT 13.1

Multiply: \left(3x+7\right)\left(5x-2\right).

Show answer

15{x}^{2}+29x-14

TRY IT 13.2

Multiply: \left(4y+5\right)\left(4y-10\right).

Show answer

16{y}^{2}-20y-50

The final products in the last four examples were trinomials because we could combine the two middle terms. This is not always the case.

EXAMPLE 14

Multiply: \left(3x-y\right)\left(2x-5\right).

Solution
\left(3x-y\right)\left(2x-5\right) An arrow extends from 3 x in the first binomial to 2 x in the second binomial. A second arrow extends from 3 x in the first binomial to minus 5 in the second binomial. A third arrow extends from y in the first binomial to 2 x in the second binomial. A fourth arrow extends from y in the first binomial to minus 5 in the second binomial.
Multiply the First. \begin{array}{ccccccc} {\color{red}{6x^2}} & + & \rule{0.5cm}{0.4pt} & + & \rule{0.5cm}{0.4pt} &+& \rule{0.5cm}{0.4pt} \\ F&&O&&I&&L \end{array}
Multiply the Outer. \begin{array}{ccccccc} 6x^2 & {\color{red}{-}} & {\color{red}{15x}} & + & \rule{0.5cm}{0.4pt} &+& \rule{0.5cm}{0.4pt} \\ F&&O&&I&&L \end{array}
Multiply the Inner. \begin{array}{ccccccc} 6x^2 & - & 15x & {\color{red}{-}} & {\color{red}{2xy}} &+& \rule{0.5cm}{0.4pt} \\ F&&O&&I&&L \end{array}
Multiply the Last. \begin{array}{ccccccc} 6x^2 & - & 15x & - & 2xy & {\color{red}{+}}& {\color{red}{5y}} \\ F&&O&&I&&L \end{array}
Combine like terms—there are none. 6 x^2-15 x-2 x y+5 y

TRY IT 14.1

Multiply: \left(10c-d\right)\left(c-6\right).

Show answer

10{c}^{2}-60c-cd+6d

TRY IT 14.2

Multiply: \left(7x-y\right)\left(2x-5\right).

Show answer

14{x}^{2}-35x-2xy+5y

Be careful of the exponents in the next example.

EXAMPLE 15

Multiply: \left({n}^{2}+4\right)\left(n-1\right).

Solution
\left({n}^{2}+4\right)\left(n-1\right) The product of two binomials, n squared plus 4 and n minus 1. An arrow extends from n squared in the first binomial to n in the second binomial. A second arrow extends from n squared in the first binomial to minus 1 in the second binomial. A third arrow extends from 4 in the first binomial to n in the second binomial. A fourth arrow extends from 4 in the first binomial to minus 1 in the second binomial.
Multiply the First. \begin{array}{ccccccc} {\color{red}{n^3}} & + & \rule{0.5cm}{0.4pt} & + & \rule{0.5cm}{0.4pt} &+& \rule{0.5cm}{0.4pt} \\ F&&O&&I&&L \end{array}
Multiply the Outer. \begin{array}{ccccccc} n^3 & {\color{red}{-}} & {\color{red}{n^2}} & + & \rule{0.5cm}{0.4pt} &+& \rule{0.5cm}{0.4pt} \\ F&&O&&I&&L \end{array}
Multiply the Inner. \begin{array}{ccccccc} n^3 & - & n^2 & + & {\color{red}{4n}} &+& \rule{0.5cm}{0.4pt} \\ F&&O&&I&&L \end{array}
Multiply the Last. \begin{array}{ccccccc} n^3 & - & n^2 & + & 4n & {\color{red}{-}}& {\color{red}{4}} \\ F&&O&&I&&L \end{array}
Combine like terms—there are none. n^3-n^2+4 n-4

TRY IT 15.1

Multiply: \left({x}^{2}+6\right)\left(x-8\right).

Show answer

{x}^{3}-8{x}^{2}+6x-48

TRY IT 15.2

Multiply: \left({y}^{2}+7\right)\left(y-9\right).

Show answer

{y}^{3}-9{y}^{2}+7y-63

EXAMPLE 16

Multiply: \left(3pq+5\right)\left(6pq-11\right).

Solution
(3pq+5)(6pq-11) The product of two binomials, 3 p q plus 5 and 6 p q minus 11. An arrow extends from 3 p q in the first binomial to 6 p q in the second binomial. A second arrow extends from 3 p q in the first binomial to minus 11 in the second binomial. A third arrow extends from 5 in the first binomial to 6 p q in the second binomial. A fourth arrow extends from 5 in the first binomial to minus 11 in the second binomial.
Multiply the First.

 \begin{array}{ccccccc} {\color{red}{18p^2q^2}} & + & \rule{.5cm}{0.4pt} & + & \rule{.5cm}{0.4pt} & + & \rule{.5cm}{0.4pt} \\ F & & O & & I & & L \\ \end{array}

Multiply the Outer. \begin{array}{ccccccc} 18p^2q^2 & {\color{red}{-}} &{\color{red}{33pq}} & + & \rule{.5cm}{0.4pt} & + & \rule{.5cm}{0.4pt} \\ F & & O & & I & & L \\ \end{array}
Multiply the Inner. \begin{array}{ccccccc} 18p^2q^2 & - &33pq & {\color{red}{+}} & {\color{red}{30pq}} & + & \rule{.5cm}{0.4pt} \\ F & & O & & I & & L \\ \end{array}
Multiply the Last. \begin{array}{ccccccc} 18p^2q^2 & - &33pq & + & 30pq & {\color{red}{-}}& {\color{red}{55}} \\ F & & O & & I & & L \\ \end{array}
Combine like terms. 18 p^2 q^2-3 p q-55

TRY IT 16.1

Multiply: \left(2ab+5\right)\left(4ab-4\right).

Show answer

8{a}^{2}{b}^{2}+12ab-20

TRY IT 16.2

Multiply: \left(2xy+3\right)\left(4xy-5\right).

Show answer

8{x}^{2}{y}^{2}+2xy-15

Multiply a Binomial by a Binomial Using the Vertical Method

The FOIL method is usually the quickest method for multiplying two binomials, but it only works for binomials. You can use the Distributive Property to find the product of any two polynomials. Another method that works for all polynomials is the Vertical Method. It is very much like the method you use to multiply whole numbers. Look carefully at this example of multiplying two-digit numbers.

This figure shows the vertical multiplication of 23 and 46. The number 23 is above the number 46. Below this, there is the partial product 138 over the partial product 92. The final product is at the bottom and is 1058. Text on the right side of the image says “Start by multiplying 23 by 6 to get 138. Next, multiply 23 by 4, lining up the partial product in the correct columns. Last you add the partial products.”

Now we’ll apply this same method to multiply two binomials.

EXAMPLE 17

Multiply using the Vertical Method: \left(3y-1\right)\left(2y-6\right).

Solution

It does not matter which binomial goes on the top.

Setup for Vertical multiplication \begin{array}{r} 3y-1 \\ \times \quad {\color{blue}{ 2y}}- {\color{red}{6}} \\ \hline \end{array}
Multiply 3y-1 by \color{red} -6
Multiple 3y-1 by \color{blue} 2y
\begin{array}{r} {\color{red}{-18y+6}} \\ {\color{blue}{6{y}^{2} -2y}} \hspace{0.9cm} \\ \hline \end{array} Partial Product -18y+6
Partial Product 6{y}^{2} -2y
Add like terms. 6y^2 \hspace{0.2cm} -20 y \hspace{0.2cm} +6 Product 6{y}^{2} - 20y+6

If you use the FOIL method to multiply these binomials you will notice that the partial products are the same as the terms in the FOIL method.

TRY IT 17.1

Multiply using the Vertical Method: \left(5m-7\right)\left(3m-6\right).

Show answer

15{m}^{2}-51m+42

TRY IT 17.2

Multiply using the Vertical Method: \left(6b-5\right)\left(7b-3\right).

Show answer

42{b}^{2}-53b+15

We have now used three methods for multiplying binomials. Be sure to practice each method, and try to decide which one you prefer. The methods are listed here all together, to help you remember them.

HOW TO: Multiplying Two Binomials

To multiply binomials, use the:

    • Distributive Property
    • FOIL Method
    • Vertical Method

Remember, FOIL only works when multiplying two binomials.

Multiply a Trinomial by a Binomial

We have multiplied monomials by monomials, monomials by polynomials, and binomials by binomials. Now we’re ready to multiply a trinomial by a binomial. Remember, FOIL will not work in this case, but we can use either the Distributive Property or the Vertical Method. We first look at an example using the Distributive Property.

EXAMPLE 18

Multiply using the Distributive Property: \left(b+3\right)\left(2{b}^{2}-5b+8\right).

Solution
The product of a binomial, b plus 3, and a trinomial, 2 b squared minus 5 b plus 8. Two arrows extend from the trinomial, terminating at b and 3 in the binomial.
Distribute. The sum of two products, the product of b and 2 b squared minus 5 b plus 8, and the product of 3 and 2 b squared minus 5 b plus 8.
Multiply. 2 b^3-5b^2+8b+6b^2-15 b+24
Combine like terms. 2 b^3+b^2-7 b+24

TRY IT 18.1

Multiply using the Distributive Property: \left(y-3\right)\left({y}^{2}-5y+2\right).

Show answer

{y}^{3}-8{y}^{2}+17y-6

TRY IT 18.2

Multiply using the Distributive Property: \left(x+4\right)\left(2{x}^{2}-3x+5\right).

Show answer

2{x}^{3}+5{x}^{2}-7x+20

Now let’s do this same multiplication using the Vertical Method.

EXAMPLE 19

Multiply using the Vertical Method: \left(b+3\right)\left(2{b}^{2}-5b+8\right).

Solution

It is easier to put the polynomial with fewer terms on the bottom because we get fewer partial products this way.

Rewrite the question in vertical setup \begin{array}{r} 2 b^2-5 b+8 \\ \times \quad {\color{blue}{ b}}+ {\color{red}{3}} \\ \hline \end{array}
Multiply (2b2 − 5b + 8) by \color{red}3.
Multiply (2b2 − 5b + 8) by \color{blue}b.
\begin{array}{r} {\color{red}{6 b^2-15 b+24}} \\ {\color{blue}{2b^3-5b^2+8b}} \hspace{0.9cm} \\ \hline \end{array}
Add like terms. 2 b^3  +b^2 \hspace{0.2cm} -7 b \hspace{0.2cm} +24
There are no more like terms that can be collected. 2 b^3+b^2-7 b+24

TRY IT 19.1

Multiply using the Vertical Method: \left(y-3\right)\left({y}^{2}-5y+2\right).

Show answer

{y}^{3}-8{y}^{2}+17y-6

TRY IT 19.2

Multiply using the Vertical Method: \left(x+4\right)\left(2{x}^{2}-3x+5\right).

Show answer

2{x}^{3}+5{x}^{2}-7x+20

We have now seen two methods you can use to multiply a trinomial by a binomial. After you practice each method, you’ll probably find you prefer one way over the other. We list both methods are listed here, for easy reference.

HOW TO: Multiply a Trinomial by a Binomial

To multiply a trinomial by a binomial, use the:

  • Distributive Property
  • Vertical Method

Access these online resources for additional instruction and practice with multiplying polynomials:

Key Concepts

  • FOIL Method for Multiplying Two Binomials—To multiply two binomials:
    1. Multiply the First terms.
    2. Multiply the Outer terms.
    3. Multiply the Inner terms.
    4. Multiply the Last terms.
  • Multiplying Two Binomials—To multiply binomials, use the:
  • Multiplying a Trinomial by a Binomial—To multiply a trinomial by a binomial, use the:

Practice Makes Perfect

Multiply a Polynomial by a Monomial

In the following exercises, multiply.

1. 4\left(w+10\right) 2. 6\left(b+8\right)
3. -3\left(a+7\right) 4. -5\left(p+9\right)
5. 2\left(x-7\right) 6. 7\left(y-4\right)
7. -3\left(k-4\right) 8. -8\left(j-5\right)
9. q\left(q+5\right) 10. k\left(k+7\right)
11. -b\left(b+9\right) 12. -y\left(y+3\right)
13. -x\left(x-10\right) 14. -p\left(p-15\right)
15. 6r\left(4r+s\right) 16. 5c\left(9c+d\right)
17. 12x\left(x-10\right) 18. 9m\left(m-11\right)
19. -9a\left(3a+5\right) 20. -4p\left(2p+7\right)
21. 3\left({p}^{2}+10p+25\right) 22. 6\left({y}^{2}+8y+16\right)
23. -8x\left({x}^{2}+2x-15\right) 24. -5t\left({t}^{2}+3t-18\right)
25. 5{q}^{3}\left({q}^{3}-2q+6\right) 26. 4{x}^{3}\left({x}^{4}-3x+7\right)
27. -8y\left({y}^{2}+2y-15\right) 28. -5m\left({m}^{2}+3m-18\right)
29. 5{q}^{3}\left({q}^{2}-2q+6\right) 30. 9{r}^{3}\left({r}^{2}-3r+5\right)
31. -4{z}^{2}\left(3{z}^{2}+12z-1\right) 32. -3{x}^{2}\left(7{x}^{2}+10x-1\right)
33. \left(2m-9\right)m 34. \left(8j-1\right)j
35. \left(w-6\right)\cdot 8 36. \left(k-4\right)\cdot 5
37. 4\left(x+10\right) 38. 6\left(y+8\right)
39. 15\left(r-24\right) 40. 12\left(v-30\right)
41. -3\left(m+11\right) 42. -4\left(p+15\right)
43. -8\left(z-5\right) 44. -3\left(x-9\right)
45. u\left(u+5\right) 46. q\left(q+7\right)
47. n\left({n}^{2}-3n\right) 48. s\left({s}^{2}-6s\right)
49. 6x\left(4x+y\right) 50. 5a\left(9a+b\right)
51. 5p\left(11p-5q\right) 52. 12u\left(3u-4v\right)
53. 3\left({v}^{2}+10v+25\right) 54. 6\left({x}^{2}+8x+16\right)
55. 2n\left(4{n}^{2}-4n+1\right) 56. 3r\left(2{r}^{2}-6r+2\right)
57. -8y\left({y}^{2}+2y-15\right) 58. 5m\left({m}^{2}+3m+8\right)
59. 5{q}^{3}\left({q}^{2}-2q+6\right) 60. 9{r}^{3}\left({r}^{2}-3r+5\right)
61. -4{z}^{2}\left(3{z}^{2}+12z-1\right) 62. -3{x}^{2}\left(7{x}^{2}+10x-1\right)
63. \left(2y-9\right)y 64. \left(8b-1\right)b

Multiply a Binomial by a Binomial

In the following exercises, multiply the following binomials using: a) the Distributive Property b) the FOIL method c) the Vertical Method.

65. \left(w+5\right)\left(w+7\right) 66. \left(y+9\right)\left(y+3\right)
67. \left(p+11\right)\left(p-4\right) 68. \left(q+4\right)\left(q-8\right)

In the following exercises, multiply the binomials. Use any method.

69. \left(x+8\right)\left(x+3\right) 70. \left(y+7\right)\left(y+4\right)
71. \left(y-6\right)\left(y-2\right) 72. \left(x-7\right)\left(x-2\right)
73. \left(w-4\right)\left(w+7\right) 74. \left(q-5\right)\left(q+8\right)
75. \left(p+12\right)\left(p-5\right) 76. \left(m+11\right)\left(m-4\right)
77. \left(6p+5\right)\left(p+1\right) 78. \left(7m+1\right)\left(m+3\right)
79. \left(2t-9\right)\left(10t+1\right) 80. \left(3r-8\right)\left(11r+1\right)
81. \left(5x-y\right)\left(3x-6\right) 82. \left(10a-b\right)\left(3a-4\right)
83. \left(a+b\right)\left(2a+3b\right) 84. \left(r+s\right)\left(3r+2s\right)
85. \left(4z-y\right)\left(z-6\right) 86. \left(5x-y\right)\left(x-4\right)
87. \left({x}^{2}+3\right)\left(x+2\right) 88. \left({y}^{2}-4\right)\left(y+3\right)
89. \left({x}^{2}+8\right)\left({x}^{2}-5\right) 90. \left({y}^{2}-7\right)\left({y}^{2}-4\right)
91. \left(5ab-1\right)\left(2ab+3\right) 92. \left(2xy+3\right)\left(3xy+2\right)
93. \left(6pq-3\right)\left(4pq-5\right) 94. \left(3rs-7\right)\left(3rs-4\right)


Multiply a Trinomial by a Binomial

In the following exercises, multiply using a) the Distributive Property b) the Vertical Method.

95. \left(x+5\right)\left({x}^{2}+4x+3\right) 96. \left(u+4\right)\left({u}^{2}+3u+2\right)
97. \left(y+8\right)\left(4{y}^{2}+y-7\right) 98. \left(a+10\right)\left(3{a}^{2}+a-5\right)

In the following exercises, multiply. Use either method.

99. \left(w-7\right)\left({w}^{2}-9w+10\right) 100. \left(p-4\right)\left({p}^{2}-6p+9\right)
101. \left(3q+1\right)\left({q}^{2}-4q-5\right) 102. \left(6r+1\right)\left({r}^{2}-7r-9\right)

Mixed Practice

103. \left(10y-6\right)+\left(4y-7\right) 104. \left(15p-4\right)+\left(3p-5\right)
105. \left({x}^{2}-4x-34\right)-\left({x}^{2}+7x-6\right) 106. \left({j}^{2}-8j-27\right)-\left({j}^{2}+2j-12\right)
107. 5q\left(3{q}^{2}-6q+11\right) 108. 8t\left(2{t}^{2}-5t+6\right)
109. \left(s-7\right)\left(s+9\right) 110. \left(x-5\right)\left(x+13\right)
111. \left({y}^{2}-2y\right)\left(y+1\right) 112. \left({a}^{2}-3a\right)\left(4a+5\right)
113. \left(3n-4\right)\left({n}^{2}+n-7\right) 114. \left(6k-1\right)\left({k}^{2}+2k-4\right)
115. \left(7p+10\right)\left(7p-10\right) 116. \left(3y+8\right)\left(3y-8\right)
117. \left(4{m}^{2}-3m-7\right){m}^{2} 118. \left(15{c}^{2}-4c+5\right){c}^{4}
119. \left(5a+7b\right)\left(5a+7b\right) 120. \left(3x-11y\right)\left(3x-11y\right)
121. \left(4y+12z\right)\left(4y-12z\right)

Everyday Math

122. Mental math You can use binomial multiplication to multiply numbers without a calculator. Say you need to multiply 13 times 15. Think of 13 as 10+3 and 15 as 10+5.

  1. Multiply \left(10+3\right)\left(10+5\right) by the FOIL method.
  2. Multiply 13\cdot 15 without using a calculator.
  3. Which way is easier for you? Why?

123. Mental math You can use binomial multiplication to multiply numbers without a calculator. Say you need to multiply 18 times 17. Think of 18 as 20-2 and 17 as 20-3.

  1. Multiply \left(20-2\right)\left(20-3\right) by the FOIL method.
  2. Multiply 18\cdot 17 without using a calculator.
  3. Which way is easier for you? Why?

Writing Exercises

124. Which method do you prefer to use when multiplying two binomials: the Distributive Property, the FOIL method, or the Vertical Method? Why? 125. Which method do you prefer to use when multiplying a trinomial by a binomial: the Distributive Property or the Vertical Method? Why?

126. Multiply the following:

\begin{array}{c}\left(x+2\right)\left(x-2\right)\hfill \\ \left(y+7\right)\left(y-7\right)\hfill \\ \left(w+5\right)\left(w-5\right)\hfill \end{array}

Explain the pattern that you see in your answers.

127. Multiply the following:

\begin{array}{c}\left(m-3\right)\left(m+3\right)\hfill \\ \left(n-10\right)\left(n+10\right)\hfill \\ \left(p-8\right)\left(p+8\right)\hfill \end{array}

Explain the pattern that you see in your answers.

128. Multiply the following:

\begin{array}{c}\left(p+3\right)\left(p+3\right)\hfill \\ \left(q+6\right)\left(q+6\right)\hfill \\ \left(r+1\right)\left(r+1\right)\hfill \end{array}

Explain the pattern that you see in your answers.

129. Multiply the following:

\begin{array}{c}\left(x-4\right)\left(x-4\right)\hfill \\ \left(y-1\right)\left(y-1\right)\hfill \\ \left(z-7\right)\left(z-7\right)\hfill \end{array}

Explain the pattern that you see in your answers.

Answers

1. 4w+40 3. -3a-21
5. 2x-14 7. -3k+12
9. {q}^{2}+5q 11. \text{-}{b}^{2}-9b
13. \text{-}{x}^{2}+10x 15. 24{r}^{2}+6rs
17. 12{x}^{2}-120x 19. -27{a}^{2}-45a
21. 3{p}^{2}+30p+75 23. -8{x}^{3}-16{x}^{2}+120x
25. 5{q}^{6}-10{q}^{4}+30{q}^{3} 27. -8{y}^{3}-16{y}^{2}+120y
29. 5{q}^{5}-10{q}^{4}+30{q}^{3} 31. -12{z}^{4}-48{z}^{3}+4{z}^{2}
33. 2{m}^{2}-9m 35. 8w-48
37. 4x+40 39. 15r-360
41. -3m-33 43. -8z+40
45. {u}^{2}+5u 47. {n}^{3}-3{n}^{2}
49. 24{x}^{2}+6xy 51. 55{p}^{2}-25pq
53. 3{v}^{2}+30v+75 55. 8{n}^{3}-8{n}^{2}+2n
57. -8{y}^{3}-16{y}^{2}+120y 59. 5{q}^{5}-10{q}^{4}+30{q}^{3}
61. -12{z}^{4}-48{z}^{3}+4{z}^{2} 63. 2{y}^{2}-9y
65. {w}^{2}+12w+35 67. {p}^{2}+7p-44
69. {x}^{2}+11x+24 71. {y}^{2}-8y+12
73. {w}^{2}+3w-28 75. {p}^{2}+7p-60
77. 6{p}^{2}+11p+5 79. 20{t}^{2}-88t-9
81. 15{x}^{2}-3xy-30x+6y 83. 2{a}^{2}+5ab+3{b}^{2}
85. 4{z}^{2}-24z-zy+6y 87. {x}^{3}+2{x}^{2}+3x+6
89. {x}^{4}+3{x}^{2}-40 91. 10{a}^{2}{b}^{2}+13ab-3
93. 24{p}^{2}{q}^{2}-42pq+15 95. {x}^{3}+9{x}^{2}+23x+15
97. 4{y}^{3}+33{y}^{2}+y-56 99. {w}^{3}-16{w}^{2}+73w-70
101. 3{q}^{3}-11{q}^{2}-19q-5 103. 14y-13
105. -11x-28 107. 15{q}^{3}-30{q}^{2}+55q
109. {s}^{2}+2s-63 111. {y}^{3}-{y}^{2}-2y
113. 3{n}^{3}-{n}^{2}-25n+28 115. 49{p}^{2}-100
117. 4{m}^{4}-3{m}^{3}-7{m}^{2} 119. 25{a}^{2}+70ab+49{b}^{2}
121. 16{y}^{2}-144{z}^{2} 123. a) 306 b) 306 c) Answers will vary.
125. Answers will vary. 127.
{m}^2-9
{n}^2-100
{p}^2-64
Answers will vary.
129.
{x}^2-8x+16
{y}^2-2y+1
{z}^2-14z+49
Answers will vary.

Attributions

This chapter has been adapted from “Multiply Polynomials” in Prealgebra (OpenStax) by Lynn Marecek, MaryAnne Anthony-Smith, and Andrea Honeycutt Mathis, which is under a CC BY 4.0 Licence. Adapted by Izabela Mazur. See the Copyright page for more information.

License

Icon for the Creative Commons Attribution 4.0 International License

Intermediate Algebra II Copyright © 2021 by Pooja Gupta is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book