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About the Book 

Strength of Materials is a topic taught in all Mechanical Engineering related programs and as such is part 
of the Power and Process Engineering curriculum in British Columbia Institute of Technology (BCIT). 
The course continues developing the engineering foundation set in Principles of Statics and Applied 
Mechanics, taught to second year Power and Process students in Level 1.  Successful completion of the 
course helps Power Engineering (PE) graduates fast track their careers as the topic is part of their 2nd 

and 1st class examinations curriculum. 
The delivery of Strength of Materials course to Power Engineering students is centered around 

the open textbook written by Dr. Barry Dupen, Associate Professor in the Mechanical Engineering 
Technology Department of Indiana University – Purdue University Fort Wayne.  The text book is 
licensed under Creative Commons Attribution 

1
 and is available for download here: 

Applied Strength of Materials for Engineering Technology 
It was Dr. Dupen’s intention to not include end of the chapter questions as he provides new sets with 

every course delivery.  This gave us the opportunity and challenge to create our own problem sets. The 
problems were developed (or selected) in such way that they are relevant to Power Engineers. At the 
same time, when we felt that further summaries or procedures would enhance the learning process and 
help to our students, we added them. The focus of the “Supplement” is mostly on the “Applied” attribute 
of Strength of Materials discipline while still summarizing some theoretical aspects. 

 

1. ShareAlike 4.0 International (CC BY-SA 4.0) 
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Preface 

A fact well know to students and acknowledged by educators is that college and university textbooks are 
expensive and not having access to one may affect students’ success.  Typically, these books establish 
the knowledge foundation of lucrative careers and are also part of the technical library of many working 
professionals. 

In BCIT we have delivered this course following the “Applied Strength of Materials” textbook written 
by Robert L. Mott.  In my years of teaching the subject, alongside with the students, we have used the 
4th and 5th edition of the textbook.  I often noticed that students could not afford the bookstore textbook 
or they had “international” paperback editions.  When the cost of such a textbook was about 15% of the 
original one, I found it hard to reason with them.  For a few years the textbook was discontinued by the 
publisher and our institute managed to secure internal publishing rights on a cost-recovery basis.  Things 
changed again when the textbook was upgraded to the 6th Edition, undoubtedly improved but also more 
expensive.  And this brings us to the current textbook… 

I was pleasantly surprised to find a first-rate Strength of Materials textbook that covers all the topics 
that our students need (and then some)… and free.  The textbook that we follow in this course is written 
by Dr. Barry Dupen, Associate Professor in the Mechanical Engineering Technology Department of 
Indiana University – Purdue University Fort Wayne. 
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Introduction and Units 

Units 

Learning Objectives 

At the end of this introductory chapter you should be able to 

• Demonstrate familiarity with the study procedure, performance expectations and components 
of the course 

• Perform units conversions problems within SI and US Customary systems 

Study procedure 

Delivery of this course is based on the Applied Strength of Materials for Engineering Technology, by 
Dr. Barry Dupen.  This resource will be referred to as the “textbook“. 

To complement the textbook students have access to the current resource, further identified as 
“supplement“.  This consists of summaries of main concepts developed in the textbook and assigned 
problems. 

For best results students should adhere to the following sequence: 

1. Before class, study the theory and review the sample problems in the textbook. Some topics 
were already covered in Applied Physics but you will benefit from a brief review. 

2. To reinforce the concepts, review the key notes in the supplement.  Take notes of the 
concepts you found challenging and ask for clarifications in class. 

3. Classroom lectures: 

◦     Instructor will review the theoretical concepts and answer questions 

◦     Instructor will demonstrate solving selected problems.  When needed, 
instructor’s notes will be published on line. 

◦     Students will solve assigned problems in small groups, with guidance from 
instructor 

4. Individual work 

◦     Students will solve  assigned problems on their own, for self-evaluation. 
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◦     Instructor will provide guidance and feedback during posted office hours or 
Tutorial Sessions 

Course evaluation: 

• Each chapter will be assessed through quizzes or assignments. 

• Midterm and Final examinations.  Combined passing score is 60%. 

• Attendance will be monitored but is not mandatory. 

Recommendations 

Strength of Materials is a “methodical” discipline.  This means that it deals in general with standard/
classical questions that usually have an established method of solving them.  When solving problems 
students often follow steps and procedures that were previously demonstrated in class or in the textbook. 
These approaches are logical and never students would be expected to memorize them.  However, it is 
important for students to practice solving questions on their own since this will help them see patterns 
in questions, provide them with problems solving experience and help them complete the exercise in the 
allotted time. 

For best results, students are encouraged to work after classes between 2 and 3 hours for each hour 
of lecture.  This effort will be different for each student.  To manage your time more efficiently consider 
attending the weekly scheduled tutorials. 

Units and conversions 

Like in many other engineering disciplines calculations may be performed in both systems of units, 
US Customary and SI.  While Canada has officially adopted the SI (metric) system in 1970, economic 
cooperation with US companies requires engineering graduates to be fluent in both systems.  Some 
computational software that you will use may be available only in US Customary units, being developed 
in US, and mostly for American users.  It is therefore imperative to be able to complete calculations in 
both systems of units and to be able to convert between systems. 

Please note: 

When solving problems, if the data is given in SI units, complete the solution in SI units.  Similarly for US 
Customary units; there is not need to switch the system of units. 

In the metric system prefixes are added to base and derived units to form names and symbols that are 
multiples of SI units. The following table shows the commonly used SI prefixes. 
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Prefix Symbol Multiplying Factor 

Giga X GX 109 = 1000 000 000 

Mega X MX 106 = 1000 000 

Kilo X kX 103 = 1000 

Hecto X hX 102 = 100 

Deca X daX 101 = 10 

Base SI Unit “X”  “X” can be m, g, W, J, etc. 100 = 1 

Deci dX 10-1 = 0.1 

Centi cX 10-2 = 0.01 

Milli mX 10-3 = 0.001 

Micro μX 10-6 = 0.000 001 

There are different ways to perform units conversions but in the end, they all lead to the same answer. 
The following are simple examples to demonstrate the procedure. 

Examples – SI system: 

1.  Convert 0.2 km to cm 

• When performing SI conversions it is easy to see if your answer is reasonable or not.  For 
instance if you move from a large unit (kilo) to a smaller one (centi), the resulting value 
should be greater. 

• Looking at Fig. 1, you may also consider moving the decimal point to the right, three steps 
from Kilo to base and two more steps from base to your final answer.  This is an alternative 
approach to performing SI conversions. 

 
2.  Convert 50 000 cW to kW 

• Note that some units may be presented with a less commonly used prefixes.  For instance, 
while “centimeter” is frequently used, “centiwatts” not so much.  However, you should be 
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able to identify the prefix and the unit it applies to. 

 
3.  Convert 300 000 cm3 to dam3 

•   You may look at this conversion as follows: 

• Pay extra attention when using powers, as in volume or area conversions. 

For the purpose of this course most of the US Customary conversions will deal with linear dimensions. 
The conversion factors we use are presented in Appendix A.  It is desirable to remember the most used 
factors such as 1 ft = 12 in or 1 yd = 3 ft. 

Examples – US Customary system 

4.   Convert 1.2 yards to inches 

5.   Convert 2 square feet to square inches 

Assigned Problems 

Problem 1: The hoop stress in a pressure vessel is calculated with the formula      where 
p is the design pressure, di is the inside diameter and t is the wall thickness. 

1. If p = 4450 kPa, di = 1.8 m and t = 20 mm, determine the hoop stress in the wall, in MPa. 

2. If p = 645 psi, di = 6 feet and t = ¾ in,  determine the hoop stress in the wall, in ksi. 

6   Alex Podut



Problem 2: To determine the dead load on a foundation you are required to estimate the weigh of a 
spherical tank (V=4/3 πr3), full with a liquid of given density.  Tank mass is negligible compared to the 
mass of the product.  Determine its weight based on the following: 

1. Diameter = 200 cm, density = 1.12 g/cm3.  Answer in N. 

2. Diameter = 80 in., density = 70 lb/ft3.  Answer in lb. 

Problem 3: Suggest one improvement to this chapter. 
The improvements have to be specific and clear, for example: 

• correct this typo 

• replace this phrase with this 

• add this explanation to this section 

• add this problem to the chapter problems 

• etc 

You may use screen captures to identify the section that you would like improved or expanded. 
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Stress and Strain 

Stress-Strain 

Learning Objectives 

After completing this chapter you should be able to: 

• Define normal and shear stress and strain and discuss the relationship between design stress, 
yield stress and ultimate stress 

• Design members under tension, compression and shear loads 

• Determine members deformation under tension and compression 

Mechanical stress 

This section discusses the effects of mechanical loads (forces) acting on members.  Next chapter will 
cover the effects of thermal loads (thermal expansion). 

Normal, tensile and compressive stresses 

Tension or compression in a member generate normal stresses; they are called “normal” because the 
cross-section that resists the load is perpendicular (normal) to the direction of the applied forces.  Both 
tensile and compressive stresses are calculated with: 

If a member has a variable cross-section, the area that must be used in calculations is the minimum 
cross-sectional area; this will give you the maximum stress in the member, which ultimately will govern 
the design. 
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Shear stresses 

In shear the cross-section area that resists the load is parallel with the direction of applied forces.  In 
addition to that, when estimating the shear area you must factor in how many cross-sections contribute 
to the overall strength of the assembly. 

For instance, if you consider the pin of a door hinge as subjected to a shear load, you have to count 
how many cross-sections resist the load. 

The formula for calculating the shear stress is the same: 

In a punching operation the area that resists the shear is in the shape of a cylinder for a round hole 
(think of a cookie cutter).  Therefore the area in shear will be found from multiplying the circumference 
of the shape by the thickness of the plate. 

Please note: 

When looking at textbook figures you will observe that two forces are indicated.  This does not mean that 
the force you use in the formula is (2 × Force P), but simply indicates that one is the Action force and the 
second one is the Reaction. 

Strain and modulus of elasticity 
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Normal strain 

A member in tension or compression will elastically deform proportional with, among other parameters, 
the original length.  Strain, also called unit deformation, is a non-dimensional parameter expressed as: 

If you choose to use a negative value for compression strain (reduction in length) then you must also 
express the equivalent compression stress as a negative value. 

Modulus of elasticity 

The stress – strain curve is generated from the tensile test.  Over the elastic region of the graph the 
deformation is direct proportional with the load.  Dividing the load by the cross-section area (constant) 
and the deformation by the original length (constant) leads to a graphical representation of Strain vs. 
Stress.  The constant ratio of stress and strain is Young’s Modulus or Elastic Modulus, a property of each 
material. 

Elastic deformation 

Combining the above two relations for strain and Modulus of Elasticity leads to a unified formula for 
elastic deformation in tension or compression. 

This relation is applicable to members with uniform cross-sections, homogeneous material, subject to 
tensile or compressive loads that results in stresses below the proportional limit (straight line in the σ-ε 
curve). 
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Design stress and safety factors 

These topics were covered in 1st year Strength of Materials and are presented here as a brief review. 
Members subjected to an excessive stress may fail by breaking, when actual working stress is greater 

than the ultimate stress, or due to excessive deformation that renders then inoperable.  Consider a heavy 
condensate line that sags beyond an acceptable limit and while it doesn’t break, the flange connections 
at the end of the lines will develop leaks due to angular movement. 

Design stress, σd, is the maximum level of actual/working stress that is considered acceptable from a 
safety point of view.  The design stress is determined by: 

• Material properties, Ultimate Tensile Strength or Yield Strength, depending if breakage must 
be avoided or deformation must be limited 

• Safety factor (or design factor) N, ratio of maximum strength to the intended load. 

The safety factor is chosen by the designer based on experience, judgment AND guidelines/rules from 
relevant codes and standards, based on several criteria such as risk of injuries, design data accuracy, 
probability, industry standards, and last but not least, cost.  Safety factors standards were set by structural 
engineers, based on rigorous estimates and backed by years of experience.   Standards are continuously 
evolving reflecting new and improved design philosophies. Example: 

• published by ANSI / AISC , such as Specification for Structural Steel Buildings 

Design cases 

When solving problems students may encounter different scenarios.  While the theoretical concepts are 
the same, the paths to final answers may be different, as required by each approach. 

1. Estimating if a design/construction is safe or not 

1. Given: loads magnitude and distribution, material properties, member shape and 
dimensions 

2. Find: actual stress and compare to the design stress; alternatively find the safety 
factor and decide if it is acceptable based on applicable standards 

2. Selecting a suitable material 

1. Given: loads magnitude and distribution, member shape and dimensions 

2. Find: what material type or grade will provide a strength (yield or ultimate) greater 
than required, while considering the selected or specified safety factor 

3. Determining the shape and dimensions of member’s cross-section 
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1. Given: loads magnitude and distribution, material properties 

2. Find: the shape and dimensions of the member so that actual cross-sectional area is 
greater than minimum required. 

4. Evaluating maximum allowable load on a component 

1. Given: load type and distribution, material properties, member shape and 
dimensions 

2. Find: maximum load magnitude that leads to an acceptable stress 

Members made from two different materials 

There are cases when a member under normal stresses is made out of two (or more) materials.  One of 
the objective of such problems is to find the stress in each component. 

For example, you may have a short column made from a steel pipe filled with concrete, as in 
the figure.  Given the total load, materials properties and geometrical dimensions, we must find the 
individual stress in each component. 

Both, the steel pipe and the concrete core work together in supporting the load therefore we must find 
additional relations that combine the two problems into one .  Typically, we look for: 

• a relation that describes the force distribution between the two materials 

• a relation that correlates the deformations of each material 

For this particular problem we may say that: 
Equation 1:   Total load P = load supported by steel P steel + load supported by concrete P concrete 
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therefore       P = Stress steel × Area steel + Stress concrete × Area concrete 
Equation 2:   The deformations of both materials are the same 
therefore       Strain steel = Strain concrete 
Considering that Elastic Modulus = Stress / Strain, equation (2) yields a relation between the stress 

and elasticity of both materials 

Substituting this last relation into equation (1) and solving for Stress concrete leads to a relation as 
follows 

Further, Stress steel can be found. 
Note that depending on the problem, the original two relations may be different therefore a full step-

by-step derivation may be required each time. 

Reasonable answers 

When solving normal stress – strain problems, especially in the SI system, you should be able to judge if 
your answers are reasonable or not. 

Example: A 1 m long, 20 mm diameter, A 36 Carbon Steel bar (Materials Properties in Appendix B, 
Table B2) suspends a 6 tons load.  Evaluate the stress and the strain in the bar. 

Note that typically loads are in kN, cross-section areas in 10-3 m2 and resulting stresses in MPa. 
Also, since Elastic Moduli are in GPa, the strain (non-dimensional) will be in range of 10-3.  This bar 

will stretch 0.9 mm under the given load. 

Assigned Problems 

When solving these questions you are required to use the textbook Appendices.  They are valuable 
references for material properties, geometrical dimensions, etc. 

Problem 1: A condensate line 152 mm nominal size made of schedule 40 carbon steel pipe is supported 
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by threaded rod hangers spaced at 2.5 m center-to-center.   The hangers are carbon steel, 50 cm long, 
with a root diameter of 12 mm.  Calculate the stress and the strain in the hangers.  Use E=200 GPa for 
the hangers material. 

Problem 2: A clevis fastener with a 1/2 inch pin is used in a shop lifting machine.  If the pin is made 
of A36 steel determine the maximum safe load, using a safety factor of 2.5 based on the yield strength. 

Problem 3: A boiler is supported on several short columns as indicated in the figure, made out of 
Class 35 gray cast iron.  Each column supports a load of 50 tonnes.  The required safety factor for this 
construction is 3. Are the columns safe? 

Use the following dimensions:  A = 30 mm, B = 80 mm, C = 50 mm, D = 140 mm 
Problem 4: A tension member in a roof truss is subject to a load of 25 kips.  The construction requires 

using L2x2x1/4 angle, with a cross-section of 0.944 in2.   For building-like structures American Institute 
of Steel Construction recommends using a design stress of 0.60×Sy.  Using Appendix B table B2 specify 
a suitable steel material. 

Problem 5: A tie rod hydraulic cylinder as in the figure is made from a 6 inch Schedule 40 stainless 
steel pipe, 15 inches long.  The six tie rods are 1/2-13 UNC threaded rods with a root diameter of 0.4822 
inch and a thread pitch of 13 TPI.  When assembling the cylinder a clamping force equivalent to one full 
nut turn from hand-tight position is required. 

 

Determine the stress in the cylinder and in the tie rods.  Also calculate the strain in each component 
using an elastic modulus of Ess = 28×106 psi and Erod = 30×106 psi. 

Problem 6: Suggest one improvement to this chapter. 
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Thermal Expansion Stress 

Thermal Expansion 

Learning Objectives 

At the end of this section you should be able to calculate problems involving 

• Unrestricted thermal expansion 

• Restricted thermal expansion 

All materials subject to a temperature change will expand or contract proportional with their length 
and temperature difference.  Some materials will expand or contract more than others; the qualitative 
property that indicates how much will they expand is known as the Linear Thermal Expansion 
Coefficient (α), measured in m/(m ºC) or (in/in ºF).  Also units like 1/ºC or 1/ºF can be used. 

The change in length due to thermal expansion is calculated with: 

where δ is the change in length, L is the original length (makes sure both are in the same units) and 
ΔT is the temperature difference. 

For example if steel has a thermal expansion coefficient of 11.7×10-6 1/ºC it means that a 1 m long 
bar subject to a temperature increase of 1ºC will expand 11.7×10-6 m, or 0.0117 mm.  This may seem 
like a negligible amount but if you consider a steam pipe of 50 m long installed at 12ºC and operating 
at 212ºC (2000 kPa saturation pressure), the thermal expansion would be equivalent to 11.7 cm, or an 
equivalent strain of 0.002.  This is very important for the piping designers because they have to allow 
for this expansion or factor it in the stress calculations. 

Volumetric thermal expansion of solids (isotropic materials) is calculated in a similar way using (3×α) 
as expansion coefficient.  When calculating liquids volumetric expansion, the volumetric expansion 
coefficient is β, with typical values as listed in The Engineering Toolbox. 

Pipelines expansion 

Typically pipelines are relatively long and may see a significant temperature increase between 
installation and operating temperatures.  As result, high magnitude thermal expansion stresses may 
develop if the supports are not adequately designed.  In addition to that, the expansion of the pipe 
increases the load on machinery and vessels nozzles. 

17

https://en.wikipedia.org/wiki/Thermal_expansion
https://en.wikipedia.org/wiki/Pipe_support
https://www.engineeringtoolbox.com/cubical-expansion-coefficients-d_1262.html


Pipe cold springing 

There is an abundance of articles and discussions on this topic in piping design groups, easily accessible 
through an internet search using key word strings “pipe cold springing” or “pipe cold pull“; it is also 
addressed in ASME B31.3. 

“Pipe cold springing is defined as the process of intentional deformation (usually accomplished by 
cutting short or long the pipe runs between two anchors) of piping during assembly to produce a desired 
initial displacement and stress.  It is also defined as the intentional stressing and elastic deformation of 
the piping system during the erection cycle to permit the system to attain more favorable reactions and 
stresses in the operating condition.” [1] 

Operating engineers are advised to be familiar with this practice since it may be used in steam pipes. 
There have been circumstances when hired contractors when disassembling steam lines complained 
about lines not being fitted properly; the pipes would sprung back when unbolted.  Avoid costly repairs 
and unnecessary alterations by being familiar with this procedure and by knowing your plant. 

Thermal stresses in composite bars 

“The composite tube consists of two different alloys metallurgically bonded together to achieve good 
thermal transfer properties. One alloy is used to withstand corrosion, while the other is often an approved 
pressure vessel material. 

Typical applications for composite tubes are steam boilers with corrosive conditions, such as: 

• Black liquor recovery boilers (BLRB) 

• Syngas coolers 

• Waste heat boilers 

• Waste-to-energy boilers 

Composite tube (compound tube) are suitable for applications where the conditions outside and inside 
the tube require material properties that cannot be met by one material only.” [2] 

While Power Engineering students may not see a direct application of these principles, the following 
types of problems are part of their 2nd and 1st class curriculum. 

Case A 

The following diagram represent a typical restricted thermal expansion scenario, with compound bars: 
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Given all the materials properties and dimensions, the objective is to calculate the stress in each 
section when the temperature is increased by a given ΔT. 

When the bars are heated, each will attempt tend to expand equivalent to their unrestricted ΔL. 
Given that the expansion is restricted, each bar will be subject to compression which in turn generates 
compression stresses.  The sum of the two corresponding (yet imaginary) compression deformations will 
be equal to the sum easily quantifiable unrestricted thermal expansions.  Furthermore, considering that 
the forces applied by each bar are the same (static/balanced system), this compression force can easily 
be calculated.   Factoring in the cross-sectional areas of each bar leads to finding the stress developed in 
each material. 

Case B 

In the second scenario, a bar is pinned at both ends inside a tube of a different material.  When heated 
up, one material would expand freely more than the other.  The lower expansion material will be pulled 
outwards in tension by the second one that attempts to expand more.  In turn, the material that would 
freely expand more it is pulled in (compression) by the material that expands less.  See the following 
figure for clarification. 

Objective of this exercise is to find the stresses generated in each material.  The approach at solving 
this problem is as follows. 

• When heated up, the brass tube is pulled by the steel rod, generating a compression stress in 
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the tube.  The brass tube restricted deformation will be (dLb – Y), where Y is the actual 
combined deformation of the composite bar. 

• Similarly, the steel bar is pulled out by the brass tube, generating a tensile stress.  The actual 
(restricted) deformation of the steel bar is (Y-dLs). 

◦ Note than in the above dL is the free thermal expansion of each material. 

• From the diagram, (dLb – Y) + (Y – dLs) = dLb – dLs 

• Substitute in the above dL=α×L×ΔT for each material, divide equation by L = initial length 
and find: 

◦ ε brass + ε steel = (α brass – α steel) × ΔT 

• Substitute E = σ / ε in the above for each material and the resulting equation represents a 
relation between the stress in each material, function only of the known elastic/thermal 
expansion properties and the temperature difference. 

◦ (σ brass / E brass) + (σ steel / E steel) = (α brass – α steel) × ΔT     (eqn. B1) 

• The second equation comes from the observation that outward pull force of the brass is equal 
to the inward pull of the steel.  This can be expressed as: 

◦ σ brass × A brass = σ steel × A steel                                                (eqn. B2) 

• Solve equation B2 for σ brass and substitute into equation B1.  Solve equation B1 for α steel
and your final result is dependent only on materials properties, cross-sections and 
temperature difference. 

• Once σ steel answer is found, go back to equation B2 and find σ brass. 

• This may appear as a math/algebra demanding problem, and it is; however, it is a classical 
problem with a standard solution which means that every question will be solve following the 
same approach. 

Assigned Problems 

When solving the following problems find the required data in the textbook appendices, provided external 
resources or other reputable sources; always quote the source. 

Problem 1: A firetube boiler is powered using bunker fuel oil.   The storage tank is of an open top 
construction, 2 m diameter and 3 m height. Oil is added when the ambient temperature is 10ºC.   During 
start-up the temperature suddenly rises to 35ºC.   How many centimeters below the tank top can you 
fill in the tank, so that you maximize the oil volume while avoiding any spillage?  Coefficient of linear 
expansion of tank material is 12×10-6 /ºC and volumetric expansion coefficient for oil is 9×10-4 /ºC. 

Problem 2: During installation, a turbine casing bolt is heated to 250ºC and the nut is tightened so 
that no stress is produced (hand-tight).  When it cools down to the operation temperature of 50ºC the bolt 
adequately secures the assembly.  Determine the tensile stress and strain in the bolt and the force carried 
by the bolt.  The bolt effective length is 300 mm, diameter 50 mm and Ebolt = 200 GPa. 

Problem 3: A new above ground pipeline will transport crude oil from Northern Alberta, south.  To 
compensate for thermal expansion each straight section of the pipeline will be equipped with corrugated 
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expansion joints that allow 23 mm axial expansion and 18 mm axial compression (figure).   The pipeline 
will be installed early summer when ambient temperatures may conservatively assume to be 23ºC.  The 
pipe is DN 600 Sch 40 and Carbon Steel material. 

Determine the maximum straight pipe length between two anchor points (in m) for extreme Alberta 
temperatures while assuming that due to bush-fires the pipe metal temperature can reach as high as 
100ºC.   For your specified pipe length what would be the maximum stress developed in the material if 
the thermal expansion is restricted? 

Problem 4: An 8″ Schedule 40 straight length of steam pipe is fitted between two fixed anchor 
supports with no allowance for expansion.   If the compressive stress in the pipe must be limited to 50.7 
ksi when in operation at 430ºF, determine the initial tensile stress that must be applied during installation 
at 60ºF.  What equivalent tensile force is required by this cold-springing installation? 

Problem 5: A single-pass double pipe heat exchanger is constructed using 1″ nominal thickness 
ASTM B88 Type K Copper tubing for the internal tube and 2″ nominal size, medium wall thickness, 
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steel tubing for the external shell.  The length of the heat exchanger is 24″.  The heat exchanger is 
assembled stress free at 20ºC but in operation the tubes wall temperatures reach 120ºC.   Determine the 
stresses generated by thermal expansion in both, steel and copper tubing.  Use: 

• αsteel = 6.5×10-6 in/inºF; Esteel = 30×106 psi; dimensional data from The Engineering 
Toolbox Steel Tubes 

• αcopper = 9.4×10-6 in/inºF; Ecopper = 17×106 psi; dimensional data from Appendix D5 or The 
Engineering Toolbox Copper Tubes 

Problem 6: Recommend one improvement to this chapter. 
 
 
 

22   Alex Podut

https://www.engineeringtoolbox.com/bs1387-steel-tubes-dimensions-d_97.html
https://www.engineeringtoolbox.com/bs1387-steel-tubes-dimensions-d_97.html
https://www.engineeringtoolbox.com/astm-copper-tubes-d_779.html
https://www.engineeringtoolbox.com/astm-copper-tubes-d_779.html


Pressure Vessels 

Vessels 

Learning Objectives 

At the end of this chapter you should be able to 

• Identify thin wall or thick wall pressure vessels 

• Discuss the difference between longitudinal and circumferential stress 

• Demonstrate the derivation of the stress formulas in a thin wall pressure vessel 

• Perform thin wall pressure vessel design calculations 

Thin-walled and thick-walled pressure vessels 

The distinction between thin vs. thick wall pressure vessels is determined by the ratio between the mean 
radius of the vessel and the thickness of the wall.  If this ratio is greater than 10, the vessel is considered 
a thin wall pressure vessel.  If the ratio is less than 10, the vessel is considered a thick wall pressure 
vessel. 

In operation, in a thin wall pressure vessel, stresses developed in the (thin) wall can conservatively be 
assumed to be uniform.  These are the stresses students are familiar calculating using ASME Section I 
PG-27 or Section VIII Div. I UG-27.  In fact, most of the pressure vessels power engineers will work 
with are of a thin-wall type. 

In contrast, a thick wall pressure vessel develops a greater (circumferential) stress on the inside 
surface of the vessel and it reduces towards the outside diameter.  The design calculations for this type 
of vessels are only covered in the ASME Section VIII (Pressure Vessels) code, Mandatory Appendix 1 
(Supplementary Design Formulas). 

Development of stress formula in a pressure vessel 
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Circumferential stresses (longitudinal joints) 

The circumferential stress (or hoop stress) acting on a longitudinal cross-section is derived in the 
textbook as: 

Design problems most typically deal with finding the minimum required wall thickness, therefore the 
above formula is more useful expressed as: 

Hoop stress formula from ASME Section VIII Div. 1 UG-27 is: 

Efficiency “E” is a factor that accounts for loss of material strength due to welds or ligaments. 
Also note that applying “-0.6P” to the denominator leads to a thicker shell compared to the theoretical 
formula, and therefore more conservative (or safer).  Before using the formula check if the relation is 
applicable (thin wall). 

ASME Section I (Power Boilers) calculates the shell thickness only based on circumferential stress, 
as follows: 

The formulas are quite similar; in the above “y” is a temperature coefficient and C is an added 
allowance for corrosion or structural stability.  Again, the code formula leads to a thicker shell than 
simply based on derivations. 

Longitudinal stress (circumferential joints) 

Longitudinal stress demonstrated and derived in the textbook is derived as: 
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Note that longitudinal stresses are 50% of the hoop stresses and therefore they rarely govern the 
design.   This is the reason ASME Section I does not even require evaluating this stress. 

ASME Section VIII Div. 1 requires estimating the vessel thickness based on both stresses, and 
choosing the largest of the two values.  Formula is: 

Spherical pressure vessels 

Spherical pressure vessel stress is calculated in the same way as the longitudinal stress.  You may 
conclude that a spherical pressure vessel will require a thinner shell, theoretically one half, than a 
cylindrical pressure vessel operating at the same pressure and temperature, and therefore it would be a 
preferred shape.  Reality is that while most of that is true, it is difficult to manufacture a spherical shell. 

Follow the links for examples of pressure vessels: 

• A pressure vessel constructed of a horizontal steel cylinder. 

• Spherical gas container. 

• LNG carrier ship. 

 
 

Assigned Problems 

• The Pressure Vessel problems must be solved using the theoretical formulas developed in the 
textbook and NOT the ASME code formulas. 

• Always check first if you are dealing with a thin-walled or a thick-walled pressure vessel. 

◦ Thick wall formulas will be provided if necessary. 

• Cylindrical vessels require both calculations (longitudinal and circumferential joints); you 
specify the final answer (minimum wall thickens or MAWP maximum allowable working 
pressure) 

Problem 1: Derive in detail the formulas for longitudinal and circumferential stresses acting on a 
cylindrical pressure vessel.  Briefly discuss the results. 

Problem 2: A seamless pipe of 508 mm outside diameter is used as a header in a large power plant 
carrying steam at 2 MPa pressure.  The standard lengths of pipe are butt-welded together to build a 
continuous pipe.  The pipe material, SA-106 Grade C, has minimum Tensile Strength of 485 MPa and a 
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safety factor of 3.5 based is specified.  The allowable stress for the butt-welds is 110 MPa.  Specify the 
minimum pipe wall thickness. 

Problem 3: A cylindrical tank 36″ diameter and 12 feet long, is used as a compressed air 
accumulator.   The tank is made of ASTM SA-36 rolled steel plate with a wall thickness of 3/4″.  Find 
the maximum allowable working pressure in the tank using a safety factor of 3.5 based on the Ultimate 
Strength. 

Problem 4: A large spherical storage tank for compressed nitrogen is 8.6 m diameter and is 
constructed using AISI 1040 cold rolled steel plate of 12 mm thickness.  The maximum pressure in the 
tank is 0.66 MPa.  If a design factor of 4 based on the Yield Strength is required, does the tank meet the 
specifications? 

Problem 5: Recommend one improvement to this chapter. 
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Properties of Areas 

Inertia Moment 

Learning Objectives 

Upon completion of this chapter you should be able to 

• Determine the centroid location of a given cross-section 

• Calculate the moment of inertia for a given cross-section, with both SI and US Customary units 

Finding the location of the centroid is needed when calculating the moment of inertia (or second moment 
of areas) of beams subjected to bending.  For convenience, you may used the table provided in Appendix 
1. 

The geometric properties of areas for common shapes are given in textbook Appendix C.  Common 
industrial shapes like W-beams and pipes are listed in Appendix D. 

Centroids of composite areas 

Determining the location of the centroid of a composite area uses the concept of moment of an area; 
this is why textbooks may refer to this as “first moments of areas”.  Mathematically this principle is 
expressed as: 

where: 

• Y is the distance to the centroid from some reference axis.  Commonly, the reference axis is 
the base of the figure. 

• Ai is the area of one part of the composite area.  Typically, the composite areas are split into 
common shapes of known geometric properties, summarized in the textbook Appendix C. 

• yi is the distance from the reference axis (commonly the base of the figure) to the centroid of 
each part of the composite figure. 

• Σ(Ai) is the entire area of the composite area. 
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When determining the location of a centroid please observe the following rules: 

• If the cross-section has one axis of symmetry then the centroid will be located on this axis. 

• if the cross-section has two axes of symmetry then the centroid will be located at the 
intersection of the two axes. 

• If the cross-section is not symmetric about any axis then two calculations are required: 

◦ one for determining the centroid location Y 

◦ one for determining the centroid location X, commonly measured from the extreme 
left end.  For this second calculation imagine that you rotate the figure 90º counter-
clockwise and repeat the first calculation 

• If the composite area has a part that is removed from the figure (a void), this missing part can 
be treated as a negative area. 

Moments of inertia of composite areas 

In rotational kinetics we learned that the “rotational” moment of inertia of a flywheel (function of its 
mass, size and shape) represents a resistance to change in its motion. This moment of inertia multiplied 
by the angular acceleration α, gives an inertia-moment reaction that attempts to balance the accelerating 
moment action (accelerating torque).  In general, a moment of inertia is a resistance to change. 

Beams are subject to bending and as a result they tend to deform (deflect).  The moment of inertia of 
a beam cross-section can be related to the stiffness of the beam.  The deflection of the beam is inverse 
proportional to the moment of inertia. 

Formulas for moments of inertia of simple shapes are given in Textbook Appendix C.  They will also 
be provided in the exam. 

When dealing with a composite area, divide the shape into basic parts for which the moment of inertia 
can be easily calculated.  The combined moment of inertia of the entire shape is the sum of moments 
of inertia of constituent parts plus their corresponding transfer term.  The transfer term is calculated as 
the area of the part multiplied by the squared distance between the centroid of the part and the common 
centroid of the entire area.  This transfer term represents the additional stiffness of each part due to its 
relative distance from the common centroid.  The table given in Supplement Appendix 1 can be used for 
calculations; it is useful when the shape is more complex. 

Assigned Problems 

When completing these exercises please make sure that you clearly identify and number the parts of your 
composite area. 

Problem 1: Determine the moment of inertia about the vertical and horizontal centroidal axes for the 
following figure. 
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Problem 2: For the following cross-section determine the location (elevation) of the centroid and the 
moments of inertia with respect to the horizontal and vertical centroidal axes. 

Problem 3: For the following figure determine Y, the vertical location of the centroid, and calculate 
the moment of inertia with respect to the horizontal centroidal axis.. 
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Problem 4: Suggest one improvement to this chapter; this may include an original cross-section. 
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Beam Reactions and Diagrams 

Diagrams 

Learning Objectives 

At the end of this chapter you should be able to: 

• Determine the reactions of simply supported, overhanging and cantilever beams 

• Calculate and draw the shearing force and bending moment diagrams of beams subject to 
concentrated loads, uniform distributed loads and combinations of the two. 

Beams review 

Beams are structural elements with various engineering applications like roofs, bridges, mechanical 
assemblies, etc.  In general, a beam is slender, straight, rigid, built from isotropic materials, and most 
important, subjected to loads perpendicular to their longitudinal axis.  If instead of perpendicular loads 
the same structural member would be subjected to longitudinal loads it would be called column or post. 
If the same member would be subjected to a torque, it would be called and treated as a shaft.  Therefore, 
when identifying mechanical or structural components, consideration of the manner of loading is very 
important. 

Note that when it comes to orientation, beams can be horizontal, vertical or any inclination in between 
(like submerged plates analyzed in fluid mechanics)… provided the loading is perpendicular to their 
major axis. 

Beam supports: 
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Support Type Looks like Symbol Reactions 

Roller, also called 

• simple 

• movable 

• sliding 

 
• Vertical reaction 

only 

• Allows 
horizontal 
movement 

• Allows rotation 

Pinned, also 
called 

• hinged • Vertical reaction 

• Horizontal 
reaction 

• Allows rotation 

 Fixed 

 

• Vertical reaction 

• Horizontal 
reaction 

• Moment 
reaction 
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Beam Loads
1
: 

1. Click on the diagrams to expand 
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Loads Symbol 

 Point, also called 

• concentrated 

Uniform Distributed 
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Variable Distributed 

Concentrated 
Moments 

 

Beam types: 
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Types Diagram 

Simple 
beams, or 
simply 
supported 
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Overhanging 
beams 
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Cantilever 
beams 

Compound 
beams 
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Continuous 
beams 

 

Solving for beam reactions 

When solving for reactions, the following steps are recommended: 

1. Draw the beam free body diagram 

2. Replace the uniform distributed load (if any) with the equivalent point load 

3. Solve ΣMA = 0 (sum of moments about support A). This will give you RB (reaction at 
support B). 

4. Solve ΣMB = 0. This will give you RA. 

5. Using RA and RB found at steps 3 and 4 check if ΣV = 0 (sum of all vertical forces) is 
satisfied. 

1. Note that steps 4 and 5 can be reversed. 

2. For a cantilever beam use ΣV = 0 to find the vertical reaction at the wall and 
ΣMwall = 0 to find the moment reaction at the wall. There is no other equation to 
validate your results. 

Shear forces and bending moments diagrams 

Please note: 

“Shearing forces are internal forces developed in the material of a beam to balance externally applied 
forces in order to secure equilibrium of all parts of the beam. 

SoM Supplement   39



Bending moments are internal moments developed in the material of a beam to balance the tendency for 
external forces to cause rotation of any part of the beam.” [3] 

The shear force at any section of a beam may be found by summing all the vertical forces to the left or 
to the right of the section under consideration. 

Similarly, the bending moment at any section of a beam may be found by adding the moments from 
the left or from the right of the section considered. The moment’s pivot point is the location under 
consideration. 

By convention, internal shearing forces acting downward are considered positive. They counteract 
upward external forces. Therefore, when representing the shear forces you can draw them in the 
direction of external forces. This is visually easier than following the sign convention. 

Clockwise moments, conventionally, are considered negative while counter-clockwise moments are 
considered positive.  When representing the bending moment variation, consult the following table 
showing qualitative bending moment curves dependent on the shape of the shear force graphs. 
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. 

When drawing the shear force and bending moment diagrams, while the sign convention is important, 
consistency is crucial.  For instance, consider a simple beam loaded with a point load applied on a UD 
load. Starting the diagrams at support A, looking towards the page, will generate the following: 
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Now, flip the beam horizontally 180º (or change the observation point, looking at the beam from 
the opposite side) and draw the diagrams, starting from the same point A. The diagrams will appear as 
follows: 
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Note that, while the shear force diagrams appeared to be mirrored images (flipped horizontally), 
the bending moment diagram is not affected.  Additionally, the most important result of this analysis, 
illustrates that maximum shear force and bending moment magnitudes will always be the same. 

Beam diagrams check points 

When drawing the beam diagrams please observe the following: 

Shear Forces Diagrams: 

• At the ends of a simply supported beam the shear force is zero. 

• At the wall of a cantilever beam the shear force equals the vertical reaction at the wall. At the 
beam’s free end the shear force is zero. 

• On any beam segment where no loads are applied, the shear force remains constant 
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(horizontal line). 

• A point load or reaction on a shear force diagram generates an abrupt change in the graph, in 
the direction of the applied load. 

• A uniform distributed load acting on a beam is represented by a straight line shear force with 
a negative or positive slope, equal to the load per unit length. 

Bending Moments Diagram: 

• At the ends of a simply supported beam the bending moments are zero. 

• At the wall of a cantilever beam, the bending moment equals the moment reaction. At the 
free end, the bending moment is zero. 

• At the location where the shear force crosses the zero axis the corresponding bending 
moment has a maximum value. 

• The shape of the bending moment curve between two points on the beam is as shown in the 
above two tables. 

• The change in bending moment between two points on the beam equals the area under the 
shear force diagram between the same two points. 

The above guidelines will assist you in generating the beam diagrams;  they also serve as a check. 

Assigned Problems 

Calculate the beam reactions and draw the shear force and bending moment diagrams for the following 
beams. 

When solving beam diagrams in class and at home you may check your answers by using this free online 
beam calculator:   SkyCiv Cloud Engineering Software 

Problem 1: State the maximum shear force and bending moment values. 

Problem 2: State the maximum shear force and bending moment values. 
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Problem 3: A 24 meters long beam is simply supported at 3 meters from each end.  The beam carries 

a point load of 18 kN at the left end and 22 kN at the right end of the beam.  The beam weighs 400 kg/
m.  Sketch the beam diagrams and determine the location on the beam where the bending moment is 
zero. 

Problem 4: A simple overhanging beam 112 ft long overhangs the left support by 14 ft.  The beam 
carries a concentrated load of 90 kips 12 ft from the right end and a uniform distributed load of 12 kips/
ft over a 40 ft section from the left end.  Sketch the beam diagrams and determine the shear force and 
the bending moment at a section 50 ft from the left end. 

Problem 5: Suggest an improvement to this chapter. 
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Beam Stress due to Bending Moments 

Bending Stress 

Learning Objectives 

After completing this chapter you should be able to: 

• Use the flexure formula to calculate maximum bending stress 

• Design beams carrying loads safely 

• Determine the required Section Modulus of a beam 

• Select standard structural shapes to be used in a given beam problem 

Consider a simply supported beam subjected to external downward loads.  The beam will deform 
(deflect) in such a way that the top surface of the beam cross-section will be under compression while 
the bottom surface will be in tension.  At some location along the vertical axis of the beam, the stress 
will be zero; this location is the centroid of the cross-section, also called the neutral axis. 

Flexure formula 

To determine the maximum stress due to bending the flexure formula is used: 

where: 
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• σmax is the maximum stress at the farthest surface from the neutral axis (it can be top or 
bottom) 

• M is the bending moment along the length of the beam where the stress is calculated 

◦ if the maximum bending stress is required then M is the maximum bending 
moment acting on the beam 

• Ix is the moment of inertia about x (horizontal) centroidal axis 

• c is the maximum distance from the centroidal axis to the extreme fiber (again, this can be to 
the top or bottom of the shape) 

• Zx is called section modulus and is a term that combines the moment of inertia and the 
distance to the extreme fiber (Zx = Ix / c) 

The flexure formula is valid if the following criteria are met: 

• the beam is straight, relatively long and narrow and of uniform cross-section 

• all the loads act perpendicular to the longitudinal axis of the beam 

• the resulting stress is below the limit of proportionality of the material 

• the beam material is homogeneous and has equal strength in tension and compression 

◦ if the material has different strengths in tension and compression (example cast iron 
or other anisotropic materials) then separate calculations are required for both 
tension and compression surfaces 

• no twisting, buckling or crippling occurs 

Design cases 

Design problems may follow different scenarios: 

• calculate the beam cross-sectional dimensions (find the minimum section modulus Z and 
choose a standard shape of greater stiffness), given the beam geometry, loading and material. 

• select the beam material (find maximum working stress and choose a material of greater 
strength), given the beam dimensions, loading and dimensions/shape. 

• determine if a beam is safe (find actual working stress and compare to design stress), given 
the beam dimensions, loading and material. 

Assigned Problems 

Note: if not specified, use σdesign = 0.6×σYS, where σYS is the Yield Strength, from textbook Appendix B. 
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Problem 1: A simply supported beam, 9.9 meters long, is loaded with concentrated loads as follows: 

• 40 kN a@ 1.2 m from left end 

• 10 kN @ 3.7 m from left end 

• 10 kN @ 6.2 m from left end 

• 10 kN @ 8.7 m from left end 

The beam is constructed using W200×100 I-beam profile from AISI-1020 cold rolled material.  AISC 
recommends that the maximum bending stress for building-like structures under static loads be kept 
below  0.66×Sy. Does this construction meet the design requirements? 

Problem 2: A pipeline is simply supported above ground on horizontal beams, 4.5 m long. Each beam 
carries the weight of 20 m Sch 40 DN-600 pipe (see PanGlobal Academic Extract), filled with oil of 0.9 
SG. Assuming that the load acts at the center of the beam, calculate the required section modulus of the 
beam to limit the bending stress to 140 MPa; then select the lightest SI W-beam that satisfies the criteria. 

Problem 3: The figure shows the cross-section of a beam built from aluminum 6061-T6. The beam is 
used as a 45 in. long cantilever. Compute the the maximum allowable uniformly distributed load it could 
carry while limiting the stress due to bending to one-fifth of the ultimate strength. 

Problem 4: Design a walkway to span a newly installed pipeline in your plant. Rigid supports are 
available on each side of the pipeline, 14 ft apart. The walkway has to be 3.5 ft wide and be able to 
support a uniformly distributed load of 60 lb/ft2 over its entire surface. Design only the deck boards and 
the side beams. Use any timber sizes and material grades from textbook Appendix E or others of your 
own design. 

Problem 5: Suggest one beam design problem that you would consider relevant and useful for Power 
Engineers. 
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Beam Deflection 

Deflection 

Learning Objectives 

Upon completion of this chapter you should be able to calculate: 

• The radius of curvature of a deflected beam using theoretical relations 

• The maximum deflection of a simply supported beam 

• The maximum deflection of various beams using Formula Method and textbook Appendices 

Elastic properties of materials are quantified through their Modulus of Elasticity. All materials are elastic 
to some extent, for example Esteel ≈ 210 GPa, Ecast iron ≈ 160 GPa, Ealuminum ≈ 70 GPa, Econcrete ≈ 
40 GPa. In real situations beams subjected to external loads will deflect proportionally to the bending 
moment and inversely to their stiffness. The overall stiffness of a beam can be expressed as E×Ic where 
E can be regarded as the material stiffness and Ic as the cross-sectional, or geometrical stiffness. 

Radius of curvature 

Review the derivation of the beam deflection covered in detail in Textbook Chapter 10.  In practical 
situations, beam deformation is very small when compared to its length, and as a result the radius of 
curvature is relatively large. 

This radius of curvature can be calculated with 
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where: 

• E is the modulus of elasticity (resistance due to material properties) 

• Ic is the moment of inertia about the centroidal axis (resistance due to section geometry) 

• M is the bending moment at the section of interest 

If the beam is loaded in such a way that the bending moment is constant over a section of the beam 
(horizontal line in the BM diagram) then the deflection is a circular arc and the radius of curvature is 
constant. 

Take a moment and analyze the above formula… increasing the beam stiffness (E×Ic) will reduce 
the deflection (large R), while a greater bending moment leads to a smaller radius of curvature (greater 
deflection/sagging). 

Beam deflection 

Consider a simply supported beam as in the above diagram. Once the radius of curvature is found, the 
maximum deflection (at mid span) can easily be geometrically calculated as follows: 
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Formula method for simple cases 

The Radius of Curvature formula is valid solely for cases where the bending moment is constant. For 
other cases, geometrical or integration based techniques are involved in determining the beam deflection. 
Results of these calculations presented in algebraic form are given in engineering handbook of formulas. 
Most common cases are summarized in textbook Appendix F. 

When using “off-the-shelf” formulas, you must first match the beam geometry and loading to one of 
the given cases. If you are dealing with a more complex loading, such as point loads over-imposed on 
a distributed load, you can analyze the two loads separately and for the total deflection simply add the 
constituents. 

Assigned Problems 

For each problem determine the maximum deflection using the beam equations and compare with the value 
found using the radius of curvature. 
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# Case: Loading & 
Dimensions Shape & Material 

Problem 1 

 

• P = 50 kN 

• a = 2 m; b = 
3.5 m 

• W 200×59 

• AISI 1040, 
cold rolled 

Problem 2 

 

• P = 5000 lb. 

• a = 2 ft. 

• L = 10 ft. 

• Pipe 6″ Sch. 
40 

• SS 304, cold 
rolled 

Problem 3 

 

• w = 250 lbs/
ft 

• L = 35 ft. 

• W 12×30 

• Aluminum 
6061-T6 

Problem 4 

 

• w = 4400 N/
m 

• a = 4 m; b = 
8 m 

•  Pipe DN 
102, Sch 80 

• AISI 1020, 
cold rolled 

Problem 5: Recommend one improvement to this chapter. 
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Torsion in Round Shafts 

Torsion 

Learning Objectives 

At the end of this chapter you should be able to complete torsion calculations using: 

• General torsion equation 

• Polar moment of inertia 

• Modulus of elasticity in shear 

Shafts are mechanical components, usually of circular cross-section, used to transmit power/torque 
through their rotational motion.  In operation they are subjected to: 

• torsional shear stresses within the cross-section of the shaft, with a maximum at the outer 
surface of the shaft 

• bending stresses (for example a transmission gear shaft supported in bearings) 

• vibrations due to critical speeds 

This chapter will focus exclusively on evaluating shear stresses in a shaft. 

General torsion equation 

All torsion problems that you are expected to answer can be solved using the following formula: 

where: 

• T = torque or twisting moment, [N×m, lb×in] 

• J = polar moment of inertia or polar second moment of area about shaft axis, [m4, in4] 

• τ = shear stress at outer fibre, [Pa, psi] 

• r = radius of the shaft, [m, in] 

• G = modulus of rigidity (PanGlobal and Reed’s) or shear modulus (everybody else), [Pa, psi] 
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• θ = angle of twist, [rad] 

• L = length of the shaft, [m, in] 

The nomenclature above follows the same convention as PanGlobal Power Engineering Training 
System. 

Most common torsion problems will indicate the transmitted power (kW) at a certain rotational speed 
(rad/s or RPM).  The equivalent torque can be found with: 

where n[rad/s] = N[rev/min]×2π/60. 

Polar moment of inertia 

Similar to the moments of inertia that you learned before in rotational kinetics and bending of beams, the 
polar moment of inertia represents a resistance to twisting deformation in the shaft.  General formulas 
for polar moment of inertia are given in Textbook Appendix C. 

Note the difference between bending moments of inertia Ic and polar moments of inertia J, and use 
them appropriately.  For instance, if you are dealing with a circular bar: 

• Ic = π d4 / 64, if the bar is used as a beam 

• J = π d4 / 32, if the bar is used as a shaft 

Shear modulus 

Called Modulus of Rigidity in PanGlobal and Reed’s, the shear modulus is defined (similarly as E) as 
ratio of shear stress to the shear strain.  It is expressed in GPa or psi and typical values are given in 
Textbook Appendix B.  Typical values are lower than Young’s Modulus E, for instance ASTM A36 steel 
has EA36 = 207 GPa and GA36 = 83 GPa. 

Angle of twist 

The torque deformation of a shaft due is measured by the twist angle at the end of the shaft.  This angle 
of twist depends on the length of the shaft, as shown in the following figure: 
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by Barry Dupen 

1 

The angle of twist, [radians] is used in the general torsion equation and in estimating the shear strain, 
γ (gamma), non-dimensional. 

 
 

Assigned Problems 
2 

Solve the following problems using the General Torsion Equation. 

Problem 1: To improve an engine transmission, a solid shaft will be replaced with a hollow shaft of 
better quality steel resulting in an increase in the allowable stress of 24%. In order to keep the existing 
bearings, the new shaft will have the same outside diameter as the existing, solid shaft. Determine: 

(a) the bore diameter of the hollow shaft in terms of outside diameter 
(b) the weight savings in percentage, assuming that the steel densities of both shafts are identical 
Problem 2: A turbine – generator transmission is rated for 3500 kW at 160 RPM. The shafts, 180 

mm diameter and 2 m long, are connected through a flanged coupling with 6 coupling bolts of 40 mm 
diameter arranged on a pitch circle of 340 mm. If  the shaft shear modulus is 85 GPa determine: 

(a) the maximum shear stress in the shaft 
(b) the shear stress in the bolts 
Problem 3: Two identical hollow shafts are connected by a flanged coupling.  The outside diameter of 

the shafts is 240 mm and the coupling has 6 bolts of 36 mm each on a bolt circle of 480 mm. Determine 
the inside diameter of the hollow shafts, which results in the same shear stress in both, shafts and bolts. 

Problem 4: A brass liner, 24 mm thick, is shrunk over a solid shaft of 220 mm diameter.  Taking 
Gsteel = 85 GPa and Gbrass = 37 GPa, determine the maximum shear stress in the shaft and liner if the 
transmitted torque is 240 kN×m.  Also determine the angle of twist if the shaft length is 3.4 m. 

Problem 5: Suggest one improvement to this chapter. 
 
 
 
 
 
 

1. Textbook figure, page 58 
2. These problems are typical to Reed's Vol. 2 Second Class torsion problems. 
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Bolted and Welded Joints 

Joints 

Learning Objectives 

At the end of this section you will be able to 

• calculate the allowable load of bolted lap joints 

• calculate the allowable load of welded joints 

Bolted joints 

Two end plates bolted together and subject to symmetrical tensile loads react to the applied forces 
through the shear resistance of the bolts and the friction force developed between the plates.  The friction 
force is difficult to evaluate since it depends on the relative roughness of the contact surface and may 
also be affected by environmental changes (bolts thermal expansion reduces the friction force).  As a 
result, conservative load calculations rely only on the shear resistance of the bolts (or rivets);  the extra 
joint capacity due to friction increases the safety factor. 

There are various scenarios that may lead to bolted joints failure, all described in the textbook.  When 
completing these calculations please note the following: 

• nomenclature is listed in the textbook on page 6. 

• material properties are taken from Textbook Appendices B3 and B4 

The following is a summary of the required calculations.  The lowest value represents the maximum 
allowable load. 

Shear Failure of the bolts                        Ps = n×AB×τall×N 

• τall, allowable bolt shear stress depends on the the shear location; this can be along the 
threaded section or the smooth section of the bolt. 

Bearing Failure of the Plates                  PP = d×t×σ-all×N 

• σ-all, allowable bearing stress is 1.5 times the ultimate tensile strength of the plate material. 

Gross Tensile Failure of the Plates         PG = b×t×σG-all 
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• σG-all, allowable gross tensile stress of the plate is 60% of the yield strength of the material 

Net Tensile Failure of the Plates            PN = (b×t-NF×dH×t)×σN-all 

• σN-all, allowable net tensile stress is half of the ultimate tensile strength of the plate material 

Welded joints 

Welded joints are often preferred to bolted joints because they are simpler, easier to complete, relatively 
stronger and can provide a sealed assembly. However, they cannot be dismantled for maintenance or 
replacing parts. 

When completing weld calculations please note the following: 

• nomenclature is listed in the textbook on page 6. 

• use Appendix B6 for common weld and plate size; use Appendix B5 for weld strength of 
common electrodes 

Weld Strength                                        Pweld = L×fweld 
Gross Tensile Strength of the Plates –   same as for bolted joints 

Assigned Problems   
1 

Problem 1: Two A992 steel plates are joined with two A992 steel splice plates and twelve 1 in. diameter 
A490 steel bolts with threads in the shear planes. Calculate the maximum load that the joint can support, 
in kips. 

1. From Problem Set - Spring 2017, by Barry Dupen 
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Problem 2: Two A36 steel plates form a lap joint with four 20 mm diameter A307 steel bolts. 
Calculate the maximum load that the joint can support, in kips. 

Problem 3: Two A36 steel plates are welded with an E70 electrode. 

• What is the minimum recommended weld size for this joint? [in.] 

• What is the joint strength? [kips] 
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Problem 4: Two A36 steel plates are welded as shown with a 3/8 in. fillet weld using an E60 
electrode. What is the joint strength? 

Problem 5: Suggest on improvement to this chapter. 
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Appendices 

Appendix 1: Table for calculating centroid location and moments of inertia 

Appendix 2: Beam Diagrams 
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Appendix 3: Online engineering calculators
1 

• SkyCiv Cloud Engineering Software 

◦ Beam calculator 

◦ Moment of Inertia Calculator 

◦ Steel Beam Sizes 

• Advanced Mechanical Engineering Solutions 

• Calculator Edge 

 

1. We DO NOT endorse these websites, use them to check your calculations 
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Answers to Chapter Questions 

Units 

Problem 1: σa = 200 MPa; σb = 31 ksi 
Problem 2: Wa = 46×103 N; Wb = 10.9×103 lb 

Stress and Strain 

Problem 1: Stress = 10.1 MPa; Strain = 0.05×10-3 (hint, pipe full) 
Problem 2: Load = 5655 lb. 
Problem 3: It is safe (hint, σ = 115 MPa) 
Problem 4: Sy = 44 ksi, any material with Sy > 44 ksi will be adequate 
Problem 5: σ rod = 127 ksi, σ cylinder = 25 ksi, ε rod = 4.2×10-3, ε cylinder = 8.9×10-4 

Thermal Expansion 

Problem 1: 6.34 cm below tank top 
Problem 2: 468 MPa; 0.00234; 919 kN 
Problem 3: 20 m; 186.3 MPa, using -54ºC in the winter, α = 11.7×10-6 /ºC 
Problem 4: 21.45 ksi; 180.2 kips, assuming Carbon Steel E = 30×106 psi, α = 6.5×10-6 /ºC 
Problem 5: σ steel = 1727 psi; σ copper = 7895 psi 

Pressure Vessels 

Problem 2: DN500 Schedule 10 pipe 
Problem 3: MAWP = 690 psi 
Problem 4: Does not meet specifications 
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Properties of Areas 

Problem 1: 7132.9 cm4; 1761.9 cm4 

Problem 2: 112.85 in4; 30.7 in4 

Problem 3: 44.32 cm4 

Beam Reactions and Diagrams 

Problem 1:  SFmax = 58.8 kN; BM max = 44.14 kN×m 
Problem 2:  SFmax = 4347 lbs; BM max = 18263 lbs×ft 
Problem 3:  SFmax = 35.98 kN; BM max = 83.6 kN×m 
Problem 4:  SFmax = 293.6 kips ; BM max = 2420.6 kips×ft 

Beam Stress due to Bending Moments 

Problem 1:  72.3 MPa, safe 
Problem 2:  Sx = 766.9×103 mm3, W410×46.1 
Problem 3:  128.6 lb/ft 
Problem 4:  Various solutions, example: Side beams Hemlock for Smin = 126 in3 ? choose 4″×16″; 

deck boards 2″×12″ σreq = 497.6 psi ? choose Eastern White Pine 

Beam Deflection 

Problem 1:  1.9 cm 
Problem 2:  0.26″ 
Problem 3:  3.54″ 
Problem 4:  depends on location, 37 cm @ 5.27 m from left end 

Torsion in Round Shafts 
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Problem 1:  0.66×OD, 66% weight savings 
Problem 2:  182.4 MPa, 162.97 MPa 
Problem 3:  198 mm 
Problem 4:  75.38 MPa, 39.95 MPa 

Bolted and Welded Joints 

Problem 1:  TBD 
Problem 2:  TBD 
Problem 3:  TBD 
Problem 4:  TBD 
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