Development Series for New Science Teaching and Learning Fellows (STLFs)

Source: Carl Wieman Science Education Initiative (http://www.cwsei.ubc.ca/resources/STLF-develop.htm)
PDF and editable Word version: https://pressbooks.bccampus.ca/seihandbook/chapter/supplemental-documents/

The purpose of this series is to develop knowledge and skills in new STLFs so that they can effectively apply relevant research in cognitive psychology and education to improve teaching and learning in higher education. The series is 12 sessions, ~1 per week, with 1.5 hour meetings. We recommend keeping this order for #1-5, but the order is not important for later sessions, except for #12 which is more of a synthesis of the earlier sessions. This document represents the series as run in 2013 by the UBC CWSEI. An updated version of these materials will be available in the future at http://www.cwsei.ubc.ca/resources/STLF-develop.htm.

<table>
<thead>
<tr>
<th>Session</th>
<th>Subject</th>
<th>Preparation</th>
<th>Tasks at meeting</th>
</tr>
</thead>
</table>
| #1 | Effect of prior knowledge | Read:
- How Learning Works, chapter 1
- Extra: How People Learn, chapter 1 | Develop a list of instructional approaches and ways to probe student prior knowledge/misconceptions that are particularly relevant to the courses you are working on. |
| #2 | Knowledge organization; expert/novice differences | Read:
- How Learning Works, chapter 2
- Extra: How People Learn, chapter 2
Give some thought: what are the important organizational structures relevant to courses you are working on? | Develop approaches to make important organizational structures explicit for courses you are involved in. Think of ways to get the students to actively engage in this process. |
| #3 | Motivation | Read:
- How Learning Works, chapter 3
- Extra: Yeager et. al.: Addressing achievement gaps with psychological interventions [1]
- Extra: Social-Psychological Interventions in Education: They’re Not Magic [2] | Work out how to apply some of the strategies discussed in this chapter to courses you are working on. |
| #4 | Learning and transfer | Read:
- How Learning Works, chapter 4
- SEI 2-pager: Teaching Expert Thinking
- Extra: How People Learn, chapter 3 | Pick a few strategies from this chapter and work on how to apply these to the courses you are involved with. |
| #5 | Deliberate practice | Read:
• How Learning Works, chapter 5
• Ericsson: *The influence of experience and deliberate practice on the development of superior expert performance* [3]
• *Extra: Fortune Magazine, What it Takes to be Great,* [4]
• *Extra: Sci. American, The Expert Mind* [5] | Work on designing a deliberate practice task for a topic in a course you are connected with. Contrast this with a task that might be assigned and will take time but does not constitute deliberate practice. |
|---|---|---|
| #6 | Development of self-directed learners | Read:
• How Learning Works, chapter 7 | Pick a few strategies from this chapter and plan to apply these to the courses you are involved with. |
| #7 | Learning goals | Read:
• How Learning Works, Appendix D
• Simon & Taylor: *What is the Value of Course-Specific Learning Goals?*
• Smith & Perkins: “At the end of my course, students should be able to...”
• Mayer: Rote Versus Meaningful Learning [6] | Develop a few learning goals for a topic in a course you are working on.
—or—
Critique and improve some learning goals you already have.
—or—
From an exam (bring for course you are working on), evaluate the Bloom’s level of some of the questions and create learning goals associated with these questions. |
| #8 | Formative assessment | Read:
• Scientific Teaching, chapter 3
• SEI 2-pager: *Assessments That Support Student Learning*
• *Extra: Gibbs and Simpson: Conditions Under Which Assessment Supports Students’ Learning* [7] | Brainstorm about ways to build in frequent formative assessments of specific important aspects of the courses you are working on (e.g. learning goals)—including a plan for getting feedback to students. |
| #9 | Memory and retention | Read:
• Bjork: *Memory and metamemory considerations in the training of human beings* [8]
• Karpicke & Roediger: *The Critical Importance of Retrieval for Learning* [9]
• Mayer et al.: *Increased Interestingness of Extraneous Details in a Multimedia Science Presentation Leads to Decreased Learning* [10] | • List practices in course you are familiar with that encourage study of the type that enhances retention.
• List practices that hinder retention.
• Design modifications to improve retention. |
| #10 | Peer Instruction and effective clicker use | Read:
- SEI clicker user’s guide
- Extra: Beatty: Designing effective questions for classroom response system teaching [11] | Create or revise questions (either to be used with clickers or without) and discuss how to facilitate in class, depending on outcome of vote. (Bring clicker or other discussion questions from the course you are working with if you have them—especially those you think need work.)
Watch:
- SEI video clips How to Use Clickers Effectively and The Research: Do Clickers Help Students Learn? |
| #11 | Group work: (beyond Peer Instruction) different types, levels, benefits, and tradeoffs of group activities | Read:
- SEI 2-pagers: Group Work in Educational Settings and Creating and implementing in-class activities; principles and practical tips
Contrast above with what could be done with a smaller enrolment course or tutorial setting.
Watch:
- SEI video: Group Work in the College Classroom |
| #12 | Characteristics of expert tutors | Read:
- Lepper & Woolverton: The Wisdom of Practice: Lessons Learned from the Study of Highly Effective Tutors [13]
- Wood & Tanner: The Role of the Lecturer as Tutor: Doing What Effective Tutors Do in a Large Lecture Class [14] | List which characteristics could be generally applied to a large class.
Create activities that embody these. |
Books

How Learning Works: Seven Research-Based Principles for Smart Teaching, Susan Ambrose et al.

How People Learn: Brain, Mind, Experience, and School, Ann Brown, Rodney Cocking, and John Bransford

Scientific Teaching, Jo Handelsman, Sarah Miller, and Christine Pfund

SEI Resources: a variety of resources developed by the UBC CWSEI and CU SEI + external links:

www.cwsei.ubc.ca/resources/instructor_guidance.htm: SEI 2-pagers, etc.

www.cwsei.ubc.ca/resources/stack.htm: resources on using clickers effectively

www.cwsei.ubc.ca/resources/SEI_video.html: short videos illustrating teaching techniques (more to come)

www.cwsei.ubc.ca/resources/learning_goals.htm: resources on developing learning goals

www.cwsei.ubc.ca/resources/tools.htm: tools & workshop materials (more to come)

www.cwsei.ubc.ca/resources/papers.htm: journal articles and book chapters that we find particularly relevant

www.cwsei.ubc.ca/resources/other.htm: course transformation documents, good books, etc.