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Preface

I have dedicated this book to my statistics students,
former and future, all of them. Future, because it’s all for
them; they’ll be the ones making use of it.

Former, because over the years they have been showing
me (and, in many cases, telling me in no uncertain terms
and with great emotion) how their first experience with
statistics went. Because, somehow, along the way they
have also taught me how to teach statistics to them. Not to a
mass of generalized “undergraduate social science students
in an introductory stats class,” with my initial preconceived
idea of these students’ abilities, prior knowledge and needs,
no — but to the actual them, the very real people I see in
my classes. During the almost ten years of “SOCI
2365 Introduction to Social Research Statistics”
instruction at Kwantlen Polytechnic University, I
have learned how best to approach teaching stats
to my students, in accordance to their actual
academic needs and their actual academic abilities.

So who are the students in my classes? (Forgive me,
now I’ll have to generalize after all.) The typical student in
my introductory stats class tends to be there because they
have to (the course is compulsory for our major, along with
a handful of others); is majoring sociology; is likely “not
very good with math” and, therefore, has delayed taking
the course as much as possible because, understandably,
they are terrified. I could have used “she is” instead of the
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gender-neutral “they are”— I typically have more female
than male students. That is not to say that students not
fitting this profile don’t take up my class; they do, and
they’re not few. This example simply gives me the
opportunity to give you a taste of what the book will be
about: statistics and sociology.

See, “tends to”, “likely”, and “on average” are all terms
with specific statistical meaning (as much as they can be
misused and misinterpreted in conventional, everyday
usage) — but you’ll have to go further into the book for
that. However, I can easily tell you that I also have
students, many of them, who are not majoring in the social
sciences, are in their second year (as they are supposed
to), are great with math, and who find the course easy.
Of course, many of my students are also male. Obviously,
none of what I just said contradicts the description of my
typical student (and if it’s not obvious, you definitely need
this book). The “typical student” description is simply
based on a brief statistical profile of an average class I
usually have. The various characteristics I listed may or
may not be statistically associated with each other, not
to mention anything about causal association. (Were you
perhaps thinking that, say, women in my classes are the
ones “not good with math” while men “find it easy”? I
actually never said, not even implied, that. But now you
see how easily statistical information can be misinterpreted
and how statements based on statistical information can be
taken to mean more than they actually do.)

Why sociology though? The description above can lead
us to a few questions (i.e., we can formulate hypotheses),
like, are students majoring sociology (or other social
sciences, except economics) really more likely to say they
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are “not good at math” than, say, students in the natural
sciences? For that matter, are women on average more
likely to major in social sciences and humanities than in
the STEM (science, technology, engineering, and
mathematics) fields? The answers to these questions can
be found through statistical analysis (both are “yes” by
the way) but the explanations (or theories) — i.e.,
why we observe the relationships between gender,
major, and perceived math ability — are
profoundly sociological.

In a similar vein, throughout this book I will
bring up questions of sociological relevance, I will
refer  to sociological theories, research and
findings, I will give sociological examples, and
ultimately I will use sociological data.

Why does that matter? Stats is stats, right?..
Hmm, yes, and no — and in the case of applied
statistics, as the current text is, rather no. Yes; if
you go by the table of contents, you’ll see what
one typically sees in a generic introductory
statistics book (for social scientists); statistics is a
set of tools, and it can be presented as generically
and as generally as possible. However, like any
tool, its value is higher the more specialized it is
(you can take an ailing tooth out with a hammer
yet arguably it’s better to use specialized dental
equipment). Like any tool, it also matters what it is
used for and how.

In other words, in this book the statistics
instruction will be specialized: from a sociologist



XVi

(granted, herself specialized in social statistics) for
sociologists. (If you are neither a sociology
student or sociology instructor, you can take this as
sort of a caveat emptor clause: buyer beware.) To
the extent that sociology itself is a rather broad discipline
and its use of statistics is equally as broad, one could use
the book as an introduction to social science statistics.
However, I do not go out of my way to engage in statistical
instruments more frequently used in, say, criminology or
psychology (i.e., small-size court case data, or experiment
data, etc.).

I’'ll give you a different example: If you open an
introductory psychology textbook, you will likely find a
chapter on Sexuality and Gender. Yet “gender” and
“sexuality” are also huge topics in sociology, and any
introductory sociology textbook also has a chapter on
them. There will be some overlap in the treatment of the
topic by the two disciplines, but you’d be wrong to expect
everything — or even most — to be the same.

Simply put, psychologists and sociologists generally
tend to ask different questions, to approach a topic
differently, to have different concerns, to have different
preferred methods for collecting and analyzing
(quantitative) data, and to even reach different conclusions,
and to therefore offer different theories (as one would
expect from two separate disciplines). Why wouldn’t we
want specialized statistics for each discipline?

Think of this book as a crash course in statistics. As
such, I make these promises:

1) I promise to include only what is absolutely
necessary.
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2) I promise to skip on fluff and padding and any other
material that is not strictly relevant to the exposition.

3) I promise to avoid repetitiveness as much as possible
and instead explain everything only once but slowly and
patiently.

Given my promise, this book provides a necessarily brief
introduction to statistics. It is also a conventional
introduction in that, as almost all such books, it does not
include all there is about some of the more complex
concepts, i.e., it is not entirely truthful.

Don’t get alarmed by this admission. Rather, think of
this introduction as your first date with statistics. No one
tells all and bares all their secrets on a first date, do they?
(...Or it might be their last.) Some things need to be
revealed at a later time, once you’ve come to know your
love interest better. Statistics is like that too. Some
advanced concepts and relatively new developments in the
discipline would only make sense to you only after the
initial period of getting to know it has passed; then you can
learn more “truthfully” and understand in what way and
why the tools and concepts were simplified when they were
first introduced to you.

And if you never get to “a second date” with statistics,
never fear. What you will learn from this brief introduction
will be quite practical “in real life” and still will serve
you well. (You’ll just know there is more to what you’ve
learned — but that’s the case with everything, no?) You
will learn the basics of summarizing data and extracting
useful information out of it; how data can be manipulated
and how and why not to do that; how and when you can
generalize from data and the limits to your generalizations;
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what role probability and uncertainty play in statistics; how
to interpret basic statistical information; what to look for
in existing statistical reports; and how to execute a basic
statistics report on your own. You will learn how to talk
about statistics, and how to write about statistics. Finally,
you will learn where to go from here, should you ever feel
like going on a second date with statistics after all.

Given the purposefully streamlined content, some will
not like this book. If you are an instructor (or a student)
looking for theoretically comprehensive and expansive
introductory treatment of statistics, this is not the book for
you — but you also know many such books exist, freely
available online or otherwise. Statisticians will likely be
severely displeased by some of the things missing here,
as compared to a truly conventional introductory statistics
text.

But this indeed is why this book exists at all: to only
include what I’ve discovered my students need in order to
have a basic working knowledge about the most useful and
most frequently used simple stats tools.



Introduction

This book is intended to be your “first date” with
statistics. It might end up as your last date with statistics
too, so I’ll try to make the most of it while given the
chance.

The book is organized as follows. Applied statistics is
about data. Chapters 1 and 2 introduce you to concepts
like variables and data sets and the type of information
collected wherein, and generally cover all the preliminaries
you need to know in order to start ‘doing’ statistics.
Chapters 3 and 4 follow with the ways we can summarize
and describe data. Altogether, this first part of the book is
usually called descriptive statistics; it allows us to learn
things from and about data that in many cases we cannot
readily see just from looking at it.

I have devoted Chapters 5 and 6 to some theoretical
concepts which are necessary to continue with the rest of
the book, i.e, the part usually referred to as inferential
statistics. You see, statistics would have a rather limited
value if all it allowed us to do were to summarize
or describe data (as useful as that is). The real power of
statistics comes from prediction and estimation (i.e.,
inference), the subjects of the latter part of the book. In
Chapters 7 through 10 you will learn how and why we
can know things that go beyond the actual data we have;
how likely they are and how confident we can be in this
newfound knowledge; what it means for variables to be
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statistically associated, and finally, whether we can identify
causes and effects in the social world with any amount of
certainty.

At this point, when promising all this to my students I
usually feel like a charlatan at a county fair: Come one,
come all, I’ll look at my crystal ball and the palm of your
hand and tell you things I cannot possibly know. After all,
yes, alright, describing data you can see is one thing — but
this inference thing?.. However, the more you learn about
statistics and statistical tools and methods, the less (and
less, and less) it will feel like charlatanry (I promise). Like
many things in science, it only looks like charlatanry at first
blush because you lack the knowledge of the principles
that make the seemingly impossible, possible. In reality,
what you will be learning in this book is not even all that
complicated. If you don’t believe me yet, check it yourself
— just promise to go consecutively and patiently through
all the parts until the end — no skipping!

So, ready to go?



Chapter 1 Variables and Their
Measurement

Naturally, we start with preliminaries. Before you learn
the tools of any trade, you need to learn about your subject
matter, i.e., on what you will be applying those tools. In
this chapter I introduce you to the “building blocks” of
statistics: the concept of variables and some related
vocabulary. You will learn what variables are and about
their levels of measurement (what nominal, ordinal,
interval, and ratio scales are); how to determine the level
of measurement of an actual existing variable and whether
you should treat variables as discrete or as continuous for
the purposes of statistical analysis.

Think of this chapter as the one establishing the main
characters of a fictional story — the characters might seem
too many at first, appearing too fast one after the other, so
initially it might be hard to keep track of them and who is
who and who does what. In time, however, the more you
read about them (and sometimes going back to re-read key
passages) they become familiar to you; then and only then
you can comfortably follow their story.






You can think of a variable as a characteristic that
varies across individual elements. For example, hair
colour varies across individuals: black, blonde, brown, red,
grey (or practically any colour if we include the wonders of
hair dying). If we go by other physical characteristics, we
can easily see that height, weight, body type, skin colour,
age, etc. are all variables.

Then what about social/economic characteristics like
level of education, annual income, occupation,
employment, citizenship, marital status, political party
affiliation, union membership, participation in sports (to
name a few)...? All variables. Or, what about personal
opinions and preferences? You might love chocolate a lot
but your friend might not care for it; another friend might
like it but just a little... Your friend might try to convince
you that classical music is great but you might find it
terribly boring, preferring rock instead. You might be a
dog person and might frequently extol the virtues of dogs
in comparison to cats, to the dismay of your cat-loving
significant other. You might think that legalizing marijuana
in Canada was the right decision but your parents might
feel it was a profound mistake on part of the government.
Clearly, opinions and preferences vary, so we can add
‘opinion on marijuana legalization’, ‘liking of chocolate’,
‘preferred music genre to listen to’, and ‘favourite pet
animal‘ to our ever growing list of variables.

So far, you might decide that variables only apply to
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people: after all, all the examples mentioned above discuss
characteristics that vary across human beings. However,
this is absolutely not the case, as we can just as easily
see that other things can have varying characteristics. For
example, universities can differ in their student enrollment
numbers, instructor-to-student ratios, type of degrees
awarded, geographical location, source of funding,
presence of medical school, percentage of international
students, etc. Countries vary on population size, climate,
geographical/geopolitical location, language, GDP (gross
domestic product), level of human development, presence
of minority groups, immigration (and emigration) rates,
fertility and mortality rates, access to universal healthcare,
average education level, age of majority, freedom of press,
type of government... you get the picture. Clearly,
variables apply to elements of anything that may be
compared on characteristics which vary across
these elements (hence the somewhat clumsy
definition I started with).

Researchers refer to units of analysis when they
want to specify the elements they study: When we
have information about characteristics of people,
we say that the unit of analysis is “individual”.
When instead of people, we study countries, the
unit of analysis is “country”, and so on.



1.2 Concepts, Measurement, and
Operationalization

You might be wondering why we even need to introduce
a concept such as variables. Can’t we simply call them
characteristics, if that’s what they are? The short answer
is that we use the language of variables when we engage
in formal research, but the reason is not solely scientific
jargon. Variables, as opposed to characteristics, imply
measurement.

You see, sociologists and other social scientists study
concepts (i.e., ideas, notions) that are more often than not
abstract. If I say “I want to know if the average height
of Canadians has changed over time”, it’s easy for you
to suggest that I first collect information about people’s
heights (perhaps actually measure them, if I don’t trust
self-reports). By doing that, you might not realize it but
what you have done is actually offer a way to measure
a concept, which is what we call with the mouthful of
a word operationalization. In other words, you have
operationalized the abstract concept (height of Canadians)
through the actual, physical measurement of individuals’
heights (in centimeters or in inches) in real life.

So operationalization is that easy, right? Unfortunately,
no, not really.

What if, instead of average height of Canadians, I had
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wanted to study how poverty has changed in Canada over
time? Or homelessness? How about income? Or people’s
attitudes to immigration? Or their religiosity? What about
if I wanted to study self-esteem of adolescents? Or social
status among Canadian university students? Or bullying in
high school?

I’'m sure you have no trouble understanding the concepts
as abstract ideas — but how do you measure
them? 'There are various ways one can measure
concepts. At the most fundamental level, this
depends on what the chosen method of inquiry
(or, research) is, qualitative or quantitative. We
shouldn't reify the boundary between quantitative
and qualitatve methods, however. Many scientists
mix their methods, employing both methods in
a single study with considerable success. Social
scientists use statistics predominantly when they
have chosen a quantitative method of collecting
and analyzing data, so here we'll focus on the
quantitative operationalization of concepts.

Do it! 1.1 Measuring Homelessness

Imagine you really do want to study the prevalence of
homelessness in your city (or any of the abstract concepts
mentioned above). Before you decide how to collect
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information about it, you have to choose about what
exactly you will be gathering information. How are you
going to define being homeless in order to measure
homelessness? In a word, how are you going to
operationalize homelessness? Make a list of possible
definitions. What are the various aspects of homelessness,
which you may choose to consider in your definition or not,
that make defining homelessness difficult?

All in all, operationalizing a concept boils down to
choosing a working (i.e., operational), measurable
definition of a concept within a given study. Most concepts
can be (and regularly are) defined differently by different
researchers. What matters is that the definition of any
concept is provided and is used consistently within each
individual study.

If the Do It! exercise above seems too abstract still,
perhaps one easier way to understand the
operationalization of concepts into measurable variables
with concrete definitions is to imagine a survey question
about what you want to study. Sometimes one such
question can provide the operationalization/definition of
the concept under study. Other times a single question is
not enough and a set of questions can help a researcher
measure what they want to study.

Let’s say you want to study income (perhaps as a part
of a larger study on poverty). You want to ask people
about their income but how exactly? Will you be asking
about personal or household income? Are there types of
income you have in mind — from salary, from rent, from



10

interest, etc.? Is it weekly, bi-monthly, or annual income?
Is it income before or after taxes? For that matter, do
you mean only taxable income? Furthermore, what kind of
answers would you accept? Will the respondents provide
an exact number? Or will you provide a set of multiple-
choice answers from which the respondents will choose?

For example, you can measure income in a hypothetical
study (through a survey question) like this: “What is your
household’s annual after-tax income (from any source)?”
This means that you have chosen to operationalize the
abstract concept income through the specific, measurable
variable annual household after-tax income.

The types of possible answers you choose to accept for
the question are also part of the measurement. Example
1.1. below offers three options to operationalize income.

Example 1.1. Operationalizing Income

Q1. What is your household’s annual after-tax income (from
any source)?

a) $0 — $50,000;

b) $50,001 — $100,000;
) $100,001 — $150,000;
d) $150,001 — $200,000;
e) $200,001 or more;
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Q2. Is your annual household after-tax income (from any
source) less than $50,000?

a) Yes;
b) No.

Q3. What is your annual household after-tax income (from any
source)?

.... [Any number provided by the respondent will be recorded.]

The multiple choices provided in QI in the example
above can contain any number of categories to choose
from. I have chosen to go by 50 thousand dollars to create
the categories, but I could have done so by as little as,
say, five thousand dollars to as much as 500 thousand
dollars (and I would have ended with a different number of
possible answers). If we need the actual dollar amount of
the income reported by each respondent, we’ll chose to ask

Q3.

The way we choose to create categories or not depends
on the type of answers that will be suitable for our study
and what type of information we want. As well, Q2 offers
only two possible answers, yes or no. If the relevant
information for our study is whether household annual
income is below or above $50,000 (say, because the
average such income has already been established as
$50,000), Q2 would be the way to go.

Keep in mind that how a variable is operationalized
depends not only on the researcher’s goals and needs (and



12

practical considerations like time and money) — but also
on their personal beliefs and preferences, the time period
in which they live/d and work/ed, etc. Operationalizing
concepts considered controversial at a specific time and
place can be quite political and itself become a controversy.
Consider the following example.

Example 1.2. Operationalzing Gender

It should come as not surprise to anyone studying sociology
that how people operationalize gender has changed over
time. Until recently, the conventional operationalization
went something like this:

Q1. Are you...?
a) Male
b) Female

With advances in the study of gender and sexuality, over time
our understanding of gender changed. Nowadays you are far
more likely to see an operationalization similar to the following|
style of the American Sociological Association when collecting|
information on their members:

Q2. What is your gender? Select up to two.
a) Female
b) Male
c) Transgender female/Transgender woman
d) Transgender male/Transgender man
e) Gender queer/Gender non-conforming
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f) Different identity (please specify) ......
g) Prefer not to state

In countries like Canada, using Q1 nowadays would might be
considered too restrictive for many purposes, and also offensive
by some. On the other hand, in some countries (like in Eastern|
Europe) choosing to go with Q2 might be seen as quite
controversial and as political activism. Even in Canada the switch
to more inclusive gender oprationalization is gradual and quite|
recent. As you will see later in the book, datasets collected in the|
past typically use a binary operationalization of gender.

Before we continue with measurement in the next
section, here is a practical tip when working with SPSS.

SPSS Tip 1.1. Exploring How Variables in a Dataset Have Been

Operationalized

When exploring an existing dataset in SPSS (more on that in
Chapter 2), you can see a variable’s categories/values in the
Values column in Data View. (You can switch between Data
View and Variable View by clicking on their respective tabs
at the bottom of your primary data window.) Clicking on a
variable’s cell in the Values column will open a new window
listing all the categories/values through which the variable
has been operationalized.
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1.3 Levels of Measurement

Now that you know there are different ways to
operationalize concepts, let me introduce another term in
respect to variables: level of measurement. Each and every
variable has a level of measurement. Knowing, or being
able to identify, the level of measurement of a variable tells
us how it has been operationalized and vice versa: knowing
how an existing variable has been operationalized gives us
information about its level of measurement.

More importantly, however, knowing and being able to
identify a variables’s level of measurement allows us to
determine what we can do with that variable in terms
of statistical methods and procedures. This last point is
key to doing statistical analysis in a correct and meaningful
way. The flip side is also true: misidentifying a variable’s
level of measurement will inevitably end in erroneous
analysis and conclusions (that is, if the analysis can even
be performed, as in many cases the statistical software will
give an error rness.age).1

Why is the level of measurement so important for
statistical analysis?

Simply put, variables are not created equal when it

1. The more dangerous -- and quite frequent -- scenario, however, is when the
software will execute the analysis and produce results. In that case, without
an error message to warn them, the researchers would trust their analysis
and results without realizing both are bogus.
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comes to levels of measurement. Due to differences in the
nature of the information contained within, you can do very
little with some variables in terms of analysis while
you can do a whole lot more with others.

Do it! 1.2. Measuring Different Types of Variables

Imagine you have to analyze the following (individual-level)
variables:

a) religious affiliation,
b) educational attainment,
) exam test scores,

d) age.

Think of what type of information would be contained
within the categories of each of the four variables above. (It
might help to imagine the possible answers respondents —
say, university students — could give if asked questionnaire
questions about each.)

What more (beyond collecting it), if anything, can you
do with that information? For example, can you say that
one answer is more/bigger than another? Can you identify
answers as different or the same as others? Can you do some
calculations with the answers?

The exercise above gives you a clue: there are
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four levels of measurement. They are called nominal,
ordinal, interval, and ratio. Each and every variable has
only one level of measurement once it’s operationalized.2
A variable’s level of measurement is sometimes also called
its measurement scale.

The following sub-sections provide details about each
measurement scales.

2. Recall, however, that sometimes -- though not always -- one and the same
variable can be operationalized in different ways. These different ways can
sometimes be at different levels of measurement, depending on the type of
information we want to have.






1.3.1 Nominal Variables

As the name of this level of measurement implies, the
information contained in the categories of a nominal-scale
variable is solely their... well, name. Think about the
religious dffiliation variable from the Do it! 1.2. exercise.
You have already probably imagined people’s possible
affiliations in terms of religion (i.e., what religion they
subscribe to, if any) as something like Muslim, Jewish,
Christian, Sikh, Hindu, Buddhist, not religious — though
likely (and depending on your own religious affiliation) not
in this particular order.’

Of course, I could have just as easily listed the possible
categories (or “questionnaire answers”) as Christian,
Muslim, Jewish, Buddhist, Hindu, Sikh, not religious. Or,
as Sikh, not religious, Buddhist, Hindu, Jewish, Muslim,
Christian. Or, as... virtually any possible variation in the
ordering of the list.

In other words, the information we have about religious
affiliation is simply in identifying the different categories,
and that is all. We cannot do much more than count the
different answers and specify what they are. We cannot

1. It's also likely that these general categories might have been
disaggregated to list variations/denominations, e.g. Catholic and
Protestant instead of simply Christian, or Shia and Sunni instead of simply
Muslim, etc. For simplicity's sake, I choose to use the most general
religious categories in the example.
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even use some inherent order to them, as they are only that,
2
names.

When researchers study religious affiliation in real life,
they usually list the groups' names by the size of the
religious group/popularity of a religion in their area. For
example, in the Americas and Europe the listings usually
start with Christian. In India, one can arguably assume they
start with Hindu, etc. This type of ordering by size is still
purposefully imposed, not an inherent one.

Do it! 1.3. Nominal Variables

Try to come up with at least three different nominal
variables. Can you explain why they are nominal? Try to
defend your choice in identifying the scale for these
variables as nominal.

2. Of course, we could order the categories alphabetically -- just like you can
order pretty much anything alphabetically. That would be an arbitrary
decision, however, not an inherent order contained in the names (like that
in small to big, left to right, slow to fast, less to more, etc.).



1.3.2 Ordinal Variables

As with the nominal scale, the name of this scale is
indicative of it’s defining feature: an order. That is, the
categories of an ordinal variable cannot just be ordered
arbitrarily in any other way, like we can with nominal
variables, no: the categories of any ordinal variable have
an inherent order to them. Listing the categories of an
ordinal variable differently would violate the intrinsic logic
of their order and would make little to no sense; as well, we
would lose the information contained in their order.

Think back to the variable educational attainment from
the Do It! 1.2. exercise earlier. Educational attainment is
usually measured by the educational degrees attained by
an individual, so if you imagined the categories
being something like no degree, secondary/high
school, Associate’s, Bachelor’s, Master’s,
doctorate/PhD you are probably not alone. That is,
chances are, most, if not everyone, would come up
with a list in that particular order. Why? Because,
I can hear you explaining, no degree is the lowest
formal educational attainment one can have; it’s
clearly less than having finished secondary/high
school, which in turn is less than having a college
degree, which again is clearly less than achieving
a Master’s degree, while, finally, a PhD is the
highest degree one can get in academia. Arbitrarily
switching the categories in educational
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attainmentto be listed as, say, Associate’s,
Master’s, no degree, PhD, Bachelor’s makes little
(rather, no) sense, and worse, it deprives us of
the information about there being an intrinsically
ascending order in the obtaining of the degrees
(as one can only have a doctorate if they had
previously finished college, which ca only be done
after secondary/high school).

Note that having an intrinsic order (in this case, from
less to more), however, is a necessary but not a sufficient
condition to identify an ordinal scale. There is an
additional requirement: a variable is ordinal only when
the categories do not have a precise (numerical) value.
In other words, while we know that a Bachelor’s degree is
more than an Associate’s degree, we don’t know how much
more. Having a PhD is more than a Master’s degree, but
again, we don’t know by how much. The same goes for any
of the categories. We know the order, but not the precise
“distance” between one category and another. As well, the
“distance” between the first category and the second one
might be unequal (while still unknown) to the “distance”
between the second category and the third, and so on. It is
not the size of the distance that matters here, only that the
distance exists and that a category is clearly less/more (or
bigger/smaller, nearer/farther, etc.) than another.'

1. You might be tempted to measure the "distance" between the categories in
educational attainment in terms of years. For example, you could say that
the "distance" between secondary’/high school and Associate's is two years,
or that between Associate's and Bachelor's is another two years, etc. This
would still be an imprecise measurement, however, because different
people take different times to accomplish their degrees, not to mention that
there is no way to measure the difference between no degree and
secondary/high school (as no degree can mean anything between no
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To summarize: As you can see from this example, the
key feature of ordinal variables is the intrinsic logical
ordering of their categories, a logic that would be lost if
we were to reorder them in any other way. As well, this
tells you that ordinal variables contain more information in
comparison to nominal variables: namely, the ordering of
the ordinal variable’s categories. Ordering the categories of
a variable is an additional action you can do above simply
listing them. Finally, the general order is the only additional
information: the “distances” between the categories could
vary and should not be measurable/ quantifiable. If the
latter is not the case, you are already moving into interval/
ratio scales territory.

Do It! 1.4. Ordinal Variables

With the risk of being repetitive, I’'ll ask that you try to
think of three different ordinal variables. Can you explain
why they should be classified as ordinal? Remember to
make sure that the internal logical ordering of the categories
of your variables is of the “more/less” type rather than
involving precise measurement.

education -- still a sad reality in many countries -- to dropping out of school
a year before graduation. As well, doctoral studies vary enormously in
duration depending not only on the chosen discipline but also on the
country, etc. In short, measuring the "distance" in educational attainment
categories in years would vary far too much on a case by case basis to be
meaningful in any way. Note, however, that you could operationalize a
variable years of schooling measured in years but that would not be the
same variable anymore (nor would it be an ordinal variable).
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1.3.3 Interval and Ratio Variables

Going back to the original Do It! 1.2. exercise, I am sure
that you found imagining the categories of exam test scores
and age the easiest, as they would be simply numbers.
Perhaps something like 30, 65, 72, 88, 95, etc.... points
out of 100 in the former case (though I know you don’t
want to imagine a test score of 30 on any exam!), and,
if we’re imagining college students, something like 18,
19, 20, 22, 23, 24, etc.... years in the latter. Notice the
major difference from the categories of the nominal and
ordinal variables we discussed above: now we are working
with numbers. Not only are the exam scores and age
categories comprised of numbers (as opposed to words) but
they are also ordered in measurable “distances”. In other
words, there is a stable/unchangeable unit by which
the “distance” between any two categories can be
measured: a point in the exam scores case and a year in
the age case. This unit is called unit of measurement for
the interval and ratio variables.

Wait a second, you’re probably thinking now — the
exam scores above lists 30, 65, 72... as categories, and a
quick calculation reveals that the “distance” between 30
and 65 is thirty-five points, while the “distance” between
65 and 72 is only seven points. Thirty-five is clearly much
bigger (five times bigger to be precise) than seven: isn’t
that as arbitrary as the “distances” across the educational
attainment categories above? Well, no. The difference is
that for interval and ratio variables the information
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contained in the categories and their “distances” from each
other is not simply of the more/less, bigger/smaller, left/
right, etc. kind but is readily quantifiable and measurable
in precise, stable units. In practical terms, you can
specify exactly how much smaller/bigger a category is than
another (i.e., 65 points is thirty-five points more than 30
points; a 22 years-old is two years older than a 20 year-
old) — unlike with ordinal variables, where we know a
Bachelor’s is a bigger educational attainment than
secondary/high school but there is no agreed unit to
measure the “distance” precisely (as it’s neither measured
in years, not in numbers of degrees).

Furthermore, my exam scores example lists 30, 65, 72...
but I simply chose these numbers at random: I could have
just as easily listed 25, 45, 70..., or 12, 54, 69..., etc. The
point here is that one can have any number between 0
and 100 (in a conventional 100-point exam) as a potential
score, or be a college student of any potential age (say,
more than 5 years old),’ while the categories of an
ordinal variable are fixed, or set, during
operationalization (to a usually relatively small
number), and cannot potentially be anything else
(unless you operationalize the wvariable in a
different way, which would result in a new
variable).

Finally, a happy corollary to the fact that interval and

1. You might think I'm joking but do look Michael Kearney up. He
graduated high school at age 6 and had earned his Bachelor's
degree at age 10, this making him the youngest university
graduate on record. (*January 15, 1995RICHARD
KAHLENBERG | The LA Times)
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ratio variables’ categories are comprised of numbers is
our ability to perform mathematical operations on them,
beyond simple comparisons — something we can do
neither with nominal, nor with ordinal variables. (Exactly
what kind of mathematical operations we can do with
interval and ratio variables you’ll see in Chapter 2.)

To summarize, interval and ratio variables have
three defining features: 1) their categories (typically
called values) are comprised of numbers, 2) the
categories follow an order inherent in the fact that there
is a measurable, unit-based scale, so that we can speak
of a variable’s units of measurement, and 3) we can
perform mathematical operations on the values (that
the categories are).

Wait though... Why did I say that interval and ratio
variables are different when I keep defining them together,
and in the same way? Not to worry: the difference comes
next, as I saved what students usually find the trickiest part
for last.

With the risk of oversimplification (and, inevitably,
exaggeration), interval scales are “made-up” while ratio
scales are “real”. The difference is purely conceptual: you
have to know whether the scale o which the variable is
measured is “artificially designed”, as it were, or whether
it exists as a some sort of “objective reality”. A rule-of-
thumb advise on differentiating them that you may
encounter is the “existence of a true zero”: ratio variables
have a true zero while interval variables do not. (Clear
as mud, eh? I did say it’s tricky.)
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Examples usually help make this conundrum seem less
of a conundrum.

Example 1.3. Interval Variables: Temperature

Let’s take the classic example of an interval-scale
variable, temperature. If you go by centigrade, 0°C is, I'm
sure you know, the temperature at which water freezes. If
you go by Fahrenheit, however, 0°F is... well, nothing in
particular; it’s just equal to about -18°C. On the other
hand, if you are more scientifically-minded,
you might go by Kelvin, where 0°K is the
coldest-cold-and-nothing-could-ever -be-
colder temperature (a.k.a., absolute zero),
equal to -273.15°C, or -459.67°F.

Have you ever wondered why there are
three scales of measuring temperature? From
where did they come from? They were
“artificially designed” (or you might say,
invented) by people: Anders Celsius, Daniel
Fahrenheit, and Lord Kelvin were the
scientists who came up with them and whose
names we use to indicate in which scale we
have chosen to report temperature. Not only is
a temperature of 0 degrees different in all three
systems, they don’t indicate zero/nothing/
absence of something.’does indicate absence

2. Well, 0°K
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of all energy, a temperature where all atoms
stop moving, but it is still not an absence of
temperature. Temperatures of 0°C or 0°F do
not indicate an absence of temperature or no
temperature whatsoever, they are purposefully
(and one could say, arbitrarily) chosen by
people as a zero-point on an human-made
scale.

In a similar vein, a score of 0 points on an exam doesn’t
typically mean a complete absence of or no knowledge on
a subject whatsoever — such a score usually simply means
that the test-taker did not perform well on that particular
test. Arguably, an easier test on the subject could be
designed, and the test-taker would likely score more points.

Contrast this to our other variable from the original Do
it! 1.2. exercise, age. Age of 0 years means exactly that —
that we are talking about an infant who hasn’t yet reached
their first birthday, and thus has completed 0 years of life

. 3
(pardon the awkward phrasing).

3.Of course, we measure babies' ages in smaller
units, like months, or weeks, or even days and
hours -- just like we can measure any person's
precise age that way. However, we usually don't
do it for anyone who's not an infant, so I'll leave

it at that. Or consider a variable for, say, income: an income of $0
means the complete absence of income on dollars, i.e., no income. Both age
and income are not “made up”: they exist regardless of how we measure
them, and a zero on either indicates an absence of something (time in the
former case, dollars in the latter). Physical attributes like height and weight
work the same way.
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Do It! 1.5. Interval/Ratio Variables

You saw it coming: Try to come up with three interval/
ratio variables (in addition to the ones I listed above). Try
to differentiate between the interval and ratio scales and to
identify which variable goes with each. Make sure you can
explain what makes each variable interval- or ratio-scale.




1.4 Level of Measurement and
Operationalization Considerations

All in all, the difference between interval and ratio
variables exists more on a conceptual level rather than
in practical terms. As such, they are frequently grouped
together in an interval/ratio category and treated the same
for the purposes of statistical analysis. At this stage, while
it’s preferable to know the difference between them, it is
still far more important to be able to differentiate interval/
ratio variables from nominal and ordinal ones.

Here is proof how tricky identifying the correct level of
measurement of a variable can be.

for Likert Scales

Most likely, at some point you have encountered survey
questions that read something like this:

“On a scale of 1 to 5, where 1 is the lowest and 5 is
the highest, how much do you like ...?”
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... let’s say, “chocolate”. It is possible that you were
presented with the numbers from 1 to 5 to choose from,
or that they were accompanied with phrasing of
the strongly dislike, dislike, neither like nor dislike,
like, strongly like type. Now that you know about levels
of measurement, as what scale would you classify the
variable liking of chocolate: nominal, ordinal, or
interval/ratio?

Considering that the answers from which one can
choose are listed as numbers, many students are
tempted to classify such a variable is interval. However,
the strongly dislike, dislike, neither like nor dislike,
like, strongly like part should give you more clues. Ask
yourself: is there a uniform unit that allows us to
precisely measure the “distance” between dislike and
strongly dislike? Or between like and neither like nor
dislike? Is it even the same “distance”? We would be
hard-pressed to say “yes” to any of these questions.
We know that people who like chocolate like it more
than those who neither like it nor dislike it but we
don’t know exactly how much more. The numbers are
there to make analyzing the responses easier, and as a
sort of “code” for the ranking of preferences regarding
chocolate, but substantively the ranking contains only
order, not precise measurement of these preferences.

Variables such as these are called Likert scales. As
I just explained, they are ordinal by constitution
(although, in some special cases — for example, when
the possible responses are not five but, say, ten or more
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— they can be treated as interval for purposes of
analysis). Researchers use them usually to capture
people’s preferences — but preferences are generally
“fuzzy” and not fully-defined; they do not come with
a build-in, measurable, uniform unit scale, despite the
fact that it seems like the numbers represent one such
scale.

In Chapter 2 you will see that numbers can be used
to represent a lot more than actual numbers. (And you
were just starting to think identifying the level of
measurement is easy!)

A further word of caution: the examples I used in this
chapter might leave you with the impression that you can
simply hear the name of a variable and you should be able
to identify its scale of measurement. That would be wrong.
My examples are hypothetical and as such I imagine what
the variables’ categories might look like. (I also ask you
to imagine variables and their categories in the Do It!
exercises.) However, variables — not hypothetical, real
variables that we use for analysis — exist in real datasets,
where they have been operationalized in one specific,
concrete way.

As such, upon hearing the name of a variable, instead of
imagining what it looks like, you should always — always!
— actually look at it and its categories in the given/specific
dataset of which the variable is a part. Determining an
existing variable’s scale of measurement requires
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exploring the actual variable as it was created. Recall that
there is more than one way to operationalize a variable.
Thus, the researcher/s who created some variable into
which you might be looking might arguably have created
it differently than you would, or differently than some
other researchers might have created theirs — even if these
variables (the different researchers’ and your hypothetical
one) have the same name.

This leads us to the question: Can the same concept be
operationalized at different levels of measurement? The
answer lies in the nature of the concept (or that of the
hypothetical variable, if you prefer). Let’s go back to the
example of income from the previous section on
operationalization. There I provided you with a few
different ways to create income categories. One was based
on a yes/no question (“Is your income below...?” a specific
number), and few more ways listed several categories
based on income groups (“0-19,999”,
“20,000-29,999”,....etc.). Additionally, we could ask
people to supply their specific income, rounded to the
nearest dollar. Alternatively, thinking along the lines of a
survey questions, this would result in a) yes/no response,
b) multiple choice answer, and lastly, c) an open-ended,
respondent-supplied answer.

In this way, we can say that we can successfully
operationalize the concept of income at three different
levels of measurement: a) nominal, b) ordinal, and c) ratio,
respectively. This is only possible because of the numerical
nature of income: income is monetary, and money is
countable — and expressed in numbers. We can choose to
create several categories of income (out of the numbers
involved), or we could choose to create only a binary



Simple Stats Tools 35

variable (i.e., with two categories) to indicate an income
below/above some threshold. In choosing either of these,
we also make the decision to forego, or lose the more
specific information of the actual income of everyone we
ask. Logically though, we can only forego/lose information
that is otherwise potentially available: we cannot make
information up.

What it all boils down to is that we can operationalize
down: from the highest level of measurement possible
for a variable towards the lower ones — but never vice
versa. A concept of numerical nature, i.e., an interval/
ratio variable can be operationalized down and created as
an ordinal variable, or even further down as a nominal
variable, losing potential information (actual numbers and
order) along the way. A concept of ordinal nature can
also be operationalized down to a nominal scale, again,
foregoing the potential information of order. However, a
“naturally” nominal variable cannot be operationalized as
anything else but nominal: there is simply no further
information available. The same goes for “naturally”
ordinal variables — they cannot be operationalized as
interval/ratio as the only information we can have is order,
while precision and measurable, defined constant units are
not possible to obtain.'

1. Beyond the original operationalization, sometimes researchers actually recode
variables down within an existing dataset. Since they start with an interval/
ratio variable, they can choose which level of measurement they want to
use, and go back and forth between ordinal and nominal and back to
interval/ratio. They can do this only because the information has initially
been collected at interval/ratio level of detail. If the original information is
collected as nominal or ordinal data, no further information cannot be
accessed: recoding up is impossible.






1.5 Discrete and Continuous Variables

I will introduce a final useful typology by which
variables can be grouped: discrete and continuous.

By definition, variables called discrete (note, not
discreet!) have finite number of categories (i.e.,”space”
between them, and nothing occupies that space), while
variables called continuous have potentially infinite
number of values (i.e., it’s possible that a value exists
between any two given values, in smaller and smaller —
infinite — number of “spaces” between any two the values,
to infinity). To make things easier to understand, and with
more than a little risk of oversimplification, in a very
broad sense you can think of nominal and ordinal
variables as discrete and of interval/ratio variables as
continuous." For example, hair colour, religious
dffiliation, and educational attainment (as measured in
educational degrees) are all discrete: they have finite
number of discrete categories.

On the other hand, age, income, or exam scores are
all continuous: a number (value) can exist between any
two given values, depending on how precise you want
your measurement to be. To take age, for example, if two
people report being 20 and 22, respectively, it’s obviously
possible that another person in 21. However, we need not

1. Technically speaking, in theory nominal and some ordinal variables are
categorical, ordinal variables with numerical categories are discrete, and
interval/ratio variables are continuous. In practice, things are less clear cut.
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round to full years; between two people ages 20 and 21,
a value of 21.5 (or 21 years and 6 months) is possible
to exist. Further, between the ages of 21 years and 21
years and 6 months, we can have a value of 21 years
and 3 months, and so on, until we are down to counting
days, then counting hours, then counting minutes, then
counting seconds, then milliseconds, then microseconds,
then nanoseconds, etc.... The point is that, in theory, there
is always a smaller number between any two numbers
(which can be represented by the possibility of infinite
number of digits after the decimal point). The same can be
applied to income and exam scores too.

In practice, however, things are different. In
sociological research (as  with ~ other  similar
disciplines), the data collected is empirically
discrete, as the values collected are a finite number
and are typically rounded to whole numbers: we
don’t bother to measure age in anything but years,
income in dollars (and not cents), etc. Still, we
usually call interval/ratio variables are continuous,
because of the potential for infinite number of
values.

At the same time, however, some ratio variables are
truly discrete. Think, for example, about a measure called
number of children of the respondent. Clearly, there is no
possibility for an infinite number of values, just like with
any “number of people”-type variable: people can only be
counted in whole numbers, and the count is always finite.

All this is undoubtedly confusing, so here is a practical
tip for applied research, and what you need to focus on.
Regardless if a variable is discrete or continuous in theory,
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in practice all variables you will encounter in real-life,
actual datasets will be discrete. What we do is treat some
variables as discrete, and other variables as continuous
for the purposes of statistical analysis. The rule of thumb
is to make the differentiation based on the number of
categories/values: typically nominal and ordinal
variables have relatively few categories so we treat
them as discrete, while interval/ratio variables typically
have relatively large number of values, so we treat them
as continuous. If, however, an ordinal variable has
relatively large number of categories it may be treated
as continuous, and, on the flip side, if an interval/ratio
variable has relatively few values it may be treated as
discrete. Generally, and assuming proper justification
(i.e., a large number of categories/values), the
decision to treat an ordinal variable as continuous
or an interval/ratio variable as discrete remains a
matter of the researcher’s discretion.

Finally, what is the magic number in the
“relatively large number of categories/values”
rule? This also depends, but from what I have seen
in practice, the number is around 7-10 categories/
values for most (i.e., if a variable has more
categories/values that that it’s treated as
continuous, and if it has fewer categories/values
than that it is treated as discrete).






1.6 Creating Variables

If you ever find yourself in need of creating your own
variables (perhaps, in creating a questionnaire), this brief
final note is for you. As well, you can learn to evaluate
whether an existing variable has been operationalized

properly.

To properly create a variable, its categories need to
satisfy two requirements: they need to be collectively
exhaustive and mutually exclusive. The first condition,
collectively exhaustive, refers to the requirement that the
categories cover all possible ways the variable can vary (or
all posisble answers to a questionnaire question) — none
can be excluded. The second condition, mutually exclusive,
adds the logical necessity that a specific variation (or an
answer to a questionnaire question) can exist in one and
only one category.

This is simpler than the definition makes it sound to be.
The following example illustrates.

Example 1.4. Logical Requirements to Operationalizing Variables
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Imagine you are filling out a questionnaire and one of the
questions is about age, like this:

Q1. What is your age?
a) 20-29
b) 30-39
c) 40-49
d) 50-59

What if you are 18 or 19? Which answer would you pick?
How about if the person filling out the questionnaire is 60 or
older? As stated, the Q1 question (i.e., the way the variable
age is operationalized by it) violates the first requirement, that
of providing an exhaustive list of all possibilities. All possible
variations need to be covered by the variable’s categories,
otherwise the variable is incomplete.

Now consider another hypothetical way to ask the same
questionnaire question:

Q2. What is your age?
a) 18-25

b) 25-30

c) 30-35

d) 35-40

e) 40-45

f) 45-50

g) 50+
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Assuming the questionnaire is administered only to adults, Q2
provides a collectively exhaustive list of possible answers; the|
variable’s categories are too collectively exhaustive.

They are, however, misleading as they are not mutually|
exclusive. Which answer do you pick if you are 25 — a) or b)?
Which answer do you pick if you are 40 — d) or e)? Logically,
one and the same possible variation cannot fall into two or more
categories; it can only fall in one of the variable’s categories.

Thus, one proper way to operationalize age is something like
this:

Q3. What is your age?
a) 18-25

b) 26-30

c) 31-35

d) 36-40

e) 41-45

f) 46-50

g) Above 50

See if you can spot and fix violations of the two logical
operationalization requirements in the exercise below.
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Do It! 1.6. What is Wrong with These Variables’

Operationalizations?

Q4. What year in college are you?
a) First-year

b) Second-year

Q5. How many siblings do you have?
a)0

b)1

c)1-2

d) 3-4

e) 4 or more

Q6. How do you commute to your institution’s campus?
a) Car

b) Public transit

c) Bus

d) Bike

Now that we’ve covered the theoretical preliminaries, go
see what working with actual data is like, in Chapter 2.



Chapter 2 What Data Looks
Like and Summarizing Data

This chapter moves us to more practical matters, namely
working with actual data. Once you get familiar with what
real data sets look like and how they are organized, you
will learn how to summarize the information contained
within variables. We can do that through tables and through
graphs. Both reflect the distribution of a variable (a
concept which we’ll discuss extensively from Chapter
3 on), which is the way the observations/data points are
distributed across a variable’s categories. (For example,
counting how many of your friends don’t have siblings,
how many have one sibling, how many have two siblings,
etc, and writing the information down will give you the
(frequency) distribution of the variable number of siblings
you friends have.)

We start with frequency tables, and explore the summary
information contained within. We end the chapter with
the way we can visually display variables (i.e., their
distribution) and the discussion of what type of graph (a pie
chart, a bar graph, or a histogram) is most appropriate for
variables at different levels of measurement.
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2.1 Data Sets and What Data "Looks"
Like

By now you have learned that variables are tools that
allow us to measure concepts and to collect information
about them. As such they are comprised of information
— information that varies across the units of analysis (the
‘things’ on which we collect information, be it people,
organizations, countries, etc.). So far, we have discussed
individual variables — but creating and collecting
information on a single variable is uncommon. Generally,
we collect information on many variables at the same time
(which, in turn, allows us to analyze variables together
and hypothesize about possible associations between
variables).

Variables “live” in data sets (or datasets, as I prefer; both
usages are common). A dataset is a collection of variables
that lists the information (or observations) gathered on
them from the units of analysis. As usual, I focus on
analysis of people for simplicity’s sake (but do keep in
mind the units of analysis can be something else.)

The best way to visualize a dataset is as a sort of a
table (a.k.a a matrix) which summarizes the responses from
every individual (in the raws of the table) on the variables
in the dataset (in the columns of the table). As such, the size
of a dataset depends on two things: the number of variables
and the number of individuals supplying information
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(a.k.a. respondents). Typically, datasets vary in size from
just a handful of variables and few respondents to hundreds
of variables and thousands of respondents. (Huge datasets
— comprising information on millions of people — exist
too; these are known as big data. Big data is not analyzed
in the conventional ways regular datasets are, so from now
on we’ll leave big data aside as it’s not the subject of this
book.)

To start small, imagine you have just four friends at your
university and you decide to list some items of information
about them (say, maybe you want to compare your standing
at the university with theirs, and to see differences and
commonalities between you and them). You could do that
in a sentence form, for example, thus: Arjun, who is twenty
years old, speaks Punjabi at home and is a first year student
in the Business School, has a job and his GPA is 3.6.
Benjamin, on the other hand, who is 25, speaks German
at home and is a third year Science student, also has a
job but his GPA is lower than Arjun’s at 3.2. Cecilia,
who speaks Spanish at home and is a fourth year Health
Sciences student doesn’t have a paying job and her GPA is
the highest of your friends, 4.0. Finally, Xingxing is also a
first year student and is employed like Arjun but she is an
Arts major, speaks Mandarin at home, and her GPA is 3.3.

Indeed, you might do that but the points of comparison
might get lost as they are not easy to see: one has to read
very carefully to keep track of who does what and has a
GPA of how much. Instead, you could present the same
information as it is in the table in Example 2.1 below.



Example 2.1 (A) A Hypothetical Dataset of Four Friends’s

Characteristics
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Arjun 20
Benjamin 25
Cecilia 22

Xingxing 19

Year at
university

1

3
4

Major
Employment GPA (by
Faculty)
yes 3.6 Business
yes 3.2  Science
no 4.0  Health
yes 3.3 Arts

Language
spoken at
home
Punjabi
serman

$panish

Mandarin

If you do that, what you have created is a dataset. Now
imagine that instead of this contrived combination of four
friends and their varying characteristics, I generalize the

example like so:

Example 2.1 (B) A Hypothetical Dataset of Four Individuals and

Six Variables
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Variable 1

Respondent RleisEL
#1
Respondent Response.2
#2
Respondent Reponso s
#3
Respondent

44 Response 4

Variable 2

Response.1

Response 2

Response 3

Response) 4

Variable 3

Responses.1

Responses 2

Response3 3

Responses 4

Variable 4

—_

Response4

N

Response4

Response4

w

Response4

N

Variable ¢

Responses,

Responses,

Responses,

Responses,

In Example 2.1 (B), the respondents are the four people
on whose varying characteristics we have information, and
these are represented by the six variables. This, however,
seems a rather cumbersome. Instead of “Variable 3”, and
“Respondent 5”, and “Responses3“, etc., a simpler way
to represent all of these in a generalized way is through

. . 1
mathematical notation.

So, prepare yourselves! Here comes notation:

1. A note on mathematical notation, about which, I know, many students feel
quite anxious: think of notation as a type of shorthand, or a sort of
simplified foreign language. It's used to simplify what you can write out in
words and sentences but would be too long and not as clear. The key to
notation, just like with any foreign language, is to know what the symbols
mean. Keep their meaning in mind, and you can read notation as fast and as

easily as your own language.
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Example 2.1 (C) A Hypothetical Dataset of Four Individuals and

Six Variables 2.0

X1 X2 X3 X4 X5 Xg

I X11 X21 X31 X41 X51 X6l
I2 X12 X22 X32 X42 X52  X62
I3 X13 X23 X33 X43 X53 X63
I4 X14 X24 X34 X44 X54 X64

In Example 2.1 (C), I, Ip, I3, and I4are the four
individuals; X1, X, X3, X4, X5, and Xg are the six variables;
and x11, x12, etc. stand for any specific characteristic/
response a respondent has on a variable. More specifically,
x53, for example, is the characteristic that Respondent #3
has on Variable 5. Scrolling up to Example 2.1 (A) will
allow you to see that xs53 is Health, which is Cecilia’s Major
by Faculty.

Do It! 2.1 Reading Points of Information

In a similar vein, look up x22, x34, and xe1. It’s a simple and
easy task but it will help you connect notation to what it
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stands for, and to understand the logic underlying the way
information is presented in datasets.

From here, it’s not difficult to extrapolate the specific
dataset we had above to a general one. Thus, Example 2.1
(D) below presents a template of a typical dataset.

Example 2.1 (D) A Hypothetical Dataset of N Individuals and K

Variables

X1 X2 X3 X4 X5 X6 X7 XK
I X11 X21 X31 X41 X51 X6l X71 ... Xkl
Iz X12 X222 X32 X42 X52 X2 X72 ... Xk2
I3 X13 X23 X33 X43 X53 X63 X73 ... Xk3
I4 X14 X24 X34 X44 X54 X4 X74 ... Xk4
I5 X15 X25 X35 X45 X55 X65 X75 ... Xk5
Is X16 X26 X36 X46 X56 X66 X76 ...  Xk6
I7 X17 X27 X37 X47 X57 X7 X77 ... Xk7
In Xin X2n X3n X4n X5n X6n X7n ... Xkn

N = number of elements in the dataset
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K = number of variables in the dataset

In the table above, you may think of N as the last row
on the table, i.e., the last individual for whom we have
information and you may think of K as the last column
on the table, i.e., the last variable we have in the dataset.
Both numbers can theoretically be “any positive number”,
though in practice the former is usually a number up to
several thousands and the latter a number up to few
hundreds. The ellipses in the next-to-last row and the next-
to-last column indicate that the table is truncated: there
are omitted rows between the seventh and the last
individuals (i.e., between I7 and IN), and omitted columns
between the seventh and the last variables (i.e., between X7
and Xk). (They obviously have to be omitted so that the
table can fit on the page.)

Armed with this knowledge, let’s take a look at an
excerpt from a real dataset. The following Example 2.1
(E) provides a snapshot of the first ten respondents and
first nine variables in the Aboriginal Peo!ales Survey
2012 dataset (or APS 2012 for short)” using a
software called IBM® Statistical Package for the
Social Sciences, commonly referred to as SPSS.

Example 2.1 (E) A Snapshot of Survey Data (APS 2012)

2. APS 2012 is a Statistics Canada dataset which I will formally
introduce in Ch. XX
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Snapshot of APS 2012‘s Data View in SPSS:

|£b AGE,YRSG” & SEX “% DIDENTGH & 1D_036 H & ID_05G H & MS_01G ”& DS\ZHHGGH & DHHTYPEGH & MOEUJZA‘

1 5 2 1 1 1 3 B3 3 1
2 4 2 1 1 1 4 4 1 1
3 5 2 3 2 2 2 5 1 2
4 4 2 2 2 2 4 13 1 [
5 7 1 1 1 1 2 4 1 2
6 1 2 2 2 2 6 5 1 1
7 7 1 1 1 1 1 4 1 2
8 1 2 2 2 2 6 4 1 1
£l 7 1 1 1 2 2 3 1 2
10 3 1 1 1 1 6 5 4 6

Snapshot of APS 2012°s Variable View in SPSS:

Name | Type | Width | Decimals | Label I Values || Missing | Columns
1 AGE_YRSG Numeic 2 0 Age group of respondent - Survey reference date {1, Between ages 6 - 8)._ 9- 99 1
2 SEX Numeric 1 0 Sex of respondent 1. MALE) 6-9 5
DDENTG  Numeric 1 0 Aboriginal identity pop. indicator (group) {1, Single ID - First Nations} . 6-9 5
ID_036 Numeric 1 0 Identity - Status Indian (Registered/Treaty) {1, Regist /Treaty Indian} 6-9 ]
ID_056 Numeric 1 0 Identity - Member of First Nation/indian band {1, FN member/indian band} . 6-9 8
MS_01G  Numeic 1 0 Marital status (respondent) {1, Martied). 6-9 5
7 DSZHHGG  Numeric 1 0 DV - Household - # of persons - Grouped {1 One person). 6-9 9
8 DHHTYPEG Numeric 2 0 DV - Household by family/non-family type {1, R fam hhld: Cple w child(s)}... 96 - 99 10
9 MOB_02A  Numeric 1 0 Reason move to current comm. - Family/Spouse {1, Yes) 6-9 9

Do It! 2.2 Understanding How Datasets Are Organized

Make sure you can connect the data snapshots from the
example above with your understanding of how datasets are
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organized. What do the numbers in the first (blue) columns
in both images represent? (Hint: this is not a variable!) What
is listed in the first (blue) row in the top image? In the
top image what does 1 stand for in the first white row in
column ID_03G? How about the 1 in the fifth row in the
SEX column?

Answer: Registered/Status Indian and male, respectively.

One thing you might find surprising is the obvious fact
that all cell entries (i.e., the observations we have) are listed
in a number format. Does that mean that all variables in
this particular dataset are interval or ratio? What about
any nominal or ordinal variables — do they not exist in
this dataset? The answer is noon both accounts: the
variable SEX (i.e., “Sex of respondent” as stated in
Variable View) is nominal and the variable AGE_YRSG
(i.e., “Age group of respondent...”) is ordinal because of
the hierarchical arrangement of the responses. However,
the dataset cells contain only numbers because
statistical software can only analyze numerical data.

To that effect, nominal and ordinal variables appear “in
code” in datasets; i.e., the categories of nominal and
ordinal variables are assigned numerical values as
labels to represent them in the actual dataset you might
be working with. Thus, the numbers in nominal and ordinal
variables’ columns are not actual numbers, they are
artificially (and in the case of nominal variables, somewhat
arbitrarily) assigned to represent the words contained in
the categories in order to make computer-based statistical
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analysis possible. (On the other hand, interval/ratio
variables’ categories contain actual numbers. Of course,
the trick then is to learn to differentiate the actual numbers
from the code/ number values used as labels in the cells
of a dataset.)

Therefore, you should always keep track of the code (see
the Watch Out! panel below for tips on Variable View in
SPSS which allows you to do that), and remember to refer
to the categories by their proper (word-based) names — not
by the artificial numerical values (i.e., code) representing
them!

...for Making Hasty Decisions about Variables

Based Only on Data View or Only on Variable View

It’s tempting, but you cannot deduce all categories of a variable
with any certainty just by looking at the snapshot in Example
2.1 (E). You cannot do that even if, instead of a snapshot, you
had the real, interactive Data View window in SPSS in front]
of you. Not only you might not be able to scroll through all
the data (depending on its size) but, more importantly, not all
characteristics might exist among the individuals. (For example,
imagine the variable hair colour, and say, not one respondent
having red hair: then a response “red” would not be visible in|
Data View, even if such a category existed in the variable.) For
the same reasons you should also not decide a variable’s level
of measurement based on Data View. (Remember, all data in|
the cells appears in numerical format, regardless if it’s an actuall
number or just a value label/code!)
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To explore any dataset you might end up working with and
all the variables contained therein, you should always look to
explore not only the Data View but the Variable View of the
dataset as well (in SPSS you can toggle between Data View and
Variable View easily with a click of the mouse). The Variable
View lists all variables along with some information about them|
— including something which looks like their level of]
measurement, called Measure (it is not included in the bottom|
snapshot above). The Measure information can be quite
misleading for students so: Never trust this software-
generated conclusion!

Instead, you should always explore both Variable View and
IData View. You should note the variables’ respective categories
(in Variable View, where you can click on any cell in the Values
column for a full category listing) and the type of the observations
vou have in the cells in the table (in Data View). Then —and
only then — reach the appropriate conclusion about the levels of
measurement of the variables you have at hand.

What should guide your decision about a variable’s level of]
measurement is what you see in the Values column in Data View.
To repeat, clicking on the respective column will open up a
window displaying the (nominal or ordinal) variable’s categories
values along with the number label representing them in the
dataset.

Again, note that reporting on the variable should be done by
using its categories/values, never by the number label you see in|
Variable View standing in for them! This point will become more
relevant and less abstract once we start learning what to do with|
variables, in Chapter 3.







2.2 Summarizing Data

Imagine a dataset containing a hundred respondents and
just five variables. Such a dataset would have 500 data
points and, while that may seem like a lot, a dataset of
this size is considered rather small. Typically, datasets used
in sociology (and other social sciences) tend to be larger.
What this tells you is that there is an enormous amount of
information housed within even an average dataset.

Just like a library containing thousands and thousands
of books but no catalog, unless we have the means to
make sense of the information — order it, systematize it,
categorize it — that information is all but useless. In the
previous section, I discussed exploring a dataset in SPSS’s
Data View. While that’s a useful (and necessary) task to
do before working with any dataset, it doesn’t provide
anything more than a sort of global view of the variables in
it.

In order to understand any variables better and to be able
to fully use the information they contain, we need tools to
allow us to zoom in each individual variable, as it were, and
to organize that information in a meaningful way.

Two of the most widely used such tools for exploring
variables and presenting their information in a
summarized, easy to understand way are, as you well
know, tables and graphs. In the next section I start by
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introducing frequency tables; then we will end this
chapter with introducing graphical displays.



2.3 Frequency Tables

As usual, let’s start ground-up with an example and
work our way up to the concept under study. Consider the
following raw (unorganized) data.

Example 2.2 (A) Hypothetical Raw Data on Educational Attainment

Imagine that a group of 21 people were asked about the
highest educational degree they have attained. These are
their responses:
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Secondary/ Secondary/ idn’t
High Bachelor’s High No Degree Bachelor’s nswer
School School
Secondary/
Master’s Associate’s Master’s High Bachelor’s
School
Secondary/ Secondary/ .., , 310
High High ?;gnetr L):sinetr Bachelor’s
School School W W
Secondary/
High PhD Bachelor’s Associate’s Associate’s
School

What can we glean from this presentation of the
information? Can we easily see which is the most
frequently obtained educational degree in the group? How
many people do we have of each degree? What fraction/
proportion of the total are each?

Of course, we could always count — but what if I had
asked you to imagine a group of 36 people? Of 72? Or 200?
Or 2,000? Or more? Are you still going to painstakingly
count the different responses?

You may be surprised, but the answer is “yes, if we
had to”. In the past, researchers used to do a that, a lot.
Nowadays of course we have computers to do it for us.
SPSS can easily summarize this data but to understand the
process better, we’ll start from scratch.

The most obvious way we can organize the raw data
above into something less chaotic is the following:
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Example 2.2 (B) Hypothetical Data on Educational Attainment,

Organized

Table 2.1 Educational Attainment by Frequency
Degree (('Enf)l: :t
frequency)
No degree 1
Secondary/High 6
School
Associate’s 3
Bachelor’s 5
Master’s 2
PhD 1
Didn’t answer 3
TOTAL 21

In the most basic sense, this is a frequency table. It
lists the different categories of a variable along with their
observed count, a.k.a. frequency. That is, we essentially
count how many times any given category appears, i.e.,
we count how frequenta response is among the
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respondents, and then indicate the number for each
category/response. Frequency is usually denoted by f in
statistical notation.

Real frequency tables, however, usually contain more
information than a simple count. The following few sub-
sections provide the details, while we work our way
through creating a full frequency table.



2.3.1 Relative Frequency: Adding
Percentages

Simply counting the frequency of the different variable’s
categories (or the number of specific responses) is rarely
enough. Often, we also want to know what proportion —
or what percentage — of the total each category represents.
This is especially important when comparing across two
or more different groups. Thus we will stop on our way
to frequency tables to undertake a brief side quest into
relative frequency territory.

... for Cross-Group Comparisons Using Counted

Imagine that researchers are conducting a study on eating
habits and they have interviewed 170 people; 102 identified
as men and 68 identified as women. Say that the researchers
found that 17 of the men and 13 of women reported a vegan
diet. Can the researchers conclude that men tend to favour
vegan diets more than women do?

If you go by the actual, counted numbers reported, you
may decide that yes, the researchers’ conclusion is correct as
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17 is more than 13, i.e., four more men than women have
reported eating vegan. This, however, would be wrong. We
cannot compare the two groups (men and women) directly
since the groups have different sizes. That is, comparison
of the numbers as counted in the two groups has little
meaning since it does not take into account group size.
Yes, more men report eating vegan but men in the
study outnumber women by 24 to start with. Thus,
maybe we find more vegan men than women
simply because there are more men than women
in the study. What we should be asking ourselves
instead is whether a larger proportion of men eat
vegan, compared to women — and the correct answer
would require a comparison of the numbers relative
to group size.

A quick calculation reveals that 17 out of 102 is
actually less than 13 out of 68:

17

— = 0.167
102

13

— =0.191
68

That is, the proportion of vegan men (0.167) is smaller
than the proportion of vegan women (0.191), so no, we
cannot say that men tend to be vegan more than women do.
Rather, it’s the other way around: more women than men
tend to eat vegan, because vegan women are a higher
proportion (i.e., the number for women is higher relative
to their group size).
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To conclude, never use numbers as counted to compare
between groups (unless they are of equal size). To make
comparison possible — and meaningful — you should
always use proportions or percentages (i.e., the numbers
relative to the size of each group).

A bit more notation then: if we denote frequency
by f, and you recall that N stands for number (of elements
in a dataset; of people in a group, etc.), it would be easy to
see that proportion — denoted by p — should be

NP

While actual numbers represent frequency, proportions
are one way of expressing relative frequency. You
probably are more familiar with another way of expressing
relative frequency — percentages.

In the example I used in the Watch Out!! #3 above, we
concluded that more women than men were vegan based
on the fact that the proportion of vegan women (0.191)
was higher than the proportion of vegan men (0.167). In
everyday life, people usually tend to use percentages to
express that. To convert proportions to percentages you
only need to multiply by a 100";

. After all, percent or per cent comes from the Latin "per centum", meaning "by
a hundred"; i.e., whatever proportion you are expressing, standardized by a
hundred.
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%(100) = percent

Thus, we get the following percentages when comparing
vegan men and women from the Watch Out!! #3 above:

0.167(100) = 16.7%

and

0.191(100) = 19.1%

That is, we could rephrase our finding and say that since
only 16.7 percent of men reported being vegan while 19.1
percent of women did, clearly women are more likely to be
vegan based on this particular group of respondents.

Note that while proportions range from 0 to 1 and
typically get rounded up to three digits after the
decimal point (e.g., 0.167 and 0.191), percentages range
from 0 to 100 and usually get rounded up to one or two
digits after the decimal point (e.g., 16.7% and 19.1%).
Also note that differences in percentages are expressed
in percentage points, not in percent: in the current
example, the difference between men and women who eat
vegan is (19.1% — 16.7%=) 2.4 percentage points in favour
of women being vegan, not 2.4 percent.

A final way to express relative frequencies are ratios,
where a ratio is simply one frequency/count relative to
another:
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f1

— = ratio

f2

Using the numbers from the Watch Out!! #3 above, we
can say that in the group of 170 respondents (102 men and
68 women), we have a men-to-women ratio of 1.5 — or,
men in the study outnumber women by 1.5 to 1 since

Im _102_ 45
fu 68

It’s easy to see that if we want the women-to-men ratio,
we only need to switch the numerator and denominator of
the ratio:

Lo 88 oo
f 102

This still tells us that men outnumber women as for
every 1 man there is only a “0.7 woman”. Since this type
of fractions, depending on the context, can lead to an
awkward phrasing (like in this case), you may choose to
report a ratio in the way most apt for easier interpretation.

Relative frequencies are all nice and good, but let’s go
back to our main quest, the frequency table. Since we
established that reported actual numbers are meaningless
for comparison purposes and that we need relative
frequencies to do that, it would only make sense to add
a relative frequency column to our educational attainment
Table 2.1 from Example 2.2 (B).
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The percentages in Table 2.2 below have all been
calculated using the steps described above: 1) obtain
proportion, and 2) multiply by a 100. For example, only
one of ours original 21 respondents had no degree. Then
the percentage of the 21 respondents with no degree is:

f _ 1 _ _
57 (100) = 2-(100) = 0.047(100) = 4.7%

The rest of the categories’ percentages are calculated in
the same vain.

Example 2.2 (C) Hypothetical Data on Educational Attainment,

Organized and with Relative Frequencies Added

Table 2.2 Educational Attainment by Frequency and Percent
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Degree Percent
Frequency
N 1 4.7
degree
Secondary/
High 6 28.6
School
Associate’s & 2
Bachelor’s 2 2B
Master’s 2 9.5
PhD 1 4.7
LDiELl 3 14.3
answer
TOTAL 21 100.0

This way we can easily see how the respondents are
distributed across the different educational attainment
categories and each category’s share as a fraction of the
total. If we had another group of respondents, we could
easily compare between our initial group of 21 and the
second hypothetical group by using the percentages above.
Or can we?






2.3.2 Missing Data: Adding Valid
Percentages

If you’ve paid attention so far, you must have noticed that
three of our 21 respondents provided a “Didn’t answer”
response when asked about their educational attainment.
Sometimes respondents may refuse to answer a question,
or the question may not have been applicable to them and
wasn’t asked, or a response might not get recorded due to
an error, etc. In short, sometimes we have a case of what is
known as missing data.

What do we know about the educational attainment of
the three individuals who, for whatever reason, didn’t
answer this question? Nothing.

Can we in some way infer their educational attainment?
Not with the data provided in the example.

So then what do we do? How do we analyze our
educational attainment variable?

The most frequent — and strongly recommended
(especially for people just starting on their journey to
research) — course of action is to simply drop the missing
cases . Missing cases have no part in any analysis and

1. Depending on the particular data and particular situation, and assuming strong
justification, researchers experienced in data analysis may have different
options, such as estimation, imputation of means, etc. These, however, are
beyond the scope of this text. The safest action for students/beginners to
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using them as they are would inevitably compromise
conclusions — after all, we have no information on what
we want to know about them, and we cannot make that
information up.

Generally, how statistical software deal with missing
data by default settings may vary. SPSS’s default is to skip
missing cases so that analysis is always based on valid
cases only.

As well, SPSS provides a separate column in Data View
indicating which values in the data stand for a missing
data  point. As  discussed in  Section 2.1
(https://pressbooks.bccampus.ca/simplestats/chapter/
2-1-data/), you can find the coding of the values in the
Values column in Data View. Clicking the specific cell in
that column opens up a window with the values’ code.
There you may find several types of missing data, typically
values such as “Valid skip”/’Not applicable” (the
respondent had not been asked the question on which the
variable is based due to a previous answer)z, “Don’t know”
(the respondent did not know the answer to the question),
“Refusal” (the respondent refused to answer the question),
“Not stated” (when the question should have been
answered/ an answer should have been recorded but, for
whatever reason, it hasn’t been), etc.

Apart from “Not applicable”, the codes listed here are

take remains dropping any missing cases from the analysis. See

https://www.iriseekhout.com/missing-data/missing-data-methods/
imputation-methods/ for a discussion.

2. For example, if a respondent has indicated previously that they didn't smoke,
a subsequent question about how often they smoked would make no sense;
the respondent then would be "validly skipped" from answering this
subsequent question.


https://www.iriseekhout.com/missing-data/missing-data-methods/imputation-methods/
https://www.iriseekhout.com/missing-data/missing-data-methods/imputation-methods/
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standard Statistics Canada codes used in all their datasets

and can be found in any Statistics Canada dataset
. 3

documentation .

So given that we had three cases of missing data within
our group of 21 respondents, are the percentages reported
in the previous sub-section’s Table 2.2 in Example 2.2 (C)
valid to use?

... for Findings Based on Missing Data

This will be a short warning but it deserves it’s own
scary-red Watch Out!! reiteration: do not trust analysis and
findings that include missing cases as they would be
distorted and unreliable. Missing data is exactly that —
missing. It simply does not exist. As a beginner researcher,
always make sure you have dropped (i.e., excluded) any
missing cases before analyzing your data and reporting any
results.

Considering that Table 2.2 did include missing data in
the calculation of percentages, let us correct that by
modifying it and including another column, valid
percentages.

. Currently, Statistics Canada uses 6, 96, 996, etc. for "Valid skip"; 7, 97, 997,
etc. for "Don't know"; 8, 98, 998, etc. for "Refused"; and 9, 99, 999, etc. for
"Not stated".
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Example 2.2 (D) Hypothetical Data on Educational Attainment,

Organized and with Relative Frequencies and Valid Percentages
Added

Table 2.3 Educational Attainment by Frequency, Percent
and Valid Percent
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Degree Percent Valid
Frequency Percent
valid O 1 47 5.6
degree
Secondary/
High 6 28.6 33.3
School
Associate’s 14.3 16.7
Bachelor’s 5 23.8 27.8
Master’s 2 9.5 11.1
PhD 1 4.7 5.6
Total
Valid 18 85.6 100.0
Missing Didn’t 3 14.3
answer
Total
Missing 3 14.3
TOTAL 21 100.0

As you see in the modified Table 2.3 above, I have
separated the missing cases from the valid cases (the cases
for which we have educational attainment data). Since we
have only 18 valid cases, we should use only those 18
cases for any calculations and analysis — and not the
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total of 21 cases (which includes the missing). Thus,
instead of having just

f _ 1 _ _
57 (100) = 2(100) = 0.047(100) = 4.7%

along with the rest of the categories’ percentages
calculated in this way, we should calculate the categories’
valid percentages, discarding he three missing cases, like
this:

f _ 1 _ _
N(lOO) = 18(1()0) = 0.056(100) = 5.6%

(As usual, I only show you the calculation for the first
category as the rest follow in the same way.)

Despite the fact that we do have the percentages based
on missing data in the table, note that these — the valid
percentages — are the only percentages you should use
in your analysis and report in your findings.

Alright, you might say now, we added percentages and
valid percentages to the simple frequencies, this surely

means we have a complete frequency table by now.

Sorry, no, not yet. One thing remains.



2.3.3 Summing Up: Adding Cumulative
Percentages

The thing that remains to add to our frequency table is there
only for convenience’s sake. It can be useful to know, for
example, what percentage of the 21 people in our original
group do not have graduate degrees, or what percentage of
people have not gone to university, etc. Of course, in our
specific educational attainment example it would be easy
to to the quick-and-dirty calculation of adding 11.1 percent
(those with Master’s degrees) to 5.6 percent (those with
PhD), thus finding that 16.7 percent of our respondents
have graduate degrees; or adding 5.6 percent (those
without a degree) to 33.3 percent (those with Secondary/
High School) and finding that 38.9 percent of our
respondents have not gone to university. Doing such
calculations all the time, depending on the question, might
get tedious, however, at best, and, at worst, it’s also
incorrect (hence the “quick-and-dirty” appellation).

Let’s then improve on our frequency table-in-progress a
final time, shall we? The version below is the final version,
ta-da!

Example 2.2 (E) Frequency Table for Educational Attainment
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Table 2.4 Educational Attainment by Frequency, Percent,
Valid Percent and Cumulative Percent

Degree
Frequency
Valid A 1
degree
Secondary/ 6
High
School
Associate’s
Bachelor’s E
Master’s 2
PhD 1
Total
Valid )
Missing Dl 3
answer
Total 3
Missing
TOTAL 21

Percent

4.7

28.6

14.3

23.8

9.5
4.7

85.6

14.3

14.3

100.0

Valid Cumulatjve

Percent

5.6

33.3

16.7

27.8

11.1

5.6

100.0

Percent

5.6

38.9

55.6

83.3

94.4

100.0

The final column I have added in our Table 2.4 is called
Cumulative Percent. What it does is keep a sort of a
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“running total”, adding the second category’s frequency
to the first and reporting the first two categories as a
fraction of the total; adding the third category’s frequency
to the total of the first two and reporting the first three
categories as a fraction of the total, etc. — in effect adding
each subsequent category to the total of all preceding
ones, one by one, until all categories are added together.

Note, however, that you should not add the percentages
in the Valid Percent column to obtain cumulative
percentages. Despite the quick-and-dirty trick I did before,
I actually calculated the cumulative percentages based on
the added categories’ frequencies, and so should you, if
you have to create a frequency table from scratch.

Like this: there is one person without a degree and 6
people with secondary/high school degrees, or 7 people
combined. Therefore, the cumulative percent of these two
categories is obtained thus:

Ji+ fo 1+6 7
100) = ——(100) = — = 0.389(100) = 38.
- (100) = —==(100) = = = 0.389(100) = 38.9%

and not by adding 5.6 percent (the person with no
degree) to 33.3 percent (the ones with secondary/high
school degrees) — even if in this case, both produce the
same result, 38.9 percent.

The reason why we need to add the original
frequencies and not the valid percentages themselves
is rounding. The percentages reported in the frequency
table are rounded to 1 digit after the decimal point; adding
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rounded numbers inevitably adds imprecision to the result,
which, depending on the situation, might end up being
crucial. In our case, it makes no difference but do note that
the percentages reported in the Percent column actually
only add up to 99.9 percent, not 100 percent; similarly, the
percentages reported in the Valid Percent column actually
add up to 100.1 percent rather than 100 percent. These
differences, as negligible as they seem when working with
a variable with few categories like the one here, can add up
and become more significant in variables with numerous
categories (like interval/ratio variables, for example).

You can see examples of real-data frequency tables in
the next-subsection.



2.3.4 What Frequency Tables Really
Look Like

Before we move on to the last section of this chapter,
take a look at what frequency tables of real variables look
like, using SPSS. All three variables in the tables below
come from the General Social Survey 2016 (or GSS 2016)
(Statistics Canada 2018) which I’ll formally introduce in
Chapter XX.

Table 2.5 Frequency Table for Sex of Respondent (GSS
2016)

Sex of respondent

Cumulative

Frequency FPercent Walid Percent Percent
Valid  Male g782 448 448 44.8
Female 10827 652 6562 100.0
Total 156049 100.0 100.0

Table 2.5 shows a nominal variable, sex of respondent,
with no missing data (thus both Percent and Valid Percent
columns contain the same information).

Unlike it, Table 2.6 below shows an ordinal variable,
workplace size, where almost half (47.4 percent) of the
respondents didn’t supply a valid response. In cases like
this one it’s imperative you only use the data as presented
in the Valid Percent column, and not the Percent one.
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Table 2.6 Frequency Table for Workplace Size (GSS
2016)

Workplace size

Cumulative
Frequency FPercent  “alid Percent Fercent
Valid Small business 6409 327 62.2 62.2
Midsize business 2165 1.0 21.0 83.2
Large husiness 1732 2.8 16.8 100.0
Total 10306 526 100.0
Missing  Walid skip 9102 46.4
Don't know 153 B
Fefusal 20 A
Mot stated 28 A
Total 9303 474
Total 19609 100.0

Table 2.7 below presents a ratio variable, purchasing
grocery store takeout dishes in the past month, with
relatively moderate number of data points missing (9.3
percent). Again, Valid Percent is the column at which you
should be looking. As well, note that the first (blue) column
lists the categories (or values) of the variable as supplied
by the respondents, as it normally does. Since these consist
of actual numbers, you might be tempted to see them as
some sort of consecutive listing, and that would be wrong.
If you look carefully, you’ll see that numbers like 11, 19,
22, 23, etc. are not listed there. This is not because they are
somehow “missing” but because no respondent provided
such a response.

Table 2.7 Frequency Table for Purchasing Grocery Store
Takeout Dishes (GSS 2016)
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Purchasing take out dishes from grocery stores - Past month

Cumulative

Frequency Percent  Walid Percent Fercent

Walid 0 8504 434 47.8 47.8
1 2533 129 14.2 62.0
2 2373 121 13.3 75.4
3 873 50 55 B0.8
4 1444 7.4 8.1 849.0
i 687 35 34 428
B 264 1.3 1.5 943
7 66 3 4 947
8 268 1.4 1.5 96.2
g 13 A A 96.2
10 319 1.6 1.8 9g8.0
12 114 ] 6 887
13 3 0 .0 ag.7
14 5 0 a 887
15 85 4 A 9492
16 11 A A 893
17 1 a i 99.3
18 1 a a 693
20 72 4 A aa.7
21 1 .0 .0 99.7
24 1 0 a aa7
25 13 1 A 99.8
30 28 1 2 899
31 5 a .0 99.9
40 3 0 a 100.0
43 1 a .0 100.0
50 3 0 a 100.0
60 1 a .0 100.0
93 1 0 a 100.0
Total 17793 a0.7 100.0

Missing  Valid skip 1702 a7
Don't know 105 A
Refusal 7 0
Mot stated 2 0
Total 1816 a3

Taotal 19609 100.0
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Finally, note that although the Cumulative Percent
column is less useful when we are dealing with nominal
variables, it’s quite handy to have when working with
ordinal and especially with interval/ratio variables. Thus
we can easily state that 83.2 percent of respondents work at
a small or a midsize workplace and that almost 90 percent
of respondents have purchased no more than 4 grocery
takeout dishes in the past month.

SPSS Tip 2.1: How to Request Frequency Tables

From the Main Menu:

» Click Analyze, then Descriptive statistics, and
then Frequencies;

 Select variable/s from the left-side of the
window and use the arrow button to move the
variable/s to the right side;

» Click OK.

* The Output window will display the selected
variable/s frequency table/s.




2.4 Graphs

A picture is worth a thousands words, they say, so in
this section we will explore the most basic ways we can
summarize data using graphical displays rather than tables.
Unlike frequency tables which can be used to summarize
variables at all levels of measurement with a a table of
the same format, the types of graphs we use tend to differ
depending on the variable’s level of measurement. Almost
all graphs in this book are produced using SPSS.

The three most basic graphs used to summarize variables
are pie charts, bar graphs (or bar charts), and histograms.

Pie charts. You have undoubtedly encountered (and
likely used) pie charts before. Fig. 2.1 below presents one
such simple pie chart. The size of a slice of the “pie”
corresponds to the category’s size. The higher the
category’s frequency (and, of course, relative frequency),
the larger the slice.

Figure 2.1 Sex of the Respondent (GSS 2016)

87



88

Hidale
OFemale

The pie chart in Fig. 2.1 corresponds to the frequency
table of sex of the respondent in the previous section,
namely Table 2.5.

Since the binary variable sex tends to look ‘boring’, in
Fig. 2.2 below you can find a bonus pie chart for marital
status which tends to be more colourful as it has more
categories.

Table 2.2 Marital Status of the Respondent (GSS 2016)



Simple Stats Tools 89

Crarried
OLiving common-law
Bwidowed
W separated
Mpivorced

Single, never
Dma?rie:d

Pie charts can be used with both nominal and ordinal
variables, though an argument can be made that the circular
form of the pie chart may “hide” valuable insights about
the order inherent in ordinal variables. As such, some
prefer to use bar graphs for nominal variables only, and
to use bar graphs for ordinal variables. Ultimately, it is a
matter of preference, and both usages are correct.

You should not try to use a pie chart for an interval/ratio
variable, however, as the “pie” in most cases will end up
divided into far too many and far too small slices which
will make “reading” the chart impossible.

Bar graphs. Fig. 2.3 below features a simple bar graph.
The height of the bars corresponds to the size of the
different categories. The higher the category’s frequency
(and relative frequency), the taller the bar.
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Figure 2.3 Workplace Size (GSS 2016)
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This bar graph corresponds to the frequency table for
workplace size from the previous section (Table 2.6). Note
that the percentages reflected in the graph are the valid
percentages from the frequency table.

Again, using a bar graph with a nominal variable is
allowed, and it’s up to you whether you prefer to use a
pie chart instead, since the categories of a nominal variable
have no order and can be “moved around” without loss of
information. However, a bar chart can present the order of
a ordinal variable’s categories in a more intuitive manner,
so for some people bar graphs are the preferred graph
of choice for ordinal variables: this way the order goes
through the bars from left to right.

Like with pie charts, you shouldn’t use bar graphs with
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interval/ratio variables as the potential for ending up with
far too many bars is quite high, making reading the graph
difficult.

Histograms.  Histograms are the  graphical
representations used with interval/ratio variables. Fig. 2.4
presents one such histogram. Once again, the height of
each bar represents the frequency of a variable’s category.
In this case, the histogram corresponds to Table 2.7 from
the previous section which was the frequency table of the
number of takeout dishes respondents purchased in the last
month.

Figure 2.4 Purchasing Takeout Dishes from Grocery
Stores in the Past Month (GSS 2016)
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Purchasing take out dishes from grocery stores -
Past month

At first glance, a histogram might look similar to a bar
graph — albeit usually with more bars/categories. However,
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the number of categories is not the only difference. Notice
how the bars in the bar graph in Fig. 2.3 have space
between them, wile the bars in the histogram in Fig. 2.4
do not. This difference represents the difference between
discrete and continuous variables: Discrete variables have
separate categories, hence the distance between
the bars in the bar graph. Continuous variables
(typically interval/ratio variables) have continuous
categories, therefore the bars representing the
categories touch each other to indicate their
continuous nature (i.e., their potentially infinite
number of values).

In the next two chapters you will learn how you can use
these graphs in greater detail (especially the histogram).
Here is how to produce them in SPSS.

SPSS Tip 2.2 Basic Graphs

To get a pie chart:

* From the Main Menu, click Graphs and then
Legacy Dialogs;

* From the pull-down menu of Legacy Dialogs,

1. If you recall from Section 1.5
(https://pressbooks.bccampus.ca/simplestats/
chapter/1-5-discrete-and-continuous-variables/),
nominal and (typically) ordinal variables are
considered discrete.
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To get a bar graph:

select Pie; a Pie Charts window will appear.

* Leave Summaries for groups of cases selected
and click Define;

+ Select your variable of interest from the left-
hand side variable list and, using the correct
arrow, move the variable into the Define Slices
by empty space.

* You can change what the slices represent — the
frequency (N of cases) or percentages (% of
cases) in the top right section of the window
called Slices Represent.

* When you are done, click OK. The pie chart
will appear in the Output window.

From the Main Menu, click Graphs and then Legacy
Dialogs;

From the pull-down menu of Legacy Dialogs, select
Bar; a Bar Charts window will appear.

Leave Simple and Summaries for groups of cases
selected and click Define;

Select your variable of interest from the left-hand
side variable list and, using the correct arrow, move
the variable into the Category Axis empty space.

You can change what the slices represent — the
frequency (N of cases) or percentages (% of cases) in|
the top right section of the window called Bars
Represent.

When you are done, click OK. The bar graph will
appear in the Output window.




94

To get a histogram:

* From the Main Menu, click Graphs and then Legacy
Dialogs;

* From the pull-down menu of Legacy Dialogs, select
Histogram; a Histogram window will appear.

* Select your variable of interest from the left-hand
side variable list and, using the correct arrow, move
it into the Variable empty space.

» When you are done, click OK. The bar graph will
appear in the Output window.




Chapter 3 Measures of
Central Tendency

Now that you have learned the preliminaries — what
datasets and variables are, and how to summarize the
information within a variable in tabular and graphical
formats — it’s time to turn to applied statistics proper.
Statistics allows us to analyze information , i.e., to learn
more than what we simply see at first glance. Thus we
scrutinize the data collected in great detail to get the most
out of it, in terms of both description (examining what we
see) and inference (reaching evidence-based conclusions).

Aptly, we talk about descriptive statistics and inferential
statistics. In the latter half of this book we will turn
to inferential statistics which is devoted to
inferential analysis on the basis of probability
theory. We now start with descriptive statistics
devoted to the descriptive analysis of variables,
i.e., to learning all we possibly can about a variable
and its distribution. If you recall from Chapter 2’s
introduction, a variable’s distribution is the way
the observations/cases are distributed across
the variable’s categories. The cases can be
concentrated closer together or more spread out,
and exploring such features of a wvariable’s
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distribution is the focus of this chapter and the
next.

In addition to the visual summary of a variable which we
get through graphs and which allow us to virtually see a
variable’s distribution, generally there are two further types
of information we can get through descriptive analysis.
They are called central tendency and dispersion.

Considering what a variable in a dataset looks like, recall
that a variable has a list of observations/ cases (think,
for example, of the responses collected through a survey
question) where the list is size N (N, again, is the number
of elements, in general, or respondents if we focus
specifically on people, as we usually do). Thus, on the one
hand, we talk about typical cases, or where cases tend to
cluster — for example, what the most frequent response
given is, if respondents tend to give similar answers, etc.
— and what the “centre” of the variable’s distribution
is. Measures related to this type of information are called
measures of central tendency. There are three of them
and we explore all of them in the current chapter in turn,
the mode, the median, and the mean.

On the other hand, we can also talk about how much a
variable’s distribution is “spread out”. That is, if a variable
is called that because the responses vary across people,
how variable a variable actually is — does it vary a lot or
does it vary a little? Are all responses clustered around
the “centre” or are they relatively dispersed? Measures
related to this type of information are called measures of
dispersion, and they are presented in the next chapter.

To summarize, we describe variables by providing and
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exploring 1) the visual summary of their distribution
(i.e., a graph), 2) their measures of central tendency,
and 3) their measures of dispersion.

There is a catch, however: Not all measures of central
tendency and dispersion are appropriate for all
variables. Just like not all graphs are appropriate for each
type of variable, whether a measure of central tendency
or dispersion is applicable to a variable or not depends
on the variable’s level of measurement.

I did already warn you that determining the proper level
of measurement of a variable is key — without that, you
can execute correctly neither descriptive, nor inferential
analysis. Go back and reread Section 1.3if
necessary (https://pressbooks.bccampus.ca/
simplestats/chapter/1-3-levels-of-measurement/)
or what comes next will make little sense to you.

But enough with the boring theory — on to the the
application of central tendency measures!






3.1 Mode

Central tendency is the information about the clustered-
ness of a variable’s distribution; whether its observations/
cases/responses tend to group together (or not) and where
(i.e., in which categories/values) they tend to fall.

There are three measures of central tendency: mode,
median, and mean. In this section, we explore the mode.

To find a variable’s mode, you only need a frequency
table — or rather, even just the frequency column in the
table (although the Valid Percent column will do you just
as well). Here is a simple, small-N, real-world example.

Example 3.1 Religious Affiliation of Canadian Prime Ministers

Table 3.1 Religious Affiliation of Canadian Prime Ministers
(Wikipedia 2017)
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Religious affiliation Frequency
Anglican 4
Baptist 3
Evangelical 1
Presbyterian 3
Roman Catholic 10
United Church of
Canada (prev. 2
Methodist)

TOTAL 23

What is the most popular religious affiliation of Canadian
Prime Ministers as of 2019? Or, what religious affiliation
is most frequently reported by Canadian Prime Ministers so
far? In other words, what religious affiliation do Canadian
Prime Ministers most have tended to have?

Surprising no one with any knowledge about Canada,
the largest category among the religious denominations, or
the one that Canadian Prime Ministers most frequently
subscribe to — i.e, the category with the highest
frequency — is “Roman Catholic”, with 10 of the Canadian
Prime Ministers identified as such. (And are you surprised
that Canada has only had Christian Prime Ministers?)

As simple as that, the category/value with the highest
frequency is called the mode of the variable.
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Alternatively, you can easily spot the mode in a graph: it
would be the largest slice of the pie or the tallest column in
a bar chart or a histogram.

Do It! 3.1 Do all variables have a mode?

Considering that the only thing you need to do to find a
variable’s mode is to count the frequency of each of its
categories/values and indicate the one with the highest
count, will it be possible to find the mode of any variable,
regardless of its level of measurement? Or would the mode
be a descriptive statistics applicable only to some variables
depending on their level of measurement?

If by now you have a good grasp of what makes a
variable nominal, ordinal, interval, or ratio (and if you
do not — go back and really reread Section 1.3!
(https://pressbooks.bccampus.ca/simplestats/chapter/
1-3-levels-of-measurement/)), you should be able to easily
answer the questions in the Do It! 3.1 above. Obtaining the
mode, the simplest of all measures of central tendency,
does not require any calculations or complicated
procedures. To identify the mode, it doesn’t matter whether
the categories of a variable are made of words or numbers,
or if there is any order in them. All that matters is the count
— the frequency — of responses in each category/value
in order to identify where cases tend to cluster across
the categories/values. As such, the mode is a descriptive
statistic applicable to any and all variables.
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To illustrate, let’s bring back the Example 2.2 (B) from
Section 2.3:

Do It! 3.2 Educational Attainment’s Mode

Table 3.2 Educational Attainment
Count
Degree (ak.a.
frequency)
No degree 1
Secondary/High 6
School
Associate’s 3
Bachelor’s 5
Master’s 2
PhD 1
Didn’t answer 3
TOTAL 21
What is the mode for educational attainment based on the
21 respondents in the example?

Looking for the largest category in Table 3.2 above,
you undoubtedly already identified that the mode for
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educational attainment is “Secondary/High School”. That
is, to put this into language that even people non-trained in
statistics could understand, the most frequent educational
degree among the 21 respondents in the example is
“Secondary/High School” as it has the highest frequency/
the largest number of cases in it, 6. (It is generally quite
useful to get into the habit of translating statistics-ese into
English when you write reports so you should practice it on
all occasions.)1

And this is all there is to finding out a variable’s mode.
Beyond simply counting (applicable to groups of relatively
small size, as generally no one would want to count
hundreds or thousands of cases by hand), the ways to
obtain a mode through SPSS are listed below.

SPSS Tip 3.1: Finding a Variable’s Mode

Option 1: Through a frequency table’

» Use SPSS to create a frequency table for your

1. Note that most frequent category does not mean that it contains the majority
or most cases. Sometimes that may be the case, but it's not necessarily so.
In both examples above you can see that neither Roman Catholics nor
people with Secondary/High School degrees are a majority in their
respective groups (10 out of 23 and 6 out of 21, respectively). Thus, be
careful when writing about a mode as being "where most/the majority of
cases cluster" because many times the phrasing would be factually
incorrect.

2. You might want to avoid this option when working with interval/ratio variables, as
their frequency tables can be very, very long.
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q B]
chosen variable;

* Look for the category/value with the highest

frequency (the relative frequency in the Valid
Percent column works too);

» Report the category with the highest frequency

as the mode of that variable.

Option 2: Directly requesting the statistic

From the Main Menu, select Analyze, then
Descriptive Statistics, then Frequencies;

Select your variable of choice from the left-hand
side and use the arrow to move it to the right side of
the window;

Click on the Statistics button on the right;

In the new window, check Mode in the Central
Tendency section on your right;

Click Continue, then OK.

Note that SPSS gives you the option to display a
frequency table or not before clicking OK in the last step
listed in the SPSS Tip above. The reason is practical: the
frequency tables of interval/ratio variables can be quite
long depending on the number of values they contain. As
such, while identifying the mode from the frequency table
of a nominal or ordinal variable is fine, it’s often more
practical to request SPSS to report the mode of an interval/

3. See Section 2.3.4 (https://pressbooks.bccampus.ca/simplestats/chapter/2-3-4-what-
frequency-tables-look-like/)for the tip on how to create frequency tables in SPSS.
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ratio variable directly rather than through a frequency
table.

... for Reporting Nominal/Ordinal Variable’s Modes

As Given by SPSS

One thing to keep in mind when requesting the mode
directly from SPSS is that SPSS will report modes by their
number labels, or code (i.e., not by the actual name of the
categories). If you recall from Section 2.1
(https://pressbooks.bccampus.ca/simplestats/chapter/
2-1-data/), datasets contain only numbers, with nominal and
ordinal categories appearing in code so that the software can
work with them. As such, your SPSS output will list the
mode of a nominal or ordinal variable as a number, and it is
your job to “translate” that number into its proper form, i.e.,
its the actual category.

For example, in the Religious Affiliation of Canadian
Prime Ministers example above, going in the order the
categories are listed, the categories would typically be coded
in the following way: “Anglican” =1, “Baptist” = 2,
“Evangelical” = 3, “Presbyterian” = 4, “Roman Catholic”
= 5, “United Church of Canada” = 6. The dataset would
contain only the code (i.e., the numbers) and SPSS would
report the mode as “5” in the output.

However, it is a mistake to report the code (the number
label assigned to the category) instead of the actual
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category’s name. You should always report the mode with
its real category name. (That is, it is up to you too look up
the code — recall that you can do this through the Values
column in SPSS’s Data View — and find the correct name
of the modal category). In this case, you should report the
mode of Religious Affiliation of Canadian Prime
Ministers not as 5 but as “Roman Catholic”. (The “5” has no
real meanings, it simply indicates that Roman Catholic is the
fifth category in the listing.)

I’ll end this section with a final consideration regarding
the mode: it is quite possible that a variable has more than
one mode. After all, two (or more) categories/values might
have the same frequency, so in that case we say that the
variable’s distribution is multimodal (bi-modal or tri-modal
in the specific cases of two or three modes). Depending on
the number of modes, it’s acceptable to report only the first,
while indicating that multiple modes exist for that variable.
Multiple modes are usually also easy to spot in bar graphs
and histograms: they appear as bars of equal height.



3.2 Median

The three measures of central tendency are all measures
that tell us where typical cases fall or where cases tend to
cluster. After exploring the mode in the previous section,
in this section we turn to the second measure of central
tendency called the median.

The median lives up to its name: it derives from the
Latin root medi, meaning “middle”, and that’s exactly the
type of information it provides. Specifically, the median
divides the cases of a variable into two equal halves and
identifies the case in the middle. As such, it points out the
“centre” of the data in a very straightforward way — it
simply reports the middle observation.

Consider, however, the following point: even in
everyday life, the middle implies a beginning and an end
(e.g., “in the middle of the book™); something that is in-
between, a gradation from a point A to a point C, as it
were. From clothes sizes (“small, medium, large”) to how
spicy you like your Thai food (“a little, medium, or hot”),
through turning the volume up or down while listening to
music (“low, medium, high”), the “centre” category bisects
whatever it is applied to into a smaller/larger, less/more,
left/right, etc. parts. That is, to speak of the middle of
something we need to know where it starts (e.g., the
minimum) and where it ends (e.g., the maximum). Simply
put, we need an order.

What all this should tell you is that the median is not
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applicable to nominal variables. Speaking of the middle
of gender, or the middle of ethnicity, or religious
dffiliation, or hair colour, or degree major, or of the middle
of any other nominal variable makes no sense. After all,
the order the categories of a nominal variable appear is
either arbitrary or a matter of preference; nothing precludes
rearranging the categories in some other way so that a case
belonging to one category that ends up in the middle of
one arrangement would not necessarily be in the middle of
another arrangement. A case belonging to any category can
easily end up being the middle one. A statistic shouldn’t
depend on such a chance/preference; as such nominal
variables have no median.

On the other hand, as you know by now, ordinal
and interval/ratio variables do have an inherent
order arranging their categories/values. They have
a “beginning” and an “end”, and therefore a
“centre”. As such, the median applies (only) to
ordinal and interval/ratio variables.

Note that while the mode applies to a
category (freflecting the largest number of cases), the
median is determined by the case (observation) that falls
in the middle of the category-ordered listing of all cases.
Thus it’s not the middle category that is the median;
depending on the size of the categories, the median case
can belong to any category/value. The median category/
value is the one to which the middle case belongs.
Presented this way, the explanation sounds undoubtedly as
clear as mud but do not despair. It will get better when
we establish the manner in which we obtain the median, so
trust me and read on.
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Example 3.2 (A) Three Students, Five Students, Eight Students by

Year of Study, Counting

N=3

a) Let’s say we have three students at different levels of
their studies: one is a first-year, the second one a fourth-year,
and the third a third-year. Before we do anything else, we
need to establish the correct order. We rearrange the students

properly:

(1) a first-year student
(2) a third-year student — median

(3) a fourth-year student

The case in the middle is Case #2, the second one on the
list (as there is one student below and one student above),
i.e., the third-year student. Thus we have established that the
median category is “third year of study”. That is, half of the
students are below the third year of study and half are above
(as odd as it sounds when we only have three cases).

N=5

b) What happens if T add two more students to our group, say, a first-|
vear student and a second-year student? The order will go like this:

(1) a first-year student
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(2) a first-year student (new)
(3) a second-year student (new) ~ median
(4) a third-year student

(5) a fourth-year student

Once again, it’s easy to see that the middle case is Case #3, the third
one on the list (as there are two students below and two students above),
i.e., the second-year student. This time around the median category is
“second-year of study”. That is, half of the students are below their
second year of study and half are above.

c) What if I complicate matters further? What if I add
three more students to the group, say, two second-years and
a fourth-year? Their order will be:

(1) a first-year student

(2) a first-year student

(3) a second-year student The median is between
(4) a second-year student (new) this case

(5) a second-year student (new)  — and this case

(6) a third-year student

(7) a third-year student (new)

(8) a fourth-year student

If you go by the same logic as above, you’ll quickly find
that there is no “middle” student: unlike before, the students
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now are an even number. The middle of the group actually
falls between Cases #4 and Case #5, the fourth and the fifth
cases on the list (so that four are below and four above it).
Since both the fourth and the fifth students are second-year,
we can conclude that, again, the median is “second-year of
study”. Had the fourth and the fifth student been different
years of study, we could say that the median was between
their respective categories.

We could continue the same way as in Example 3.2 (A)
above for larger groups too: we could arrange the cases
in order of their categories/values, find the middle case
(or two middle cases) and report its category/value as the
median. However, you can guess that this would quickly
become impractical the larger the group size gets. We need
some other way of finding the median, one that generalizes
across groups of any size.

Consider the following formula:

N+1
=

“numbered position of the median case in the ordered
list of cases”

where, as usual, N is the group size.

Instead of counting, let’s apply this formula to Example
3.2 (A).
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Example 3.2 (B) Three Students, Five Students, Eight Students by Year

of Study, Using a Formula

a) N=3
(1) a first-year student
(2) a third-year student

(3) a fourth-year student

According to the formula,

N+1_3+1_4_2
2 2 2

That is, the “numbered position of the median case in the
ordered list of cases” is equal to 2; the middle case is Case
#2, the second one on the list, or like we established before,
the third-year student.

b) N=5
(1) a first-year student

(2) a first-year student (new)

(3) a second-year student (new)
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(4) a third-year student
(5) a fourth-year student

According to the formula,

N+1 5+1 6

2 2 2

That is, the “numbered position of the median case in
the ordered list of cases” is equal to 3; the middle case is
Case #3, the third one on the list, or again, the second-year

student.

c) N=8

(1) a first-year student

(2) a first-year student

(3) a second-year student

(4) a second-year student (new)

(5) a second-year student (new)

(6) a third-year student
(7) a third-year student (new)
(8) a fourth-year student

According to the formula,

3
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N+1
t1_8+1_9_ 45
5 S

That is, the “numbered position of the median case in the
ordered list of cases” is equal to 4.5. Considering we have
discrete numbers (after all, the cases are individuals), there
is no case number 4.5. Instead, we say that the median falls
between Case #4 and Case #5, the fourth and fifth cases
on the list, or between two second-year students, so it is
“second year of study”.

It is easy to see that we could substitute a group of any
size for the N in the formula. Even when working with
hundreds or thousands of cases, we can always use the
formula to find the place (or which case number) bisects
the variable’s distribution in two haves.

So far I only used an ordinal variable to illustrate the
median. How does finding the median work for interval/
ratio variables? Would it matter that interval/ratio variables
have numerical values rather than qualitative categories?
No, not in the least. After all, finding the median doesn’t
depend on the category or value of any case in any
substantive sense — only on its numbered position in the
ordered list of categories/values.

There is something a bit different in the way interval/
ratio variables look, however, that some people seem to
find a tad more confusing when working with values rather
than categories. To illustrate, I’'ll give you another
example.
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Example 3.3 (A) Median for Number of Siblings, Raw Data

Imagine you talk to seven of your friends and ask them about
the number of siblings they have. Let’s say these are the
responses you receive: 2, 1, 4, 2, 1, 0, 3. That is, two friends
report having two siblings each, two friends report having
one sibling each, and three of your friends report having
four, zero, and three siblings each.

To find the median, the first thing we need to do is put the
responses in order:

(1o
@1
31
42
()2
63
(7) 4

Whether you visually identify Case #4 as the middle case
(three cases below and three cases above it) or use the
formula (% = % = % = 4) to obtain the same
result, it is clear that the median is “two siblings”: half of
your friends in this example have fewer than two siblings,

and half have two or more siblings.
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What might be confusing for some people is
differentiating between the numbered positions of the cases
on the list and their values since both are expressed
numerically. In this example I have tried to make it easier
to distinguish by putting the numbered positions of the
cases in brackets and the values next to them (just like the
categories in the ordinal example above). Thus you can see
that Case #1 has 0 siblings, Case #2 has 1 sibling, etc. Had
I chosen different set of values — for example, if Case
#1 had 1 sibling, Case #2 had 2 siblings, Case #3 had 3
siblings, etc. — you might have found it a bit harder. For
that reason, make a mental note to keep a clear track of
what is a case’s value and what is its numbered position.



3.3 The Median With Frequency Tables
and Other Considerations

A similar — though far more widespread confusion — may
happen when working with frequency tables. Frequency
tables, as you know from  Section 2.3.3
(https://pressbooks.bccampus.ca/simplestats/chapter/
2-3-3-summing-up-adding-cumulative-percentages/), list a
variable’s categories/values in the first column and their
frequencies in the second column. Take a look at the
incomplete frequency table of the fictitious number of
siblings variable used from before.

Example 3.3 (B) Number of Siblings, Aggregated

Table 3.3 Frequency Table for Number of Siblings
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Value Frequency
0 1
1 2
2 2
3 1
4 1
Total 7

Can you as easily see that one of your (imaginary)
friends has zero siblings, two of your (imaginary) friends
have one sibling each, another two of them have two
siblings each, etc.? While Table 3.3 presents the same
information as Example 3.3 (A) in the previous section
does, the way the data is organized is different, so again,
make sure you differentiate the variable’s values (first
column) from the values’ frequencies (second column).

A further consideration is finding the median itself.
While we saw that the mode depended only on identifying
the category/value with the highest frequency (and it was
therefore just a matter of finding the largest number in the
Frequency column of a frequency table), are you able to
determine the median from the partial frequency table in
Example 3.3 (B) above? I would venture that the answer
would be “no” for most readers.

Of course, you can find a solution to our median-finding
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problem by “unpacking” the frequency column from Table
3.3 and reverting to raw (uncategorized) data again: one
0, two 1’s, two 2’s, one 3, and one 4 are 0, 1, 1, 2, 2, 3,
4. We already established (both visually and through using
the position-of-the-median formula) that the middle case
was Case #4, or “two siblings”. Would you like, however,
to do that for the following Table 3.4?

Table 3.4 Household Size of the Respondent (GSS 201 6)1

Household size of respondent

Cumulative

Frequency Fercent  Walid Percent Percent
Walid One person household 462 278 2749 2749
Two person household 7432 378 3ra G5.8
Three person household 2803 14.3 143 80.0
Four person household 2680 13.2 132 932
Five person household 4906 4.6 4.6 978
Sixormore person 426 22 22 100.0
household
Total 19609 100.0 100.0

Most likely, you wouldn’t “unpack” the 19,609 cases
into raw data, so we should seek some other — and more

1. Note that this variable is technically an ordinal variable. Despite the
numerical values and equal "distances" (of one person) between the first
five categories, the last category "Six or more person household" prevents
us from categorizing the variable as ratio. After all, we don't know exactly
how many individuals live with any of the 426 people in that category: it
could be six, or seven, or eight, etc. Thus it is not possible to say how many
more persons live in the households of the respondents in the last category
compared to any of the preceding categories: the "distance" is no longer
one person. Any interval/ratio variable that has its last category truncated in
this way (i.e., it has "... or more" in its label) becomes technically ordinal.
Nevertheless, for heuristic purposes I will ignore the "...or more" part in
this example which allows me to assume that everyone in that last category
lives in a six-person household. This, in turn, allows me to pretend the
variable is a ratio. However, the example works the same way regardless if
the variable is truly ordinal or ratio.
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generalizable — method for finding the median through
frequency tables, one that would apply to N of any size.

We could, of course, use the formula to at least establish
the middle case’s numbered position, and then work our
way through the table to identify the median.

N+1 19,609+1 19,610
2 2 2

=9,805

That is, Case #9,805’s household size will be the median
household size for these almost 20 thousand respondents.

How do we find it? There are 5,462 respondents who
reported living alone (“one person household”) so we know
that Case #5,462 does not “reach” the median yet, thus we
have to count further. We take the next 7,432 respondents
who reported living in two person households, but we need
to add them to the 5,462 people living alone in order to
obtain the second group’s case number positions. After all,
the case count for the 7,432 respondents does not start from
1 but from 5,463, and Case #5,463 will already be living
in a two person household. So will Case #5,464, Case
#5,465, etc. ... all the way up to Case #12,894 (because
5,462+7,432=12,894), which will be the last respondent
living in a two person household.

However, we now see that we have “counted” too far
ahead — we have jumped not to Case #9,805 but all the
way to Case #12,894! We do know though that all cases
between Case #4,463 and Case #12,894 live in two person
households: this is enough for us to establish that Case
#9,805 lives in a two person household as well.
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In short, the median household size of the 19,609
respondents is two-persons household. That is, half of the
respondents live in two-person or smaller households and
half of them live in two-person or larger households.

Hmm, 1 hear you say, this is still quite the roundabout
way of getting to the median — can you do better?

Alright, let’s think of something else then. We tried
adding the frequencies together until we reached the
median... How about we try using percentages this time
around — and more to the point, cumulative percentages,
as they are already keeping a running total? We just need
to know which percent corresponds to the middle case.

Recall, then, that the middle case splits the distribution
of the cases in two equal halves. What percent is half of
something? Of course, 50 percent. Thus it would make
sense to simply look at the Cumulative Percent column
and try to figure out where 50 percent would fall. The
respondents living alone comprise 27.9 percent, so too low
for the median, but the respondents living in one or two
person households added together comprise already 65.8
percent of the total. Following the same logic as with the
frequencies, the 50th percent falls within the one/two
person household cumulative group. However, we know
it’s not within the one person household group. That means
the 50th percent can only fall within the respondents living
in two person household, which, again confirms what we
already knew: the median household size is made up of two
persons.

To generalize, if you’d rather not use the formula for the
median’s position and add the frequencies of a frequency
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table up in order to find the median, you can always simply
look for within which category/value the 50th percent
would fall. That category/value will be the median one.

Do It! 3.3 Median Workplace Size

Let’s revisit Table 2.6 from Section 2.3.4
(https://pressbooks.bccampus.ca/simplestats/chapter/
2-3-4-what-frequency-tables-look-like/). Can you identify
the median of workplace size? And since you’re at it
anyway, what about the mode?

Imagine you have to tell what you have found to some of
your friends who have no knowledge of statistics. How are
you going to explain to them your findings about the mode
and the median of workplace size?

Table 2.6 Frequency Table for Workplace Size of the
IRespondent (GSS 2016)




Simple Stats Tools 123

Workplace size

Cumulative
Frequency Percent  Valid Percent Percent
Walid Small business 6409 327 62.2 62.2
Midsize business 2165 11.0 21.0 B3.2
Large business 1732 2.8 16.8 100.0
Total 10308 526 100.0
Missing  Valid skip 9102 46.4
Don't know 1563 &
Refusal 20 A
Mot stated 28 1
Total 9303 47.4
Total 19609 100.0

Finally, now that you have learned what the median
is and how you can find it, I will also casually mention
that you can use SPSS for that. (Okay, okay. Don’t throw
bricks, please: it really is important to work through the
examples and exercises manually so that you understand
what the SPSS output tells you and so that you are able to
interpret that output properly.)

SPSS Tip 3.3 Finding the Median Of a Variable

» From the Main Menu, select Analyze, then
Descriptive Statistics, then Frequencies;

* Select your variable of choice from the list on
the left and use the arrow to move it to the right
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side of the window;
* Click on the Statistics button on the right;

 In this new window, check Median of the
Central Tendency section on your right;

» Click Continue, then OK.

+ The Output window will provide a small table
listing the median of the selected variable.

Keep in mind that the Watch Out!! #6 warning from
Section 3.1 about the mode applies equally to the median:
for ordinal variables, SPSS will provide the median in
numerical code. It is your job to “translate” the code
into the actual category’s name. In the case of household
size SPSS supplies “2” as the median, which stands for
“two person household”. Thus we say that the median
household is a two-person one; we do not report that the
median household is “2”.

... for Misinterpreting the Formula for the Median

An extremely common mistake regarding the median is

to take the result of N; L o be equal to the median itself.

This is patently not true. Again, what the formula provides
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is the place (or the numbered position) of the median once
the cases have been put in their correct order:

N+1

2

“numbered position of the median case in the ordered list
of cases”

Thus, once your calculation for the place of the median is
done, do not forget to do the final step: check the position
you have calculated and see what the category/value of the
median case is. You need to report only that value, not the
position itself.

Stability of the median. A final noteworthy observation
about the median is its stability as a measure of central
tendency. Since the median is entirely about the central
position in a variable’s distribution and all it takes into
account is the order of the cases, not their
substantive values, it’s impervious to the actual
magnitude of the values. Thus it doesn’t matter if we have
a set of values like 1, 5, 20, or one like 4, 5, 6, or another
like 0, 5, 9 — the median is the same for all three, even
if the values in the sets are different. Whether we have a
small or a large value is immaterial, all that it matters is
where the value goes into the order of the variable’s cases.

You will learn why this has important implications for
the central tendency in the next section, all devoted to the
mean.
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3.4 Mean

The third, and final, measure of central tendency is one you
have undoubtedly encountered before. It is one that most
people have had to calculate at least a few times in their
lives, and that everyone has heard reported about one thing
or another. You most likely know it by its common name,
the average.

Recall that the measures of central tendency provide
information about the typical cases, or where cases tend to
centre in a variable’s distribution. Thus a student’s Grade
Point Average (GPA) provides a measure for how well
they do academically, not in one class, but on average,
across all of them; a hockey player’s points season average
provides a measure of their performance on the ice not just
in one game but for a whole season; a monthly average
temperature gives indication of what the typical weather
for a specific month is, etc. All of these averages show
what is typical or expected.

The mean of a variable is therefore, quite simply put,
the mathematical average of the values of the variable’s
cases. Reported alongside the mode and the median, it
provides a fuller picture of where the cases tend to cluster,
or what the typical cases are. The mode does this in the
simplest way, by counting their frequency and reporting the
largest one. The median does that by providing the most
centrally located case in terms of order.
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Unlike the mode and the median, however, the mean
takes into account the actual values of the cases.

Keeping the last sentence in mind, do you think the mean
will apply to all and any variables? If you have been paying
attention, you would know that the answer is “no, of course
not”.

Nominal and ordinal variables have categories. Only
interval/ratio variables have actual numerical values,
therefore, the mean applies only to them. After all,
mathematical calculations are only possible when we have
numbers with which to do the calculations: we cannot
calculate an average of gender, or of race/ethnicity, or of
religious affiliation, etc.” We could, however, calculate an
average age, income, score, temperature, etc.

If you had ever calculated your GPA, you already know
how to calculate the mean. I will still give you an example
to strengthen your knowledge.

Example 3.4 (A) Mean of Number of Siblings, Raw data

1. Note that in specific cases it's possible to calculate something like an average
for certain ordinal variables, for example, Likert-scales, to the extent that
their numerical labels reflect a somewhat monotonic, stable-unit, distances.
This should be done with extreme care and ample justification, however,
and beginner researchers (like you) are advised against using means for
ordinal variables.
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If you recall our Example 3.3 (A) from the previous
Section 3.2 ( https://pressbooks.bccampus.ca/simplestats/
chapter/3-2-median/ ), you imagined yourself asking seven
of your friends about the number of siblings they had. We
imagined the responses as follows: 2, 1, 4, 2, 1, 0, 3. We had
to put these values in order to be able to find the median, but
the mean works either way, whether the values are in order
or not.

To calculate the average number of siblings your
imagined friends have, we simply add all responses together
and divide them by the total number of friends, i.e., by 7:

(24+1+4+2+140+3) 13

That is, your imagined friends have 1.86 siblings on
average (or not quite but closer to two, rather than one
siblings on average). We could also say that the mean of
number of siblings is 1.86.

Let’s do it again, as practice makes perfect.

Example 3.5 Textbook Prices For a Semester, Raw Data
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Depending on the courses you take in a semester, what
you pay for books will vary but let’s say we’re interested
in how much you pay for books in a typical
semester. Perhaps you are very-well organized and
want to finish your degree as quickly as possible so
you have decided to take five courses per semester.
For simplicity’s sake, let’s assume your were assigned
one book per course. These are the books’ prices:
$120, $230, $300, $65, $30. How much did you pay
for a book on average?

(120 + 230 + 300 + 65 + 30) 745 _ e
5 5

That is, despite the fact that some of your books were
expensive (like the $300 one), and some relatively cheap
(like the $30 one), the average price you paid for a book in
that semester was $149.

Now that we’ve seen how the mean works in practice,
let’s generalize what we did in the two examples above
using proper notation. Fair warning: the formula below
does look complicated but remember what we just did: our
calculations were quite simple (adding all values, dividing
their sum by their total number), and so is the formula.
As usual, it simply restates what we’ve said in words in



Simple Stats Tools 131

a mathematical shorthand. If you know what each symbol
in the shorthand stands for, you know what the formula
means. So, take a deep breath:

N

T1+T2+2x3+ - +IN =1
(1) N N

=X

2 N

where Y’ stands for “sum” , ) ° indicates to sum all cases
i=1

from the first (1) to the last (N), xi stands for any case with

a number between 1 and N, and x indicates the mean3,
i.e., the average of all the xi‘s. Thus, the formula
basically tells you to add all values and divide by
their total, just as we did in the examples.

So far, we only calculated the means for raw data, i.e.,
data not presented in a frequency table. Will the calculation
of the mean be different if we had a frequency table
instead? While the principle is the same, the fact that the
values are grouped by frequency in frequency tables
requires that we do a slight modification to our
calculations. Here’s a small-scale illustration to
demonstrate the principle before we do an example with a
larger N.

Example 3.4 (B) Mean for Number of Siblings, Aggregated Data

2. Y is pronounced "SIG-ma" and is the Greek letter S.
3.  is pronounced "EX-bar".
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Arranging the raw data from Example 3.4 (A) above, we
again get the following table.

Table 3.3 Frequency Table for Number of Siblings

Value Frequency
0 1
1 2
2 2
3 1
4 1
Total 7

According to the formula for the mean, we need to add
all values together and then divide their sum by their total
number. When the values are disaggregated (i.e., raw), we
can proceed to adding them up right away. However, when
they are grouped by frequency, we first need to multiply
each value by its respective frequency, and then add the
value-times-frequency products together, before dividing
them by the total number, like this:
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N

;1_1 (O+1+1+242+3+4) _ 0(1)+1(2) +2(2) +3(1) +4(1) _ 13

N 7 7 7 —186=2

Again, the average number of siblings of these seven
friends is 1.86, as previously calculated.

Now let’s apply the same principle to a new, larger-N
example.

Example 3.6 Age of Classmates, Aggregated Data

Imagine you are doing a survey for one of your class
assignments and one of the questions is about age. You
aggregate the data by frequency and you get the following
table.

Table 3.5 Mean for Age of Classmates
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Value Frequency
19 1
20 10
21 12
22 8
25 2
27 1
35 1
TOTAL 35

By the formula, we have:

_ 194-200+4-252+1764-504+-27+35 _|
35 ]

Or, now you know that the average age of your classmates
in that class is 21.69 years, or a bit less than 22 years.




3.5 The Mean With Existing Data and
Other Considerations

Let’s work through some real-world data, this time from
the Canadian Community Health
Survey 2015-2016 (Statistics  Canada  2017),
a.k.a. CCHS 15/16, a very large dataset containing
information on more than 100,000 respondents.

Table 3.6 Number of Times the Respondent Consulted a
Mental Health
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Professional in the Last 12 Months (CCHS 15/16)

Consulted mental health professional - num of times - 12 mo

Cumulative
Frequency Percent  Walid Percent Percent
Valid 1 3778 34 244 244
2 2851 26 184 4249
3 1700 1.6 1.0 534
4 1426 1.3 92 631
5 778 7 50 £8.1
6 1008 g 6.5 746
i 205 2 1.3 76.0
8 387 3 23 783
a9 66 1 4 787
10 534 5 35 g2.2
ikl 24 .0 2 82.3
2 2735 2.5 17.7 100.0
Tatal 15462 14.1 100.0
Missing  Valid skip aQge7r B82.9
Mot stated 3310 3.0
Tatal 94197 B5.9
Total 1089659 100.0

To calculate how many times Canadians consulted a
mental health professional in the last year preceding their
participation in the survey based on the data above, we
need to follow the principle we used in the age of
classmates and number of siblings examples in the
previous section.

Specifically, we need to multiply each value (1 through
12 number of times a mental health professional was seen)
by its frequency, then to sum all the products together,
and finally to divide the sum on the total number of
respondents, 15,462 (recall that we only use valid cases for
analysis and exclude the missing ones).



M=

.
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Xy
=1

N
1(3778) + 2(2851) + 3(1700) + 4(1426) + 5(778) + 6(1008)
+
15462
7(205) + 8(357) + 9(66) + 10(534) + 11(24) + 12(2735)
+
15462
_ 377845702+ 5100 + 5704 + 3390 + 6048

15462
n 1435 + 2856 + 594 + 5340 + 264 + 32820

15162

73531

:—:4. =7
a2~ XT6=7
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That is, we have found that the respondents on average
consulted a mental health professional 4.76 times over the
12 months preceding the survey.

Do It! 3.4 How Many Times Has The Respondent Stopped Smoking

for at Least 24 hrs In the Past 12 Months (CCHS 15/16)

To save you you from calculating into the thousands,
here is a variable based on a question that 99.9 percent of
the respondents did not have to answer, which gives you a
manageable N=106. Calculate the average number of times
respondents have stopped smoking for at least 24 hrs for the
12 months preceding the survey. While you’re at it, find and
report the mode and median of this variable.

Table 3.7 Number of Times Respondent Stopped Smoking In the
Past Year (CCHS 15/16)
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Stopped smoking for at least 24 hours - num of times - 12 mo
Cumulative
Frequency Percent  Walid Percent Percent

Valid 1 27 .0 25.5 25.5
2 21 .0 19.8 453 ._
3 | 20 .0 189 642
4 12 | .0 | 143 | 755 ]
5 1 .0 R 76.4
G 10 l .0 l 9.4 l 858 l
i 3 . .0 . 28 . 8.7 -
a8 1 | .0 | ] | 89.6 ]
10 4 .0 38 93.4
g 2 l .0 l 1.9 l 953 l
20 2 . .0 . 1.8 . a7.2 -
30 1 | .0 | R | a8.1 ]
52 1 .0 9 99.1
95 1 .0 R 100.0 l_
Total | 106 A 100.0

Missing  Valid skip 109538 | 999 |
Don't know 11 | .0 |
Mot stated 4 .0
Total 109553 l 95.9 l

Total . 109659 100.0

I strongly encourage you to do the above exercise
yourself. Still, as usual, here is an SPSS tip on how to
obtain a mean in SPSS.

SPSS Tip 3.4 Obtaining the Mean
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From the Main Menu, select Analyze, then
Descriptive Statistics, and then Frequencies;

Select your variable of choice from the list on
the left and use the arrow to move it to the right
side of the window;

Click on the Statistics button on the right;

In this new window, check Mean in the Central
Tendency section on your right;

Click Continue, then OK.

The Output window will provide a small table
listing the selected variable’s mean.




3.6 Outliers

Out of the three measures of central tendency, the mean is
the only one that takes into account the actual numerical
values of the cases. As such, it is easily affected by the
size of the values: a sequence of numbers such as “1, 5,
7, 10, 15” will produce a smaller mean than a sequence of
numbers like “100, 50, 75, 130, 90”.

When all values to be averaged are of relatively
comparable magnitude, the mean does a good job at
reflecting the central tendency of a variable — that is why
it is the most familiar and widely used measure. However,
when a variable contains an extremely small or an
extremely large value (or several values) compared to
the rest of the values, the mean gets easily distorted
and stops reflecting the central tendency “truthfully”, as it
were. Extremely small and extremely large values are
called statistical outliers.

While there is a convenient method for identifying
outliers  (using a  concept called interquartile
range which we will discuss in the next chapter),
at this stage it is not necessary that you be so
technical. You can visually identify outliers, albeit
less precisely, by the “disturbance” in the general
pattern of the data you observe. For example, if
you have values like “1, 5, 7, 10, 15”, a value
of 130 in that sequence would be considered an
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outlier. Similarly, if you have values like “100, 80,
75, 130, 90”, a value of 5 would be an outlier.

Let’s calculate the means of the two sequences, first
with and then without the so-called outliers and see what
happens.

The first sequence is 1, 5, 7, 10, 15 and we want to see
what happens when we add 130.

(1+5+7+10+ 15) U8
5 5

We add 130 to the sequence:

(1+5+7+10+15+130) 168_28
6 6

Both means, 7.6 and 28, are the true averages of the
sequences of values as listed. However, the addition of an
uncommonly large number “pulled” the mean away from
the “centre” of the original data.

How truthfully does 28 represent the “centre” of a
sequence where the majority of the cases’s values (in fact,
five out of the six values) are 15 and below? Not that

1
much.

1. If you believe it's not the magnitude of the value but just its addition that
causes the "pulling" of the mean, consider redoing the example with adding

18, instead of 130. Then we have

14+547+10415+18
45+ +6 +15+18) — %3 = 9.3. The "pull" from 7.6 to 9.3 is

much smaller than from 7.6 to 28. The value 9.3 reflects the central
tendency of the data more truthfully than 28 does.
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To demonstrate the effect of an extremely small value,
we continuing with the next sequence:

(100 + 80 4 75 4+ 130 + 90) _ 475 _os
5 5

Adding a value of 5 to the sequence produces the
following:

(1004 80+ 75+ 130+ 90+ 5) 460 _ 50
6 6

Similarly as with the effect on the mean of the first
sequence, the mean here gets “pulled”, but in the opposite
direction, from 95 to 80. Both means are technically true
averages of their respective values but the latter one is
“artificially” low: after all, four out of the six values are the
same or higher.2

What this tells you is that the mean is an unstable
measure of central tendency, prone to being affected by
outliers. Contrast this to what you know about the median:
the median does not take the magnitude of the values into
consideration, beyond their order. Thus, as explained in
the previous Section 3.3 (https://pressbooks.bccampus.ca/
simplestats/chapter/3-3-the-median-with-frequency-
tables/), adding a value (be it extremely small or extremely
large) to a sequence does not affect the median much —

2. Again, if we added a value of a comparable size to this sequence instead of 5,

the mean would not be impacted as much:

1004+-804-754+130+90+70
( =t —g 0 ): % = 90.8. Consider the

"pull" from 95 to 80 vs. from 95 to 90.8.
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unlike the mean. The median of 1, 5, 7, 10, 15 is 7 (there
are two values above and two below it), and whether we
add 130 or 18, it doesn’t matter: it’s just an additional value
in the sequence.3

Since the mean is prone to being affected by outliers,
while the median is not, in some situations it is advisable
to report the median as a more “valid” measure of
the typical cases/”’centre” of the data rather than the
mean. Specifically, watch out for reports on average
income, average age, average weight, etc. where a few
outliers can skew a variable’s distribution.

... for Reports on Averages of Variables Prone to

Skewing by Outliers

Imagine a small company advertising an open position by
claiming that the average salary of their employees is 100
thousand dollars per year. For simplicity’s sake, let’s assume
the company has ten employees and these are their salaries:

Table 3.8 Employee Salaries (Hypothetical Data)

3. The median of 1, 5, 7, 10, 15, 18 is between 7 and 10, i.e., 8.5 (since we need
the half-way distance between 7 and 10, we use the average of 7 and 10,
that is 7+10=17 and divide it by 2 to get 8.5). The median of 1, 5, 7, 10,
15, 130 is exactly the same -- it is still half-way between the two middle
values, 7 and 10, or again 8.5.



Simple Stats Tools 145

Value (in thousands) Frequency
70 5

87.5 4

300 1

TOTAL 10

You can check for yourself what the average annual salary
is:

Zj

N
i=

70(5) + 87.5(4) +300(1) _ 350 4 350 + 300 _ 1000

1 — _— =
N 10 10 T 10 100

or, indeed, 100 thousand dollars. However, how
representative this annual salary is for the regular employee?
After all, nine out of ten employees of the company get less
than that. The average annual salary reported is inflated by
the very high salary of one employee (perhaps the manager),
a clear outlier.

Let’s instead look at the median. We start by arrange the
values in order:

70, 70, 70, 70, 70, 87.5, 87.5, 87.5, 87.5, 300
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Using the formula for finding the position of the median,
we have

(N+1)_(10+1)_1_1_55
2 - 2 2 7

I.e., we find that the median falls between the fifth and
the sixth value in the order, or between 70 and 87.5. The
halfway point between these two values is found by
averaging them:

(70 +87.5) 1575

5 5 = 78.75

which shows us that the median annual salary of the
employees in that company is $78,750. This is a lot less than
the touted average of $100,000 and a lot more reflective of
what nine out of ten employees receive.

Examples like the Watch Out!! #8 above show that
relying on the mean can be tricky, and in some cases can
be deliberately used to “lie with statistics” (i.e., a report

might be technically correct but at the same time very

misleading). Thus, generally reporting all three
central tendency measures is the way to go and
you, as a beginner researchers should do that.
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Finally, you can observe a skew in the data even visually
by looking at an interval/ratio variable’s graphical
representation, i.e., its histogram. Extremely high values
tend to “pull” the mean to the right of the “centre”, i.e.,
with the majority of cases being relatively smaller, the
few high values will produce a “tail” on the right side of
the distribution (a.k.a. positive skew). On the other hand,
extremely low values tend to “pull” the mean to the left of
the “centre”, i.e., with the majority of cases being relatively
larger, the few low values will produce a “tail” on the left
side of the distribution (a.k.a. negative skew).

As well, since the median indicates the “centre”
of the data better, a mean smaller than the median
would typically indicate a negative/left skew,
while a mean larger than the median would
typically indicate a positive/right skew. When you
observe a skew in the data, the median would
typically be a the preferred measure of central
tendency.

Observe the positive skew in Fig. 3.2 below.

Figure 3.1 Number of Cigarettes Smoked Per Day by
Occasional Smokers (CCHS 15/16)
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The reason the numbers on the horizontal axis reach
as high as 100 despite the fact that there appears to be
nothing there is because there is at least one outlier case
— a respondent who said they were an occasional smoker
but reported smoking 99 cigarettes per day.4 Thus the
distribution has a long right-side “tail”, as it were, which
you can better see in Fig. 3.2 providing the “zoomed-in”
version of the histogram above. (The “tail” is what you will
have if you trace an imaginary line through the tops of all
the bars in the histogram down to the single case of 99
cigarettes per day.)

Figure 3.2 Number of Cigarettes Smoked Per Day by
Occasional Smokers (CCHS 15/16), Zoomed

4. Whether this is to be believed is not important here, just the fact that such a
value exists in the data. You will learn what is to be done about outliers in
statistical analysis in Chapter 4.
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In this case the median is 3 cigarettes smoked per day by
an occasional smoker. The mean is 4.33, and as expected,
it is larger than the median.

Similarly, an exceptionally small value compared to the
bulk of the cases will produce a negatively-skewed
histogram where the distribution has a “tail” but on the
left of where most cases are. In that case the mean will be
smaller than the median.






3.7 Central Tendency and the Levels of
Measurement

This chapter introduced a lot of new concepts and
terminology so a recap is in order. The three measures of
central tendency — the mode, the median, and the mean —
provide information about the so-called “centre of gravity”
of a variable’s distribution, or where the cases tend to
cluster. The mode provides the most frequent category/
value; the median provides the middle point/”’centre”
of the data and bisects the distribution into two equal
part; and the mean is the mathematical average of
values.

One thing worth repeating is the caveat about the
appropriateness of each of the measures of central tendency
given the level of measurement of the variables at hand.
Below is a quick, “cheat sheet” type of a table
summarizing which central tendency measures are
appropriate for which levels of measurement.

Table 3.8 What Central Tendency Measures to Report for
The Different Types of Variables
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Nominal Ordinal Interval/
Scale Scale Ratio Scale
Mode * ¢ ¢
Median - ¢ ¢
Mean - - ¢

In other words, the mode is appropriate for all
variables, regardless of their level of measurement; the
median works only with ordinal and interval/ratio
variables; and the mean can be calculated only for
interval/ratio variables.

I’ll also restate it in terms of the variable type: nominal
variables have only a mode; ordinal variables a mode
and a median; and interval/ratio variables have all
three measures of central tendency.

In terms of working with SPSS, as usual, it is you who
makes the decision to request modes, medians, and means.
You can either memorize the above Table 3.8, or, better yet,
understand the logic behind each central tendency measure
to know whether it’s logically possible to apply it to a
variable of a given scale — but in either case, SPSS will
not make the decision for you.

#9... for Trusting SPSS to Provide Only Appropriate

Measures
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SPSS cannot tell you the appropriate central tendency
measures for a specific variable. Sometimes, if you make
a mistake, depending on the mathematical procedure
requested, SPSS might be genuinely unable to execute a
command which will alert you to the fact that you
have made an error. However, in many cases SPSS
will execute a command and will produce output,
regardless of whether the command makes logical
sense or not.

To your bad luck, the measures of central tendency
(and, as we will see in the next chapter, the measures
of dispersion) are exactly one of these cases where
SPSS will produce any measure of central tendency
for any variable you ask of it. Thus, for example, if
you request a mean for race/ethnicity, or a median for
religious dffiliation, it will execute the commands and
give you what you asked for: it will produce numbers
(which, if you remember, stand for the numerical
labels of the categories). It will be then up to you to
interpret those numbers.

This, however, would be a logical impossibility —
there is no average race/ethnicity, nor “centre value”
for religious dffiliation. You would have made a
mistake, and SPSS would have let you have your
meaningless output.

This basically illustrates the saying “garbage in, garbage
out”: if you input nonsense, the output will be nonsensical
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too. It thus falls on you to not input nonsense and to not
request measures of central tendency for variables for which
they are inappropriate.

Results aside, proper communicating of findings is also
very important. Even when output is produced correctly,
your job is still not done: you still have to interpret the
results and communicate what you have found.
Considering that people in general (including in the social
sciences) are variously trained in quantitative research, it is
always a good idea to “translate” the more technical jargon
into a more easily understandable, everyday language.

Specifically about descriptive statistics like the measures
of central tendency we explored in this chapter, or the
measures of dispersion in Chapter 4, the goal is to
communicate your findings not only about variables and
measures and modes, etc. but to explain what you have
found in terms of people (or whatever units of analysis
you happen to work with). Thus, “the mode of religious
dffiliation is...” becomes “the most frequently reported
religious affiliation is...” or even “respondents most
frequently identified as ... in terms of their religious
affiliation”. (As well, getting into the habit of “translating”
variable-centric jargon into people-centered statements is a
good practice for your understanding of the material.)

Finally, a related issue is remembering to use the
variable’s units of measurement when communicating
results. To give a few examples, the median of number
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of siblings is measured in “siblings”, the mean of income
is measured in “dollars”, the mode of age is measured in
“years”, etc. If you know the unit of measurement of the
variable you describe (and you should), use it: a median
age is never, say, 20; it’s 20 years.

With this done, we now turn to the last set of measures
used to describe variables, namely measures of dispersion.






Chapter 4 Measures of
Dispersion

Early on in Chapter 3 we established that there are three
pieces of information which helps us describe variables.
Describing variables helps us to glean something from the
variables’ distribution beyond the raw list of observations
of which it is made. In other words, through descriptive
analysis we get to learn something about the cases that is
not readily observable when all we have is a collection of
data points.

Graphs provide a first glimpse at a variable’s
distribution. Measures of central tendency provide
information about the typical cases, where most cases tend
to cluster, or about the “centre” of the data. We now turn to
measures of dispersion, the last of the three key pieces of
descriptive information pertaining to variables. Measures
of dispersion tell us how”spread out” a variable’s cases are;
they provide a “clusteredness” measure of the data, as it
were, and of how dispersed cases are across the variable’s
values.

A simple illustration will make dispersion measures
easier to understand. Take two sets of three numbers: “4,
5, 6” and “2, 5, 8”. By now, you should be able to tell
immediately that the median of both sets is 5 (each set has
one value below and one above 5). You also might be able
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to easily see that the mean of both sets is also 5; if not, this
is how we get it:

N

= Z: (4+5+6) _15
N 3 3

N

izx": 2+5+8) _15_,

=1
N 3 3

Even if both “4, 5, 6” and “2, 5, 8” sets have the same
measures of central tendency, you’d be hard-pressed to
claim they are the same sets of numbers. Take a look at
the image below (or just look at a ruler of your own, if
you have one close by): the values of 4 and 6 are much
closer to 5, than 2 and 8 are. That is, the values of our
first set are more closely clustered around the “centre”,
while the values of our second set are more loosely spread
around it. This “clustering” vs. “spreading” is precisely
what dispersion measures.

( “HHIIII‘IIHH]|I|IIII|HH’|II||HH‘HII|IIIWHIIHIII‘HHHIII‘III[|HH“III|IIH|IIH|IHI‘HH|I|II‘IHHIIII|III||HH’|I|||HH‘HI||IIII‘

001 2 3 4 5 6 7 8 910 11 1213 14,15

. . 1
There are four commonly used measures of dispersion.

1. A fifth measure of dispersion exists but is less commonly used. I'll introduce
it only insofar as it is useful for understanding the standard deviation, the
most widely used measure of dispersion.
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Before we turn to each of them in turn, note what I have
just demonstrated here: it is quite possible for two
variables to have the same measures of central tendency
but different measures of dispersion.

The four measures of dispersion can be divided into
two groups. We begin with the simpler two, the range and
the interquartile range, then turn to the more complicated
(but most widely used) pair, the variance and the standard
deviation.






4.1 Range

Providing the range for a set of values is so easy, most
people don’t even realize it is an actual statistical measure
of dispersion. If you have ever said something to the effect
of “I have friends whose ages vary between seventeen and
twenty-seven” or “my scores on these exams vary from 25/
100 to 95/1007, etc., you have effectively been providing
the range of your friends’ ages or the range of your exam
scores.

To give you the more technical definition, the range of a
variable is the difference between its highest and lowest
values. That is, to get the range, we simply subtract the
lowest value from the highest value:

Lmaxr — Tmin = Tange

In the two quick examples above, the range of your
friends’ ages would be (27-17=) 10 years, and the range of
your exam scores would be (95-25=) 70 points.

I’ll use an older, familiar example for the longer work-
through, below.

Example 4.1 The Range for Textbook Prices Paid in One Semester
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Recall Example 3.5 from Section 34
(https://pressbooks.bccampus.ca/simplestats/chapter/
3-4-mean/) where we calculated the mean price of
textbooks we imagined you paid in a particular
semester. The books’ prices were $120, $230, $300,
$65, $30. The cheapest book (i.e., the lowest value,
Tmin) Was $30 and the most expensive book (i.e., the
highest value, x,,,4,) was $300. Thus

Tmazr — Tmin = 900 — 30 = 270 = range

That is, now we have found that the range of textbook
prices for that semester was $270, with prices you paid
ranging between $30 and $300.

One thing to note here is that in order to have a
difference, i.e., in order to be able to do a mathematical
operation like subtraction, we need to have numerical
values.

In truth, as you are about to see, all measures of
dispersion are obtained through mathematical operations
and, as such, require numerical values. Since interval/ratio
variables are the only variables which contain actual
numerical values, all dispersion measures (including the
range) are only applicable to interval/ratio variables.'

1. Some people find it useful to provide something like a range for ordinal
variables: after all, they do have a "lowest" category and a "highest"
category. While technically not a statistical measure of dispersion (as no
difference can be computed), it can still be useful to add a description about
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A final point about the range is that it is a rather
unsophisticated measure of dispersion, as you have already
noticed. (Hence the very short section about it.) By taking
into account solely the highest and the lowest values, the
range effectively ignores all other values, be they more
clustered or more spread out.

After all, if you recall from Section 3.6
(https://pressbooks.bccampus.ca/simplestats/chapter/
3-6-outliers/), outliers do exist. In the presence of outliers,
the range can end up being quite large, even if the majority
of the observations are closely clustered. Therefore, we’d
better find a dispersion measure which takes into account
more than just the two extremes of a variable’s distribution.

The interquartile range is one such measure which
provides a bit more information about the variability of the
distribution. Alas, the cost of this information is, of course,
an increased complexity in obtaining that measure. (An
ominous foreshadowing for what’s to come!)

the categories ranging between the lowest and highest points, e.g.,
"respondents' agreement with the statement varies between "strongly
disagree" and "strongly agree". Considering that the categories of nominal
variables have no inherent order, nothing of the sort can be applied to them.
All in all, providing a qualitative description of dispersion for ordinal
variables (like the agreement one I just mentioned) is optional and, strictly
speaking, not a statistical measure.






4.2 Interquartile Range

Unlike the range which focuses on the extreme ends, the
interquartile range (frequently referred to as IQR) looks
into the distribution of observations around the “centre”.
To that purpose, it splits the distribution into four equal
parts called quartiles (from the Latin quartus, meaning
one-fourth, i.e., a quarter), and then provides the range
of the middle two parts taken together. This sounds more
complicated than it actually is, so let’s turn to examples and
make it better.

To begin, let me first demonstrate what all this means
with a set of raw values which we can call, say, hours
worked per week.

Example 4.2 Weekly Hours Worked (Raw Data)

Imagine you have been hired as a research assistant (RA)
on a research project. You have worked 20 weeks in total
in the past two semesters, ten weeks in each semester (with
your classes and all, you couldn’t work every week). The
maximum hours per week you could work was 15, limited
by the nature of your contract. You make a list of all hours
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you have worked in each of the twenty weeks, and you list
the twenty values in ascending order. Here they are:

2,3,3,45,7,7,7,8, 8, 10, 10, 10, 10, 12, 12, 13, 13, 13,

14

If you recall from our discussion of the median, to split
a group of values into equal parts we need the values’
positions in the order. You can find these in the table below:

Table 4.1 Values and Their Positions of Hours Worked per

Week
Position H";:: fv"e"erli‘ed Position H"I‘,‘:: w::ll(‘ed
(1) 2 (11) 10
(2 3 (12) 10
3) 3 (13) 10
4) 4 (14) 10
®) 5 (15) 12
(6) 5 (16) 12
(7) 7 (17) 13
8 7 (18) 13
(9) 8 (19) 13
(10) 8 (20) 14

You might be tempted to use an intuitive method for
splitting the set of twenty values given in the example into 4
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equal parts (i.e., into quartiles) by simply dividing 20 by 4,
which will let you have 5 values in each quartile:

2,3,3,4,5 5,7,7,8,8 10, 10, 10, 10, 12
2,13, 13, 13, 14,

Thus the interquartile range (or “the range of the middle
two parts taken together”) of the entire set of 20 values
would be the range of 5, 7, 7, 8, 8, 10, 10, 10, 10, 12.

A quick-and-dirty calculation would show that the IQR
is (12-5=) 7 hours. You would be correct — indeed, the
interquartile range is 7 hours — but I’'ll stop you
nevertheless. This worked out only because I’ve chosen the
numbers between the first and the second quarter of cases
to be both 5, and the numbers between the third quarter
and the last to be both 12. You need to read below to find
out the proper method for obtaining the IQR. (The example
continues further down.)

Quick-and-dirty calculations are not precise, even if they
serve their purpose to give you a basic idea of what we are
doing. Now that you’ve seen where this is going, let’s do
everything properly.

First, we need to calculate the precise positions of the
values that separate the quartiles. Recall how we used to
split a set of values in two in order to get the position
median. We used the following formula:

% =« “position of the median”
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We’ll follow the same logic to split each of the halves in
two themselves. Thus let me restate the above formula to
this:

% = (N + 1)% = (N +1)0.5 « “position of

the median”

Since we effectively multiply N+1 by 0.5 in order to
split the entire set in two halves (or, to get one half of the
data), to split the first half of the values further in two
itself, we need to multiply N+1 by “half of 0.5”, i.e., by
0.25 (essentially getting one quarter of the data):

NH = (N+1)1 = (N +1)0.25 « “position of
the first quartile”

By analogy, splitting the second half in two itself will
require getting three quarters of the data, or to multiply
N+ 1 by “0.5 and a quarter”, i.e., by 0.75:

(N-Zil)3 = (N + 1)% = (N +1)0.75 « <“position

of the third quartile”

If you follow the logic, you’ll easily conclude that the
median is also de facto the second quartile (i.e., two
quarters of the data).

To restate, we have the following way to split the data
into four equal parts:

The position of the first quartile, Qz, is found through
(N +1)0.25.
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The position of the second quartile, Q2 (a.k.a the
median), is found through (N + 1)0.5.

The position of the third quartile, Q3, is found through
(N +1)0.75."

Now let’s use our newfound formulas in the Example
4.2,

Example 4.2 Weekly Hours Worked, Continued

With N=20, we get:

Q1's position -

(N +1)0.25 = (20 + 1)0.25 = (21)0.25 = 5.25

Q2°s position =

(N +1)0.5 = (20 + 1)0.5 = (21)0.5 = 10.5

Q3°s position =

(N +1)0.75 = (20 4 1)0.75 = (21)0.75 = 15.75

Once again, do not forget that all these formulas provide
the positions of the quartiles, not their respective values. To
see the values, we have to look at Table 4.1 above which
cross-lists the cases’ positions and values. Since there is no

1. Obviously, we don't speak of a fourth quartile, as four quarters comprise the
whole thing: the fourth quartile would simply be 100%, or all of the data.
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Case #5.25, we know that the value we’re looking for is
between Cases #5 and #6 (a quarter further than #5) — but
as the values of both Cases #5 and #6 are 5, we conclude that
the value of the first quartile is 5.

Similarly, there is no Case #15.75 (so the value we’re
looking for is three quarters past the 15th case), but both
Cases #15 and #16 are 12, so we conclude that the third
quartile is 12.

We are still interested in the interquartile range — or the
range of the two middle quarters of the data (or the middle
50 percent, so to speak). Then, since

Q3=12and Q1 =5,

we have that

QB-Qi1=12—-5=7

Or, we have found that the IQR for hours worked per
week is 7 hours per week. Or, at the mid-range, your hours
worked per week varied between 5 and 12 hours per week.

Alright, but why, you might ask — couldn’t we just have
the range and be done with it?

The value added of using interquartile range is that it
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takes care of outliers, so it’s frequently a better measure
of dispersion than range. The IQR provides the spread of
the centrally located 50 percent of the data which in many
situations paints a more accurate picture of how “the more
typical” of the variable’s cases are spread out, rather than
looking at the more extreme spread provided by the range
which encompasses all cases, even the clear outliers.

All in all, however, just like with choosing whether to
use a median or mean, the decision which of these two
measures of dispersion is the more appropriate one to be
used and reported depends on the specific situation and the
researcher’s discretion. I would urge you, as a beginner
researcher, to make a habit of reporting both the range and
the interquartile range, while simultaneously discussing the
effect of any potential outliers.

Instead of working with raw data, we might have
frequency tables at hand. How do we get the range and
IQR from aggregated data? For the range, simply
subtract the lowest value (the one listed first in the Values
column, of course) from the highest value (the one listed
last in the Values column) and report the difference (in its
appropriate units of measurement). For the IQR, look for
the 75th percentile (i.e., Q3) and the 25th percentile (i.e.,
Q1) in the Cumulative Percent column, then subtract the Q1
value from the Q3 value, and again report the difference.
(This is similar to how we looked for the 50th
percentile for the median, Q, in Section 3.3
(https://pressbooks.bccampus.ca/simplestats/
chapter/3-3-the-median-with-frequency-tables/).)
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Exercise 4.1 Range and IQR for Cigarettes Smoked per Day

Practice your newly acquired skills to find Q1, Q2 (i.e., the
median), and Q3 in the following table. Calculate and report
the range and the interquartile range for number of cigarettes
smoked each day.

Table 4.2 Number of Cigarettes Smoked Per Day by Daily,
Smokers (CCHS 15/16)
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Num of cigarettes smoked each day (daily smoker)

Cumulative

Frequency Percent  Valid Percent Percent
Walid 1 110 A 7 7
2 219 2 1.4 22
3 328 3 21 43
4 405 4 27 7.0
i 777 7 51 12.0
G 617 i 4.0 16.1
7 461 4 3.0 191
B 572 A 37 229
9 163 A 1.0 239
10 2297 21 15.0 389
11 127 R K] a7
12 1397 1.3 9.3 489
13 390 4 2.8 51.4
14 95 R K] 521
15 1637 1.5 107 62.8
16 74 R 5 63.3
17 121 R A f4.1
18 181 .2 1.2 656.3
19 17 .0 A 65.4
20 2164 20 14.2 79.5
21 8 .0 A 79.6
22 37 .0 2 79.8
23 34 a 2 801
24 57 R 4 804
29 2225 20 14.8 895.0
26 3 a 0 a5.0
27 8 0 A as51
28 13 .0 A 852
29 1 .0 0 852
30 278 3 1.8 ar.o
3 1 .0 0 a7.0
32 8 .0 A ar
33 5 a ] ar
34 1 .0 .0 a7
35 89 R B av.7
36 4 a ] ar.7
37 24 .0 2 7.9
38 10 .0 A a7.9
40 135 R K] 988
45 13 .0 A 98.9
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To make sure you’re doing it correctly, let’s quickly
check your answers right away. The range is of course
(99-1=) 98 cigarettes per day. To find the IQR, you must
have first identified Q1= 10 (since 23.9 percent of the
cases make up to 9 cigarettes per day, the 25th percentile
falls in the 10 cigarettes per day category) and Q3 = 20
(since 65.4 percent of the cases make up to 19 cigarettes
per day, the 75th percentile falls in the 20 cigarettes per
day category). Then the IQR is (20-10=) 10. Thus you
see the difference between range and interquartile range:
while the range might leave you with the impression that
cigarettes smoked per day vary by almost a hundred for
daily smokers, the middle half of the cases actually only
vary by 10 cigarettes.

Of course, there’s also SPSS. Check below to see how to
find the range and IQR (semi-) directly.

SPSS Tip 4.1 Obtaining Range and Interquartile Range

» From the Main Menu, select Analyze, then
Descriptive Statistics, and then Frequencies;

* Select your variable of choice from the list on
the left and use the arrow to move it to the right
side of the window;

+ Click on the Statistics button on the right;




Simple Stats Tools 175

* In this new window, check Quartiles from
the Percentile Values on your top left and check
Range (and Minimum and Maximum if you
wish) from the Dispersion section below it;

» Click Continue, then OK.

» Range (along with the smallest and largest
values, if you asked for them) will be reported
in the Output directly.

+ To obtain the IQR, simply subtract the value
reported as 25th percentile from the value
reported as 75th percentile.

With the range and IQR covered, we are halfway
through the typically used measures of dispersion. On to
the remaining two, the variance and the standard deviation.






4.3 Variance

Similarly to how the median is about the central position
of a case while the mean is about the average of actual
numerical values, the range and interquartile range are
about positions in the overall (ordered) distribution of cases
while the remaining two dispersion measures, the variance
and the standard deviation, are about averaging numerical
values.

Thus, like the mean, the variance and the standard
deviation account for all cases, not just a select few. Unlike
the mean, however, instead of calculating the average of
all values, the standard deviation and variance calculate
(approximately) the average of the distances of each and
every value to the mean.

The mean is a measure of central tendency, as you know
by now, and it represent a sort of “centre” of the data,
value-wise (as opposed to position-wise, which is what
the median is). You know that all cases’ values enter the
calculation of the mean (after all, we sum all values and
divide the sum on their total number to get the mean), but,
at the same time, the values are different from the mean.
(That is, either all are different, or all but one —
it’s possible that one of the values is actually what
the mean is, in which case the difference is zero.)

This difference, between a value of a case and
the mean, is what we call distance to the mean.
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We have to average these (by adding all of the
distances of all cases’s values together and
dividing by their total number) to obtain the
variance and the standard deviation. Once we have
these dispersion measures, we’ll be able to tell
how all cases are spread out around the mean.
This, in turn, gives us information about how
much variability there is in a given variable’s
cases, if they are dispersed or clustered together.

You’ll be glad to know that the variance and the standard
deviation are calculated in almost the exact same way; the
standard deviation needs just one additional mathematical
operation after getting the wvariance. In a sense, they
calculate the same thing but are expressed differently, and
the standard deviation is usually considered easier to
interpret.

This is all the good news I have for you at this point, I’'m
afraid, as what follows is a calculation process containing
several steps. On the whole, it may look complicated
though it really isn’t; the key is to not forget what you are
doing and where you are in the process. If you find yourself
losing track, simply go back and start from the beginning,
paying attention to what steps you go through.

Variance. Since we want an average of the distances of
the cases from the mean, it would make sense to start with
getting these distances as a Step 1. Step 2 would be to add
these distances together, then Step 3 would be to divide the
sum on their total number. This is easier said that done, as
you shall see (ominous foreshadowing!), so I’ll divide Step
1 into two sub-steps, Step 1A (getting the distances) and
Step 2B (a procedure I’ll keep as a mystery for now).
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As usual, we’ll do all this through an example. For
simplicity’s sake, I’ll reuse Examples 4.2/4.3 from the
previous section which we used to introduce the concept of
IQR.

Example 4.4 (A) Weekly Hours Worked, Revisited

If you recall, we had imagined you as a research assistant
(RA) on a research project and you had worked 20 weeks in
total in the last two semesters, ten weeks in each semester.
The maximum hours per week you could work was 15,
limited by the nature of your contract.

As there are a lot of calculations to be done, to simplify
our job, let’s imagine further that we’re interested in only
one of the two semesters you had worked, and these are only
the hours in the ten weeks of that one semester:

3,3,5,7,8,10, 12,12, 13, 14

Considering that for Step 1A we need the distances of
each of these ten values to the mean, we’ll calculate the
90 q 1
mean as a preliminary requirement.

1. Since N=10 or more makes for quite the long equations if the values are listed
(summed) one by one separately, from now on I will group values by frequencies in
the calculations I do as a matter of principle. (Le., instead of 3+3, here I have (3)2,
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N

> Ti
=1

-

 (3)2+5+7T+8+10+ (12)2+13+14)

10
_(64547+8+104244134+14) _ 87 _ . _
10 10

Armed with the mean of 8.7 hours, we can now proceed
to calculate the distance of every value to the mean (i.e.,
subtract the mean from each value to obtain the difference).
I list the values and their respective distances from the mean
in the table below.

Table 4.3 Step 1A Calculating Distances To the Mean

instead of 7+7+7, I would have (7)3, etc.) Coincidentally, this is exactly what we do
when working with data organized in a frequency table.
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X (zi — )
3 (3-8.7)=-5.7
3 (3-8.7)=-5.7
5 (5-8.7)=-3.7
7 (7-8.7)=-1.7
8 (8-8.7)=-0.7
10 (10-8.7)=1.3
12 (12-8.7)=33
12 (12-8.7)=33
13 (13-8.7)=4.3
14 (14-8.7)=53
Again, as usual, x; is the value of each and any Case
#i (from 1 to 10), and (x; — T) is the distance (i.e.,
difference) between each and any Case #2 (from 1 to 10) to
the mean.

Now if we were to jump directly to Step 2 (summing
all distances together) and Step 3 (dividing by the total
number), we would be in trouble. You see, since the mean
averages all values and provides a “centre” of the variable’s
distribution value-wise, distances of the values below the
mean equal the distances of the values above the mean,
albeit with opposite signs.

That is, summing all values below the mean (i.e., the
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negative differences) would equal the sum of all values
above the mean (i.e., the positive differences). As one sum
is negative and the other positive (but with the same
absolute value’ ), they cancel each other out —
adding them together would result in 0, every
time. This is due to the very nature of the
calculation of the mean; it’s a mathematical
inevitability.

Don’t believe me? Try it. The sum of the distances below
the mean is:

(=5.7) + (=5.7) + (=3.7) + (—=1.7) + (—0.7) = —17.5

The sum of the distances above the mean is:
1.3+33+334+43+5.3=17.5

Thus, the sum of all distances from the mean is

(=5.7)+(=5.7)+(=3.7)+(=L7)+(—0.7)+1.3+3.3+3.3+4.345.3 = = —17.5+17.5 =0
Told you: Zero. Every. Time.’

2. The absolute value of a positive number is the number itself; the
absolute value of a negative number is the number itself but
without the negative sign; the absolute value of zero is zero.
Absolute value is noted with two straight vertical line. For
example, the absolute values of -1 and 1 are equal to each other:
-1l =11 = 1.

3. If you're still not convinced and think that maybe I selected the numbers just

so that the distances to their mean add up to zero on purpose, you are
welcome to try this 'trick' with any set of numbers.



Simple Stats Tools 183

So if the sum of the distances to the mean is always
zero, then what? How are we to average those distances,
since dividing the sum (i.e., zero) on any N would give us
zero? Are we to give up?

The thing is, the distances (below and above the mean)
only cancel each other out because we consider the
distances below the mean as negative. This, however, is
a somewhat of a mathematical conceptual artifact: in real
life, there is no such thing as a negative distance from one
thing to another. Imagine yourself standing between two
of your friends, one on your left and the other on your
right. Let’s assume they both stand a meter away from
you: you wouldn’t say that one is a negative meter away
while the other is a positive meter away, would you? There
are no negative and positive meters, just meters (and well,
they are always positive, as distance in the physical sense
always is).

Thus we are actually not interested in summing the
cases’ distances from the mean as calculated but only in
their “positive version” ignoring their signs, i.e., we want
their absolute values.

True, we could proceed with our Steps 1 and 2 using
only positive distances. When done, this produces an actual
dispersion measure called mean deviation (or mean
absolute deviation). The mean deviation is easy to
understand and quite intuitive, however (and perhaps to
your chagrin), it is rarely used — specifically because we
have the variance and standard deviation which are found
to be much more useful (this comes into play in inferential
statistics, as you will see in the latter part of this book). Due
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to its unpopularity, I’1l therefore skip the mean deviation —
we’ll have to look for another way of getting only positive
numbers for our calculation of the average distance from
the mean.”

Now stop and think: beside absolute values, is there
another way of turning numbers positive?

If you thought of squaring, good for you! A (non-zero)
number squared is a positive number: (—2)% = 22 = 4
. Thus one other way of getting around our distances-
summing-to-zero problem is to square the distances before
adding them up! Nifty trick, eh?

Let’s test how this works with our Example 4.4.

Example 4.4 (B) Weekly Hours Worked, Revisited

4. For the curious souls out there (all three of them), this is what the mean
deviation looks like, using the numbers from Example 4.4 (A) above. As
the below-the-mean sum was -17.5 and the above-the-mean sum was 17.5,
ignoring the negative signs we would get
5.7+574+3.7+1.74+0.74+134+334+334+43+53=175+175=135
. Since N=10, by averaging the distances we get % = 3.5 (the mean
absolute deviation). That it, the average distance of a case's value from the
mean is 3.5, or, in terms of our example, your weekly hours (which ranged
from 3 to 14) ON average varied by 3.5 hours from
the mean of 8.7 hours, across the ten weeks you
worked as a research assistant.
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A reminder: what we are trying to get is a dispersion
measure giving us an average distance of the cases to the
mean; something to account for the variability of all cases,
not just a few (unlike the range and IQR). To make the
calculations look more orderly, I add a third column to Table
4.3 above, one with the squared distances. Thus, our
mysterious Step 1B is squaring each individual distance.

Table 4.4 Step 1B Squaring Individual Distances

X5 (z; — =) r; —T)*
3 (3-8.7)=-5.7 (#5.7)> =325
3 (3-8.7)=-5.7 (#5.7)=32.5
5 (5-8.7)=-3.7 (#3.7)?=13.7
7 (7-8.7)=-1.7 -1.7)>=29
8 (8-8.7)=-0.7 -0.7)>=05
10 (10-8.7)= 1.3 13°% =17
12 (12-8.7)=3.3 3.3)> =10.9
12 (12-8.7)=3.3 3.3)> =10.9
13 (13-8.7)=4.3 4.3)% = 18.5
14 (14-8.7)=5.3 5.3)° = 28.1

We are thus ready for Step 2: summing up the (now-
squared) distances from the mean:
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(zi —Z)2 = (32.5)24 13.7+ 2.9+ 0.5+ 1.7+ (10.9)2 + 18.5+ 28.1 =

=

I
—

1
= 152.1 =jspan style="text-indent: 33.6px;font-size: 0.9em”
— Sum of Squares

As you can see above, the sum of the squared distances
from the mean is called the sum of squares (sometimes
indicated by SS).

Finally, to get the average distance from the mean we
need Step 3: to divide the sum of squares by the total

number, N:
5 (@i-7)?
wi—f)
i=1 _ 1521 __ _ 2 _
— =121l — 1521 =% =
« variance

That is, the variance of your hours worked per week is
15.21, or the average of the squared distances from the mean
is 15.21. (Note that we cannot say 15.21 hours as now we
are working in squared units.)

And this is it, the variance. It is denoted by a small-case
5 6.
Greek letter s, i.e. o> (SIG-ma-squared). variance

5. It is pronounced SIG-ma, just like £ which is the
Capital-case Greek letter S. and, since it’s in squared units,
actually o

6. An alternative notation for
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you might encounter is var(x) where x is the
variable in question.






4.4 Variance Continued, Standard
Deviation

I’'m sure you’ll agree the preceding section was a lot to
take in. And here’s the kicker: after all that, we arrived at
something which we cannot easily or intuitively interpret,
given the squared units. However, the variance is used a lot
in statistics, for great many things. Generally, the larger the
variance, the greater the variability of the variable, or the
larger the “dispersed-ness” of the cases.

Despite the seemingly convoluted way we arrived at
the variance and all the calculations and mathematical
notation, what we did was actually quite simple. (No,
really!)

To recap: just like we average all values by summing
them up and dividing the sum on their total to get the
mean, we average the distances of the values from the
mean by summing them up and dividing the sum on their
total. The only difference is that in order to be able to sum
the distances, we need to square each of them first, or we
cannot proceed.

Here are the formulas for the mean and the variance
together so that you can compare:

s
B3

s
Il
—

N =T « mean
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o8

(z;—7)?
= 52 variance
N = —

Now that I have you feeling somewhat comfortable, I
have a confession to make. This above isn’t the only
version of the formula for variance that exists or that
we will be using.

Bear with me (and welcome back, to those who threw
the reading away in disgust) — I promise to explain
everything when we get to inferential statistics further in
the textbook, as the explanation requires concepts and
terminology we have not yet covered and which cannot
be easily introduced at this point. (Hint: it deals with
estimation and uncertainty.)1

z

' (:cz —5)2

1 _ _ .
N_1 — §° — < variance

As you can see, the modification is quite small -- instead
of dividing the sum of squares by the total number
N, we actually divide it by the total minus one, N-1.
If it makes you feel better, dividing just by N or by N-1
produces generally similar results, in terms of magnitude
of the variance. We also denote this version with a
regular small-case s2.

One thing worth noting, however, is that despite the
lack of proper explanation as of yet, when working with
typical datasets SPSS will produce variances by dividing
the sum of squares by N-1 instead of by N.

1. If you'd like a preview, the alternative, to-be-explained-later, formula for
variance is:
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... for The Order of Operations

When considering the formula for variance, and the steps
we took to calculate it, pay special attention to the sum
of squares. That is, we need a sum of squares (a.k.a., to
add the squared distances from the mean together): we first
calculate the distances, then square them, and finally
sum the squared distances up.

A common mistake, however, is to try to calculate the
distances, sum them up, then square the sum. As explained
above, the (un-squared) distances add up to zero, and
squaring the zero will not improve things. A version of
this mistake is also to calculate the distances, then try to
sum them and divide them by N-1, and then square the
result. Obviously this would also be unsuccessful. To avoid
these type of frustrations, try to remember the purpose of
the squaring: to “turn” all distances into positive numbers.
Everything else we do (summing, dividing), we do to the
already squared distances.

In an effort to show you that the calculation of the
variance is simple when done without the protracted
explanations, take another example we have used before,
number of siblings.
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Example 4.5 Variance for Number of Siblings

In discussing the median in Section 3.2
(https://pressbooks.bccampus.ca/simplestats/chapter/
3-2-median/), we imagined you asked seven of your friends
about the number of their siblings. These were the values we
used: 2,1,4,2,1,0, 3.

Let’s produce the variance, in four simple steps, after
calculating the mean; Step 1A, obtain the distances from the
mean; Step 1B, square the distances from the mean; Step 2,
obtain the sum of squares (i.e., sum the distances up); Step
3, divide by N.

Preliminary step: obtain the mean.

N
v 24+14+44241+043 13
=1 _ _ _
= = = = = 1.857

N =Z

Steps 1A and 1B are presented in the table below:

Table 4.4 Calculating Distances To the Mean and
Squaring Each Distance
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X (z; — T) T — T)°
2 (2-1.857) = 0.143 (0,143)? = 0.02
1 (1-1.857) =-0.857 (-0/857) = 0.734
4 (4-1.857) =2.143 (2[143)% = 4.592
2 (2-1.857) =0.143 (0,143)% = 0.02
1 (1-1.857) =-0.857 (-0|857) = 0.734
0 (0-1.857) = -1.857 (-1/857)? = 3.448
3 (3-1.86) =1.143 (1J143)* = 1.306

Step 2, obtain the sum of squares:

=1

N
S (2 — %)% = (0.02)2 + (0.734)2 + 4.592 + 3.448 + 1.306 = 10.854
— Sum of Squares

Step 3, divide the sum of squares (rounded down to two
digits) by N, i.e., by 7:

(z;—T)?

i _ 10%85 —1.55 = 02 . variance

=

1

Thus, we find that your seven friends have an average
of about 1.6 squared distances from the mean number of
siblings 1.9 (rounded up from 1.857).
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Oh, great, you are probably thinking now, and I can
imagine the sarcasm — we calculated something we can't
even interpret properly. 1 mean, it’s more than a tad
awkward to try to explain “an average of about 1.6 squared
distances from the mean number of siblings” to anyone not
versed in statistics. Maybe it would be better if we could
get rid of the “squared-ness”?

You know what? We can. The standard deviation is here
to help.

Standard deviation. Believe it or not, after all the steps
we went through to get to the variance, calculating the
standard deviation is a breeze: specifically, a breeze that
turns back the squared units into standard units, hence the
name.

See for yourself:

« standard deviation

Despite its scary looks, this is actually just the formula
for variance under a square root. That is, we take the
square root of the variance to get the standard
deviation. That’s it. Nothing more. Just a regular square
root, and we’re there. Cue in a sigh of relief!”

2. Note, however, that just like there is an "alternative", to-be-explained-later,
formula for variance, there is an "alternative" formula for standard
deviation, following the same principle regarding dividing the sum of
squares by N-1 instead of by N:



Simple Stats Tools 195

Ios

(zi—7)?
”T = V52 = s < standard deviation

As well, SPSS will use this (N-1) version of the formula
when working with variables in a dataset.

Now that we know how to get back to standard units,
let’s do that for the two examples we used. We had a
variance of o> = 15.21 for hours worked per week in the
previous section and a variance of o® = 1.6 for numbers of
siblings in the example above. Square-rooting gives us the
following:

Vo4 =+v15.21 =3.9
and

Vo2 =+v16=125

Now these we can interpret: on average, your hours
worked per week deviated from the mean of 8.7 hours per
week by 3.9 hours, and your friends deviated from the
average number of siblings,1.9, by 1.25 siblings.

To repeat, the standard deviation is the square root
of the variance. The standard deviation is a measure
of dispersion which gives us the average deviation of
the cases from the mean. (Technically, an average of the
squared distances from the mean in standard units.)
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Do It! 4.2 Longevity of The First Fifteen Canadian Prime Ministers

Calculate the variance and standard deviation of the
longevity of the first fifteen Prime Ministers of Canada. In
chronological order (starting with Macdonald and ending
with Pierre Trudeau), their ages at the time of death were:
76, 70, 72, 49, 93, 94, 77, 82, 86, 75, 76, 91, 83, 75, and
80. Interpret your results (i.e., explain what you have found
beyond “the standard deviation is ...”).

You can use a table like Table 4.4 to organize your
calculations. (Hint: Start with calculating the mean age at
death, T, and round it up to a whole number to make your
job easier.) Here &; is age at death for each PM and N=15.

You can check your answers in this footnote. The mean is 79
years; the sum of squares 1,717; the variance 114.5; the standard deviation
10.7 years. However, if you calculated the variance and standard deviation
with N-1 in the denominators, you will get a variance of 123 and a standard
deviation of 11.1 years. The difference is as large as it is due to the small
N. Had we been working with a real dataset of hundreds or thousands of
cases, the difference between the just-N and N-1 versions of the formulas

would have been less pronounced.

Of course, one wouldn’t normally calculate variances
and standard deviations by hand: we only do it so that you
can understand what the measures are and what they really
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provide us with, by obtaining them ourselves. Usually,
however, we simply use SPSS.

SPSS Tip 4.2 Obtaining Variance and Standard Deviation

» From the Main Menu, select Analyze, then
Descriptive Statistics, and then Frequencies;

* Select your variable of choice from the list on
the left and use the arrow to move it to the right
side of the window;

* Click on the Statistics button on the right;

* In this new window, check Variance and
Standard deviation in the Dispersion section on
the left at the bottom;

» Click Continue, then OK.

* The Output window will provide a table with
the requested measures.

» Make sure you know how to interpret your
results! (Try to use as little statistics jargon as
possible.)







4.5 Summary

It sure feels like we’ve covered a lot! You might need a
recap. You will find it below.

The measures of dispersion tell us how a variable’s cases
are distributed: whether they are more tightly clustered
together, or more loosely spread out. After all, it’s perfectly
possible to have two variables with the same central
tendency measures but with different measures of
dispersion!

There are four measures of dispersion that are typically
used: range, interquartile range (IQR), variance, and
standard deviation. While the former two are simple and
account for the dispersion of cases only through the
positioning of a few cases in the (ordered) distribution, the
latter two employ all cases’s values to produce somewhat
more complicated and comprehensive measures of a
variable’s spread.

The range reports the difference between the highest
and the lowest values. The IQR provides the same but
for the middle half of the cases. The variance calculates
something like an average of the squared distances of all
cases from the mean (in squared terms), while the standard
deviation, through square-rooting the variance, provides us
with an almost-average of the distances of all cases from
the mean (in standard — i.e., regular — units). Generally,
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the larger the measures of dispersion, the more variability
the variable has.

Finally, as they all require numerical values, all
measures of dispersion are applicable only to interval/ratio
variables: we cannot provide dispersion measures for
nominal or ordinal variables.

With this, we have the full range of measures to describe
variables: we not only learned how to graph variables to
see their distribution visually, but also to calculate how
their cases cluster (through the three measures of central
tendency, the mode, the median, and the mean) and how the
cases can spread (through the four measures of dispersion,
the range, the interquartile range, the variance, and the
standard deviation).

We also learned that while we can graph all types of
variables, the measures of central tendency and dispersion
vary in their applicability depending on a variable’s level
of measurement. While the mode applies to all variables,
and the median to ordinal and interval/ratio variables,
the mean, the range, the IQR, the variance, and the
standard deviation apply only to interval/ratio
variables. Keep this in mind when deciding what kind of
information to provide about a specific variable."

Before we continue inching toward inferential statistics,
starting with the normal curve and basic of probability in
Chapter 5, here is a handy list of things you should know
before proceeding further.

1. Again, do not trust SPSS to make that decision for
you: it cannot and it will not.
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What You Need To Know So Far

» How to visually display a variable’s distribution
(i.e., how to graph variables) and the proper
graph for each variable type depending on level
of measurement;

* How to display a variable’s distribution in a
tabular format, specifically how to create and
how to read frequency tables;

* What the central tendency measures are, how
many and what they are, their applicability to
variable types depending on level of
measurement, and what methods there are to
obtain them (including calculation);

» What the central dispersion measures are, how
many and what they are, their applicability to
variable types depending on level of
measurement, and what methods there are to
obtain them (including calculation);

» What outliers are and how they affect the
central tendency and dispersion measures, and
what makes a more appropriate measure of
central tendency or dispersion in the presence
of outliers.

» How to interpret graphs, frequency tables,
measures of central tendency, and measures of
dispersion both by using statistical jargon and
without using statistical jargon. (You should be
able to explain what any of these concepts are
and what they mean to someone not trained in
statistics.)




202

+ Finally, to use proper and precise vocabulary to

express yourself both orally and in writing
when discussing statistics concepts — including
variables, measurement, operationalization,
levels of measurement, units of analysis, units
of measurement, etc.

Hint/Warning: If any of the above gives you
trouble, go back and reread the relevant
section. Proceeding further with gaps in your
knowledge will only make things worse.
(There is no hope that by reading the more
complicated material which follows you will
suddenly learn/understand the things
discussed so far!)




Chapter 5 The Normal
Distribution and Some Basics
of Probability

A variable’s distribution, you recall, is the way the
observations/cases are distributed across the
variable’s categories. Frequency tables, graphs, as
well as measures of central tendency and
dispersion all provide information about the
distributions of variables.

All variables have a distribution (of course!) but
some variables have a special type of distribution:
one whose features and uses in statistics go beyond
being simply “a variable’s distribution”. We call
this distribution normal distribution.

In the first part of this chapter I introduce the normal
distribution, detailing its features that make it so special.
The latter half of the chapter is devoted to a concept
without which we wouldn’t be able to do any statistical
inference and estimation, namely statistical probability.
You will learn some basics of probability theory which
are necessary for us to eventually proceed to statistical
inference.
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You might be wondering why these two seemingly
unrelated things — a variable’s distribution and probability
theory — are in the same chapter together. For now I will
just give you a hint: probabilities have distributions too.
Read on to find out more.



5.1 The Normal Distribution

You might have already heard of bell curves (or bell-
shaped curves), or even normal curves. If you have, you
also probably know they look similar to the one in Fig. 5.1.

Figure 5.1 Body Mass Index of Respondents (CCHS
2015/2016)

5,000

Mean = 27 84
Stel. Dev. = 5.455
N =94 316

4,000

3,000

Frequency

2,000

1,000

10.00 20.00 3000 40.00 50.00 E0.00
Body mass index (adjusted) - (D)

Fig. 5.1 shows a histogram with the distribution of the
variable body mass index (or BMI) of respondents to the
CCHS 2015/2016. Judging by the height of the bars that
comprise it, the histogram illustrates the fact that most
cases tend to cluster at the centre (i.e., most people’s BMI
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is average), while a decreasing number of cases end up in
the “tails” of the distribution (i.e., the further their BMI is
from the average, the fewer cases there are).

You can easily notice that the distribution (as reflected
in the green bars) is not perfectly symmetric but a bit
positively skewed: the right “tail” is longer than the left.
Still, its shape approximates a bell well-enough (note for
comparison the black curve in Fig. 5.1 which is a true bell
shape). We call this type of distribution approximately
normal.

A great many interval/ratio variables in the world tend
to have an approximately normal distribution when plotted
(true for both the social and natural sciences). That is,
the majority of observations are centered in the middle
of the distribution (i.e., they tend to be average); we find
fewer observations just below and just above the average,
and fewer still which are much below or much above the
average.

Think about height, for example. Most people are of
average height (that’s why it’s called average height after
all), some people are above and some below average, fewer
people are much taller or shorter, and rather rarely are some
people extremely short or extremely tall. Variables like age,
or weight (which you can see in Fig. 5.2 belowl) but also,

1. The reason you observe the "double" distribution -- one shorter (darker) while
the other taller (lighter) -- is due to the self-reporting of weight. Most
people tend to report their weight in whole numbers, and here some have
done so, stating their weight as 65 kg or 85 kg, etc.; these are the tall bars.
Others, however, may have reported it with grams and/or in pounds (which
when converted to kilograms would produce a non-whole number weight),
thus resulting in weights such as 65.35 kg or 85.75 kg, etc., leading to the
short bars and to the histogram appearing like two histograms plotted on
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say, test marks, or points scored per hockey game, or text
messages sent per day, etc. are similar. There will be an
average, and a continuous decrease in frequency the further
one gets from that average.

Fig. 5.2 Weight of Respondents (CCHS 2015/2016)
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As fascinating as all this is, you might be thinking now,
why do we care about it? It’s just one type of a distribution
among many.

True, but as I already mentioned, the normal distribution
is special, and not just because many variables’ histograms
tend to plot an approximately normal curve. To understand
why, we need to start exploring the normal distribution as a

top of each other. Had the responses been rounded to the nearest whole
kilogram, the histogram would have taken a regular, "single" normal-curve
shape.
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theoretical concept (or, to borrow from Max Weber, as an
ideal type).



5.1.1 Properties of the Normal Curve

Recall that we describe a distribution via three things: its
shape, its central tendency measures, and its measures of
dispersion. The perfect (i.e., theoretical) normal
distribution thus has three defining features.

First, the normal curve is bell-shaped and perfectly
symmetric (i.e., if you bisect it in the middle, the left side
will be identical to the right side).l

Second, the normal curve is centered on the mean,
which also happens to be equal to its median and mode.
That is, for the normal curve all measures of central
tendency fall on the same value.

Third, the normal curve’s standard deviation tell us
what percentage of observations fall within a specific
distance from the mean. When we have a normal curve,
the area below the curve contains 100 percent of all
observations. Then, 68 percent of all observations fall
within 1 standard deviation from the meanz; 95 percent of
observations fall within about 2 standard deviations from

1. It's also asymptotic to the horizontal axis line, i.e., it gets as close to it as
possible in the "tails" without ever touching it. More on this after you learn
about probabilities.

2. Given the symmetry, this means 34 percent fall within -1 standard deviation
below and 34 percent fall within +1 standard deviation above the mean.
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the mean’; and 99 percent of observations fall within about
. L. 4 . .
3 standard deviations from the mean . Fig. 5.3 illustrates.

Figure 5.3 Normal Curve with Standard Deviations
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Standard Deviations

If you imagine Fig. 5.3 interposed on top of an
approximately distributed variable’s histogram, you can
see what percentage of observations will fall within 1, 2,
and 3 standard deviations from the mean. (Obviously, the
mean is at 0, since the normal curve is centered on the
midway point of the curve, and is neither below nor above
itself, i.e., “the mean is O standard deviations away from
the mean”, as awkward as it sounds.)

Let’s make sure this makes sense to you in applied terms,
through the example below.

Example 5.1 Normally Distributed Test Scores (Hypothetical Data)

. That is, 47.5 percent fall within about -2 standard deviations below the mean
and 47.5 fall within about +2 standard deviations above the mean.

. That is, 49.5 percent fall within about -3 standard deviations below the mean
and 49.5 percent fall within about +3 standard deviations above the mean
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Imagine your statistics class has taken a test. The average
test score is 65 with a standard deviation of 10 and the
following scores distribution. (You can imagine a histogram
whose many bars follow the curve in the three Fig. 5.4
below.)

Figure 5.4 (A) Test Scores within 1 Standard Deviation

! | . . . . . ;
30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
68% of Observations Fall between 55 and 75 (i.e., -1 and +1 Standard Deviations)

Figure 5.4 (B) Test Scores within About 2 Standard Deviations

! 1 | ! L | L h
30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
95% of Observations Fall between 45 and 85 (i.e., about -2 and +2 Standard Deviations)
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Figure 5.4 (B) Test Scores within About 3 Standard
Deviations

I L L L L L 1 L L L -
30 35 40 45 50 55 60 65 70 V5 8 85 90 95 100
99% of Observations Fall between 35 and 95 (i.e., about -3 and +3 Standard Deviations)

Given the properties of the normal curve, we now know that
68 percent of students in the class scored between 55 and 75
(i.e., between -1 and +1 standard deviations from the mean, and
since the standard deviation is 10, then 65 — 10 = 55 and
65 + 10 = 75). We also know that 95 percent of students
scored approximately between 45 and 85 (i.e., between about -2
and +2 standard deviations from the mean, or
65 — 2(10) = 65 — 20 = 45 and
65 + 2(10) = 65 + 20 = 85). Finally, we know that 99
percent of students (almost everyone!) scored approximately
between 35 and 95 (i.e., between -3 and +3 standard deviations
from the mean, or 65-3(10)=65-30=35an.d
65+3(10)=65+30=95%).

As is typical of normal distributions, the majority of scores (68
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percent) are clustered in the middle (within -1 and +1 standard
deviations) around the mean; the remaining 32 percent are split
between the “tails” of the distribution, with about 16 percent in
each “tail” beyond -1 and beyond +1 standard deviation from the
mean. Only 5 percent of test scores are as far away as -2 and +2
standard deviations from the mean, with just 2.5 percent at the tips
of each of the “tails”. And at the very, very far ends of the “tails”,
beyond the -3 and +3 standard deviations from the mean, you
have 1 percent split between them, so a minuscule 0.5 percent of
students has a score below 35 and another 0.5 percent has a score
above 95.

These features of the normal distribution (symmetrical,
centered on the mean/median/mode, measured in standard
deviations from the mean) make it very useful to work
with. Simultaneously, now you can begin to see why the
standard deviation is the most popular measure of
dispersion, due to its unique relationship with the normal
curve.

Can we find more uses of the normal distribution? Read
on to find out.






5.1.2 The z-Value

In the previous section you discovered that we can “orient”
ourselves about where a specific value lies along the
normal distribution in relation to the average by means
of the standard deviation. In Example 5.1 we saw that 68
percent of students’ test scores were between 55 and 75
(i.e., between -1 and +1 standard deviations from the
mean), 95 percent of scores were
between approximately 45 and 85 (i.e., between
about -2 and +2 standard deviations from the
mean), and that 99 percent of scores were
between approximately 35 and 95 (i.e., between
-3 and +3 standard deviations from the mean).
Thus, if your score was, say, 60, you would know
that it was below the mean, but within 1 standard
deviation away, which wouldn’t be as bad as, say,
had you scored 40, which is more than two
standard deviations away from the mean.

Hmm, do we really need standard deviations to tell us
that a test score of 40 is bad news, you ask. Everyone
knows that.

In absolute terms, sure, a score of 40 (out of 100) would
be considered a failing one. In relative terms, however —
which is also known as grading on a curve — a score of 40
doesn’t tell you anything, unless you know the mean and
the standard deviation.
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To better illustrate this, imagine another set of test
scores, and that on that test you get a score of 80. In
absolute terms, a score of 80 (out of 100) would be quite
good. What about in relative terms? Can you think of a
situation where a score of 80 would be considered worse
than a score of 40?

What if I told you that the mean in the first case (when
we imagine you scored 40) was 35 with a standard
deviation of 5, while the mean in the second case (when we
imagined you scored 80) was 90 with a standard deviation
of 2? (You might find it easier to see the point if you grab
a pen and paper and simply draw a line with the mean
in the middle, then add and subtract that many standard
deviations away from it in each direction, above and
below.)

A score of 40 (i.e, 35+ 5 =40) is 1 standard
deviation above the mean of that test. A score of 80 (i.e.,
90 — 5(2) = 80) is 5 standard deviations below the mean
of that other test. In fact, 80 is well below the even 3
standard deviations away from the mean where 99 percent
of scores are; it’s at the very far end of the left “tail” of the
distribution, likely an outlier.

It turns out that the second test we imagined was so easy,
scoring 80 on it was too low given how easy it was. On the
other hand, scoring 40 on the first test we imagined was
quite good given how hard it was.

This mental exercise shows you that expressing values
in terms of standard deviations has its merits, as it puts
the values into perspective — which allows us to make
comparisons. A score/value in and of itself doesn’t tell
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you anything — not unless you know where it falls in
relation to the mean and how far away it is. Now only if
there was a way to express any value in terms of standard
deviations without having to always calculate 1 standard
deviation away, 2 standard deviations away, 3 standard
deviations away from the mean (or to have to resort to pen
and paper)...

Guess what? There is! Expressing a value in terms
of standard deviations is a process aptly called
standardization (as it produces scores that have a uniform,
standard meaning allowing comparison) and the
standardized values are called z-values (or z-scores). We
standardize values by expressing the distance of the
value from the mean in standard deviations, i.e.:

original score — mean
= z-value

standard deviation

Orl, in proper notation, where we denote the mean
by u, the small-case Greek letter
for m (from mean):

Following this formula, a score of 40 when the mean
is 35 and the standard deviation is 5 (i.e., when py=35
and 0=5) has a z-score of

1. The Greek letter p is pronounced as "MYU". The difference between using T
and p and the reason we use the latter here will be explained in Chapter 6.
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and a score of 80 when the mean is 90 and the standard
deviation is 2 (i.e., when y=90 and 0=2) has a z-score of

:I:i—,u:8()—90:—1():
o 2 2

-5 =2z

Thus, we formally found what we already knew from
before: that in the former case, the score of 40 was 1
standard deviation above the mean (i.e., its z = 1) and
the score of 80 was 5 standard deviations below the mean
(i.e., its 2 = —O). If this seems repetitive — after all, we
reached the same conclusion without any fancy formulas
— that’s only because I chose easily calculatable numbers
to illustrate my point more easily. Perhaps an example with
less “easy” numbers will convince you of the formula’s
worth.

Example 5.2 Average Monthly Rent for a Two-Bedroom Apartment

in Vancouver

The Vancouver Sun recently reported that the average
monthly rent of a two-bedroom apartment in Vancouver, BC
was $2,915, at the time of writing the highest in all Canada.
(REFERENCE https://vancouversun.com/news/local-news/
vancouver-two-bedroom-apartments-now-cost-close-
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to-3000-report) While the standard deviation was not
reported, for the purposes of this exercise we can imagine it
as $150.

What is the z-score of a family which pays $2,630 per month|
for their two-bedroom condo? How about the z-score of someone
who pays $3,450 for theirs?

Of course, we could grab a pen and paper and draw the normal|
distribution demarcating where 1, 2, and 3 standard deviations
away from the mean fall in order to see where the two listed
rents are relative to the demarcations. However, using the z-score|
formula makes for a faster (and a more precise) answer.

In the first case, we have:

x; —p 2630 — 2915  —28)

= = =—-19 =
o 150 150 :
In the second case, we have:
;— 3450 — 2915 535
S = _5=36=2

- 150 150

That is, the first family’s monthly rent of $2,630 is below the
average but not that unusual: with a z-score of -1.9, it falls within
2 standard deviations away from the mean, which is within what
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95 percent of renters in Vancouver pay for their two-bedroom|
apartments.

On the other hand, the second person’s rent of $3,450 is quite
high: with its z-score of 3.6, it falls beyond 3 standard deviations|
away from the mean, i.e., it’s higher than what 99 of people pay|
monthly for a two-bedroom apartment.

Again, we see the use of standardization and z-scores, as it
allows us to put values into perspective.

Now is your turn to try.

Do It! 5.1 Comparing Average Monthly Rent for a One-Bedroom

Apartment in Vancouver, Toronto, and Montreal

According to the National Rent Rankings monthly report
for July 2019 by Rentals.ca (REFERENCE
https://rentals.ca/national-rent-report), the average monthly
rent for a one-bedroom apartment was $2,028 in Vancouver,
BC, $2,259 in Toronto, ON, and $1,231 in Montreal, QC.
Assume the standard deviations are $140 in Vancouver,
$180 in Toronto, and $125 in Montreal.

Using z-values, compare and analyze where in the
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distribution a rent of $1,950 will put a Vancouverite, a
Torontonian, and a Montrealer who all pay the same rent but
in different cities.

(Answer: Vancouverite’s z=-0.6, Torontonian’s z=-1.7, Montrealer’s z=5.8.)







5.1.3 Percentiles

Remember quartiles? We used them in Section 4.2 to
find the interquartile range
(https://pressbooks.bccampus.ca/simplestats/chapter/
4-2-interquartile-range/). They would split the cases in the
distribution in four equal parts (i.e., in quarters) giving us a
first (1 percent to 25 percent of the data), a second (26
percent to 50 percent of the data), a third (51 percent to 75
percent of the data), and a fourth quartile (76-100 percent
of the data).

What if, instead of splitting the distribution into four
equal parts, we decided to divide it into five? That would
be easy: Instead of having four parts, 25 percent of the
data in each, we can just have five parts, 20 percent of the
data in each. Like this: 1 percent to 20 percent, 21 percent
to 40 percent, 41 percent to 60 percent, 61 percent to 80
percent, and 81 percent to 100 percent. This time, we call
the five equal parts quintiles (from the Latin root “quin”
like quinctus, meaning five).

Just as easily, we can divide the distribution into ten
equal parts: 1 percent to 10 percent, 11 percent to 20
percent, etc. ... all the way up to the last part, 91 percent to
100 percent. Then we have ten deciles (from the Latin root
“dec” like decem, meaning ten).

Following the same logic to the smallest possible whole
number by which we can divide a distribution, we get
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percentiles — a distribution divided into a hundred equal
parts, 1 percent in each. It turns out percentiles can be
quite useful when working with a normal distribution. (You
didn’t forget that’s our current topic, did you?)

The key piece of knowledge you need to recall from our
discussion about quartiles is that to split the distribution,
we need the cases lined up in order from the lowest value
to the highest (or else we wouldn’t be able to speak of first,
second, third or last quartiles). Applying this to the normal
distribution, we might be tempted to imagine the normal
curve as illustrated in Fig. 5.5 below.

Figure 5.5 What Percentiles Do Not Look Like

12th percentile 28th percenfile 54th percentile 83rd percentile

0 10 20 30 40 50 60 70 80 20 100

Fig. 5.5 lists the position of four randomly selected
percentiles, had the percentiles been evenly spread over the
horizontal axis. Of course, this is wrong. If we do this, we
would be ignoring the actual distribution — you know,
the blue curve on the graph. After all, we have established
by now that 68 percent of observations fall in the middle,
within only 1 standard deviation way from the mean, where
the curve is as its highest. (Recall that the height of the
curve — and the fact that it’s a curve, not a line — reflects



Simple Stats Tools 225

the larger frequencies of the values around the mean, and
the smaller, and smaller frequencies of the values further
away from the mean, in the “tails™.)

What this should tell you is that we can’t just assume
the percentiles are uniformly spread — because the data is
not. We need to account for the fact that that values in the
middle are way more popular than the ones in the “tails”.
Then how do we know what percentile a particular value
has?

Again, it’s easy. We have z-scores for that. You see,
every value has a z-score and the z-score reflects the
percentage of cases which fall below or above that value.
This is precisely the reason we know that 68 percent of the
data fall within 1 standard deviation from the mean and that
95 percent of data falls within about 2 standard deviations
from the mean.

Thus, with a normal distribution, you can turn any value
into a z-score (as we saw in the previous section), and
this z-score into a percentile. While there are z-score tables
providing percentages associated with any z-value, the
easiest way to find a percentile is through online
calculators like this one by Measuring
U: https://measuringu.com/pcalcz/.” There, you can enter a
z-score (make sure you choose “one-sided”) and see what
percent of data falls below it (on the normal curve on the
left) and what percent of data falls above it (on the normal
curve on the right). The exact percentile is the number
reflecting the data “below”.

1. For that matter, you can use an online calculator to find the z-score of any
value. You can try one here (provided by Social Science Statistics):
https://www.socscistatistics.com/tests/ztest/zscorecalculator.aspx.



https://measuringu.com/pcalcz/
https://www.socscistatistics.com/tests/ztest/zscorecalculator.aspx
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Do It! 5.2 Finding Percentiles Using an Online Calculator

Using the percentile calculator linked above, you find that
the percentile for z=1 is 84. Explain where this result comes
from. (Hint: The mean bisects the distribution in two equal
halves. A z-score of 1 is of course 1 standard deviation
above the mean.)

Answer: The area below the mean is 50 percent. To that we add the 34 percent|
between the mean and 1 standard deviation above the mean and get 50+34=84
percent. (Since 68 percent lies between -1 and +1 standard deviations and the|
normal curve is symmetrical, 34 percent fall between -1 standard deviation and|
the mean, and 34 percent fall between the mean and +1 standard deviation).

Cool, you say (probably quite sarcastically), we now
know how to find percentiles. But for what do we use them?

I’'m glad you asked. Percentiles allow us to compare a
score in relation to the rest of the data; just like z-scores,
they put things into perspective. Let’s say you have 69
on a test. Turning your score into a percentile will tell
you exactly what percent of the test-takers scored below
you, whether it’s 35 percent (then your score wouldn’t be
considered too impressive) or 99 percent (which would be
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most impressive, seeing how you’d be in the top 1 percent
. . 2
of test-takers) or any other percent it might be.

Let’s make sure you understand all that, shall we?

Do It! 5.3 Hourly Wage

Imagine you have applied for a job and your employer
offers you \$13.5/hour. You also learn that the average
hourly wage your potential employer pays to their
employees is \$17.5/hour with a standard deviation of \$2.5/
hour. See if this is a generous offer (after all, you would
be just starting) by finding its z-score and percentile and
comparing it to how the other employees of the company are
fairing. (Don’t forget to interpret both the percentile and the
Z-score.)

Answer: z = -1.6, percentile = 5.5. Only 5.5 percent of the employees in|
the company receive less than \$13.5/hour; almost 95 percent of the employees|

receive more, so no, it’s not a generous offer at all.

And now that you might be starting to feel somewhat
comfortable with the uses of the normal distribution, I’1l
pull the rug a bit from under you, as it were. Recall how

2. This is exactly what standardized tests (e.g., SAT) do to interpret individual
scores. They provide percentiles so that any test-taker can find how they
did relative to others (i.e., it provides the place of a score in the overall
distribution of scores).
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I started the chapter by explaining that many real-world
interval/ratio variables tend to be approximately normally
distributed? (That part’s true.) And then we talked about
where the variable’s observations fall in the normal
distribution? Well, there I lied. (It was necessary!)

If you think about it carefully, both statements cannot
be true. On the one hand, a real-existing variable has a
specific distribution — an approximately normal one. But
would two real-existing variables have exactly the same
approximately normal distribution? That would be
unlikely, considering that different variables, in different
datasets, with different number of observations, units of
measurements, units of analysis, means and standard
deviations, etc. cannot possibly look exactly the same if
plotted on a histogram. How then do we get these very fixed
and very specific numbers and percentages associated with
the z-scores and the percentiles?

The thing is, everything I told you about the normal
distribution, starting with its defining features and ending
with the z-scores and percentiles, refers to the ideal-type,
only-existing-in-theory, perfect normal distribution. All the
numbers and calculations and percentages we discussed
reflect the theoretical normal distribution; they serve as a
sort of expectation of how a (continuous, random)3 variable
is expected to be distributed. Of course, real-existing
variables generally fall short of this ideal, and therefore we
call their distributions approximately normal.

3. I explain randomness a bit in the next section, and further in Chapter 6. For
now, know that in statistics it doesn't mean "arbitrary" or "accidental" but
rather "obtained in an unbiased way" (i.e., with every element having an
equal chance to be picked).
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I repeat: the theoretical (perfect) normal distribution
provides us with what we can expect the actual
frequencies of the variable’s values to be, in theory.
(In reality, the distribution differs from that expectation
to varying degrees). It turns out, when we work with
z-scores and associated percentages and percentiles, we
work with what is expected, not with what is. (The
variables’ observed distributions differ but the normal —
expected — distribution is always the same.)

What do we do then, with this reality versus expectation
we have here? Why did we learn all we did about the
normal distribution if “it isn’t real”?*

This is where probability comes in. Hold the thought
about the normal distribution being an expectation; we’ll
come back to it in the remaining sections of this chapter.

4, That said, again, some standardized tests can be designed in such a way that
their test scores to be distributed normally. Thus, real-existing data can
have a normal distribution, it's just that usually it's an approximation.






5.2 Probability Basics

Whenever we talk about the likelihood of some future
event taking place, we talk about probability. This
likelihood serves as a prediction — what we can expect to
happen or not happen. For example, people might mention
the odds of winning the lottery, or the probability of being
hit by lightning, or to discuss the fact that it’s likelier to
die in a car accident rather than an airplane crash, or to
think that the odds of having a baby girl are the same as
the odds of having a a baby boy. Sociologists in particular
might typically be interested in an individual’s life chances,
things like the probability of going to college, the
probability of being unemployed, or to have a high-paying
job, etc. and comparing the probabilities for any of these
happening based on characteristics like race/ethnicity,
gender, socioeconomic class, religion, sexual orientation,
etc.

Probability is predicated on uncertainty; as the old song
goes, “the future’s not ours to see”. We use probabilities
to manage the uncertainty, usually by quantifying it. For
example, life expectancy at birth is the predicted longevity
that a newborn will have (given current death rates). Or
you might have even taken important decisions and made
choices based on odds and likelihoods (i.e.. on
probabilities). An entire industry — betting and gambling
— is based on the fact that we don’t know what will happen
but we nevertheless try to predict what might happen.
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Given the dealing with uncertainty and predictions, it
shouldn’t be too surprising that probability is completely
and entirely theoretical. It’s an expectation for the future,
which can’t be anything but abstract. (After all if
something had already happened, and has become reality,
we wouldn’t need to predict it or to discuss its probability
of occurring.)

Let’s start with an example which is familiar to
absolutely everyone, usually from an early age. At some
point in your life you have likely uttered the phrase “there’s
a fifty-fifty chance of...” Like “I didn’t do too well on
my last test, by now there’s a fifty-fifty chance to pass
the course.” Or “the traffic looks bad but it might clear
up; I still have a fifty-fifty chance of making it to the job
interview on time.” Or “this plan has a fifty-fifty chance of
success.” Or even “these nachos look disgusting, you have
a fifty-fifty chance to get food poisoning.”

A fifty-fifty chance of course means an equal probability
of something happening or not. Out of two possible
outcomes, either can happen with equal likelihood so it’s
impossible to predict in favour of any of them.

I’m sure you know that the fifty-fifty chance expression
comes from the impossibility of predicting the outcome of
a flipped coin: be it heads or tails. Assuming a coin cannot
possibly fall on its edge, when flipped it has only two
outcomes, represented by its two sides, falling as heads or
as tails. Thus, the probability of its falling on a side (a 100
percent) is divided by two — giving us 50 percent chance
to get heads and 50 percent chance to get tails.

The 50/50 percent is a prediction. The moment the coin
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falls, one outcome has been realized and the prediction no
longer applies because the event is no longer in the future.
The distinction between the factual reality (the event has
happened) versus the theoretical probability1 (of the event
happening) might seem trivially easy to make at this point
but its nevertheless very important. Keep it in mind, you’ll
need it for what’s to come.

Imagine you flip a coin two times in a row. Can you
predict that you’ll get once heads and the other time tails?
Is it possible that you get heads twice in a row? What if
you flip a coin ten times? Would you get tails exactly
5 times and heads exactly 5 times? Or could you
perhaps get 3 heads and 7 tails? What about 9
times heads and 1 time tails? And what if you flip
a coin a hundred times? Or more?

You might have already reasoned it, or you might have
even tried it at some point: it’s quite possible to flip a
coin and get the same side twice in a row. Or three times.
Or four times. Or more. (It’s even possible to flip heads
ten out of ten times in a row... or even a hundred out
of a hundred. In this case possible means that there is
such a probability, as small as it is. Possible doesn’t mean
necessarily plausible.) How do you reconcile this with the
knowledge that the probability of getting heads is 50
percent?

And that — the probability — is just it. We know that
theoretically with each coin toss the coin can fall as either

1. Note that the theoretical probability is still grounded in the reality of there
being only two possible outcomes. Thus predictions we base on probability
are not wild, baseless guesses but a product of rational thinking and
calculations.
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heads or tails, and the prediction/expectation is a fifty-fifty
chance.We know that in theory, if we flipped coins forever,
heads and tails will average at 50 percent of the time each’.
We can’t flip coins forever, however, so it’s possible we
get a different outcomes distribution in any finite number
of times we do it (but the larger the number of times, the
likelier we’ll be getting to 50/50 percent, or close3).

Thus there is no contradiction in theoretically expecting
a fifty-fifty chance of flipping tails out of, say, ten tosses
and actually getting heads 6 times and tails only 4, as I'm
sure you know. The former is a probability distribution, the
latter is the observed, actual frequency distribution of the
cases/observations/data. Keep this thought too.

Before we continue on to something more novel and
exciting than the old coin toss example, however, let
formalize our discussion a bit.

2. This website provides a neat visualization of both the probability/expectation

and a digital coin toss: https://seeing-theory.brown.edu/basic-probability/
index.html. There you can try flipping the coin 100, even 1000 times, and

see that the larger the number of flips, the closer you get to the fifty-fifty
expectation. The same website allows you to throw a die and to pick a card
out of ten consecutively numbered cards

3. You can find more on this property of large numbers in Chapter 6.


https://seeing-theory.brown.edu/basic-probability/index.html
https://seeing-theory.brown.edu/basic-probability/index.html

5.2.1 Working with Probabilities

We express probabilities as proportions (and we also
denote them with p, just like we do proportionsl), as this is
indeed what they are:

number of specific outcomes we are interested in

b= number of all possible outcomes

Or, the probability of a specific outcome is the
proportion of the number of such outcomes out of the
number of all possible outcomes.

Thus the probability of getting heads in a coin toss is:

p(heads) — number of heads sides of a coin _ } 05

number of all sides of a coin 2

The same of course applies to tails:

1. If you need a reminder, the relevant part is in Section 2.3.1, here:
https://pressbooks.bccampus.ca/simplestats/chapter/2-3-1-adding-

percentages/
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(tails) = number of tails sides of a coin B 1 05
PO = o mber of all sides of a coin 2

Heads and tails together exhaust all possible outcomes,
so the probability that a coin will fall on any of its two sides
is:

(3

2
p(heads or tails) = 5=3t3= 0.54+05=1

N | —
N | —

Now how about we extend our example to something
that has more that two outcomes? With six sides, a
conventional die will serve us perfectly.

Following the same logic as with the coin, the
probability to throw, say, a five is:

number of ”five” sides of a die 1
ﬁ = = — = -1
p(five) number of all sides of a die 6 0.167

The same goes for throwing a one, a two, a three, a four,
or a six:

p(one) = p(two) = p(three) = p(four) = p(five) = p(six) = % = 0.167



Simple Stats Tools 237

Or, imagine you have a bowl with ten balls inside (i.e.,
the balls have numbers from 1 to 10). The probability of
selecting each one out (without looking!) is, you guessed
it, 1 out of 10, as each number appears only once and there
are ten possible outcomes:

1

p(1) =p(2) =p@B) =... =p(10) = -5 = 0.1

While this principle applies to N of any size — so we can
increase the number of outcomes as much as we want —
note the key prerequisite for the calculations to work:
the outcomes must happen randomly. A coin toss and
a die throw are classical examples of random chance. But
when picking balls out of a bowl we have to make sure
we don’t look or we might (consciously or subconsciously)
choose one. Choosing a ball with a specific number
introduces bias and thus invalidates randomness — i.e., it
invalidates the principle of the outcomes having the same
probability. Without this principle we cannot calculate
anything: the only way to know the probability of an
outcome is, in a sense, to divide the total probability, as
it were, (i.e., 1) by the number of all possible outcomes,
giving us equal probability for each. We know the
probability of an outcome only if we know how many
outcomes are possible in total and they all have the
same probability. (Chapter 6 has more on the topic as it’s
devoted to the topic of how random selection works.)






5.2.2 Simple Probability Calculations

This section is a brief side quest which shows you how to
calculate combinations of probabilities. For example, back
to die rolling, what is the probability of throwing a two or
a four?

I’m certain you already know the answer. In this case
the “outcomes of interest” are two instead of one, so the
probability is two out of six possible outcomes:

number of outcomes we are interested in 2 1
p(two or four) = =—-=-=0.333
number of all outcomes 6 3

Or I could have just as easily simply added the two
outcomes’ individual probabilities:

number of two’s  number of four’s
p(two or four) = + =

2
=5= 0.333

| =

_|_

1
all outcomes all outcomes 6

And this is it: to combine the probabilities of two
outcomes which cannot happen at the same time (a.k.a.
disjoint eventsl), you simply have to add them together.

1. You can recognize dijoint event by the usage of "or": it's one or the other (or a
third one, etc.). When flipping one coin, you can either get heads or tails;
when you roll one die, you can get only one of its sides at a time. Hence,
we add their probabilities.
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(Recall we already used this when we started with the
probability of getting heads or tails being 1; it’s simply the
probability of getting heads (0.5) added to the probability
of getting tails (0.5)).

Do It! 5.4 Adding Probabilities

Since we already imagined a bowl with ten consecutively
numbered balls inside, let’s save ourselves the effort of
imagining a new one and reuse it again. What is the
probability of randomly selecting the #5 ball or the #7 ball
or the #9 ball out of the ten numbered balls in our bawl?

(Answer: 0.3)

On the other hand, combining probabilities of events
that can happen at the same time, or that happen one
dfter another in time (both a.k.a. independent eventsz) is
a tad more complicated and requires multiplication.

For example, the probability of throwing double two’s
when rolling two dice (or throwing a two with one die and
then immediately throwing again another two) is:

. Events are called independent when the outcome of one doesn't affect the
outcome of the other whatsoever. (Contrast this with getting heads in a coin
toss, which precludes getting tails; same with throwing any number on a
die as it precludes the other numbers from being thrown.)
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(double two's) number of two’s (1st die) o number of two’s (2nd die)
ouble two’s) = =
b all outcomes (1st die) all outcomes (2nd die)

£ x +=4-=0.028

Or, if we flip a coin three times (or three coins at the
same time), the probability of getting three tails is the
probability of getting tails once out of one coin flip (i.e.,
0.5) multiplied by the same probability and then multiplied
by the same probability again (or simply 0.53):

1

1 1
p(three tails) = 5 X g X -

1
—=—-=0.125
2 2 8

Thus the probability of flipping three tails in a row
(or three tails with three coins at the same time) is 1.25
percent.

Do it! 5.5 Multiplying Probabilities

Using the same imaginary bowl with ten consecutively
numbered balls inside as in the previous exercise, what is the
probability of randomly selecting first the #3 ball, then the
#4 ball, and then the #5 ball, if you return the selected balls
immediately back in the bowl before selecting the next one?
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(Answer: 0.001)

Now take the time to note the italicized condition at
the end of the question in the exercise you just did. It’s
important enough to necessitate its own scary-red warning,

... for Replacement When Working with

Probabilities

What would have happened had I not specified that in the
calculation in Do It! 5.5 you should consider the selected
balls being returned right after their random selection? Why,
you would have tempered with the number of all possible
outcomes, of course.

After all, after randomly selecting the first ball, unless you
imagine returning it back in the bowl, there will be only (10-1=)
9 balls left from which to make the second selection. Then after
removing the second ball, and again not returning it back in the|
bowl, you’d have left only (9-1=) 8 imaginary balls from which|
to select your third ball. Then, unlike the % X 1—10 X % you
should have used above, the calculation now becomes:
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1
(737,747 7”5 balls in a row) = T X555 0.0013

O
| =

The difference between this result and the one in the exercise
seems small but that’s only because we’re working with small|
numbers. It’s still important to understand how random selection|
with replacement differs from random selection withou]
replacement and to use the correct calculations.

Before we move on using probabilities with actual data,
you could use a bit more practice.

Do It! 5.6 Adding and Multiplying Probabilities, With and Without

Replacement

Imagine you and four of your friends (let’s call them
Adam, Bhav, Chen, and Dila) are in a class of 25 students.
Assume that it’s the first time your class meets and your
professor doesn’t know any of you; she only has the class
roster in front of her so any name she calls, she calls from
the roster at random. Answer the following questions:

» What is the probability that your professor will
call your name?
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(Answers

What is the probability that she calls on Bhav?

What is the probability that she calls on you,
then Chen, and then Dila, one after the other?
(Hint: She won’t call a name twice in a row, she
remembers that much.)

What is the probability that she calls either your
name or Adam’s?

What is the probability that she calls on any one
of your friends?

Your professor also needs to randomly pair up
students for a group assignment; what is the
probability that she selects Chen and Dila to be
in the same group?

: 0.04; 0.04; 0.000; 0.08; 0.16; 0.002)




5.2.3 Probabilities with Frequency
Tables

So far we’ve been working only with small-N examples but
there is no reason to think what you learned from coins and
dice and balls in bowls will not apply to actual, large-N
data.

We already established that probabilities are proportions,
and they can also be expressed in percentage terms.
Conveniently enough, I had the foresight to introduce
percentages (a.k.a relative frequency) as early as Section
2.3.1 (https://pressbooks.bccampus.ca/simplestats/chapter/
2-3-1-adding-percentages/). (I am that wise.) It turns out,
we can work with the percentages we find in frequency
tables as easily as we can with any of the imaginary
examples we did in the previous sections. I’ll prove my
claim with an example.

Example 5.3 Social Class (GSS 2016)

Supposedly everyone thinks they’re middle class and
Canadians are not different. And while Table 5.1 shows that
not really everyone thinks so, the majority of them do.

Table 5.1 Respondent’s Social Class (GSS 2016)
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Social class
Cumulative
Frequency Percent  Walid Percent Percent
Valid Upper class 233 1.2 1.2 1.2
Upper-middle class 3321 16.9 17.3 185
Middle class 12230 62.4 638 B2.4
Lower-middle class 2749 14.0 143 96.7
Lower class 628 32 a3 100.0
Total 19161 ar.7 100.0
Missing  Don't know 2 1.6
Refusal 118 B
Mot stated 14 A
Total 448 2.3
Total 19609 100.0

Out of all 19,161 respondents who provided a valid response
when asked about their social class, what would be the
probability of randomly selecting a middle-class person?

Going by the formula we’ve used so far, we have:

middle class N _ 12230
total N 19161

p(middle class) = = 0.638

Or, the probability of randomly selecting a middle-class
respondent from this group of people is 63.8 percentl, exactly as
the Valid Percent column tells us.

1. In Chapter 6 will will see that this is also the probability of a randomly selected
Canadian (out of all Canadians) to be middle class, and why that is. This of course
applies to all the calculations below.
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And what would be the probability of randomly selecting|
either an upper-class or an upper-middle-class person?

p(upper class or upper-middle class) = um;f;acﬁ\sf Ny up pcr'rﬁ;?ﬁl?\]dass N —

_ _233 3321 __ 3554 __
— 19161 + 19161 ~— 19161 ~— 0.185

Or, the probability of randomly selecting an upper-class or an
upper-middle-class respondent is 18.5 percent, as we can well see
in the Cumulative Percent column.

Finally, what would be the probability of randomly selecting
(with replacement) first a respondent who reported being lower|
class and then a respondent who reported being upper class?

p(lower class and upper class) = lowtegtﬁa;f N upptirt;ﬁss N

= 928 x 23— 0.033 x 0.012 = 0.0004

Or, the probability of first selecting a person who reported
being lower class and then a person who reported being upper
class is a minuscule 0.004 percent. (A quick-and-dirty|
multiplication of the valid percentages of two groups, 1.2 percent
and 3.3 percent, will give you the same result.)

See, it works! Now try it on your own.



248

Do It! 5.7 Marital Status (GSS 2016)

Look at Table 5.2 and answer the questions listed below.

Table 5.2 Respondent’s Marital Status (GSS 2016)

Marital status of the respondent

Cumulative
Frequency Percent  ‘alid Percent Percent
Walid Married 9426 481 481 481
Living common-law 1791 9.1 9.1 a7.2
Widowed 1775 9.1 9.1 66.3
Separated 635 32 32 695
Divorced 1666 85 85 78.0
Single, never married 4316 220 220 100.0

Total 19609 100.0 100.0

* What is the probability of randomly selecting a
person (out of the 19,609 people) who is living
common-law?

» What is the probability of randomly selecting a
person (out of the 19,609 people) who is either
separated or divorced?

* What is the probability of first randomly
selecting a person (out of the 19,609 people,
with replacement) who is married and then one
who is single?

(Answer: 0.091; 0.117; 0.106)
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In passing, we can also extrapolate that since
percentages and proportions are relative frequencies, and
probabilities are proportions and percentages, probability
is relative frequency too.






5.2.4 The Real Normal Distributionls a
Probability One

Now back to the normal distribution, as promised.

Recall, if you will, the distinction between discrete and
continuous variables'. Flipping coins and throwing dice
and selecting respondents from a small number of
categories are all discrete outcomes, so their probability
distributions are also discrete.

On the other hand, continuous variables (i.e., mostly
interval/ratio variables) have continuous probability
distributions. The normal distribution — whose features
we discussed at length — is one type of a continuous
probability distribution.

As well, recall that probabilities are expectations. Thus,
while some continuous random variables might have an
approximately normal observed distribution, their
probability distribution (i.e., expected in theory) is
perfectly normal — because it’s theoretical.

I said it before and it bears repeating: just like a few
coin flips can produce an unequal number of heads and
tails despite the fact that the probabilities of getting heads
or tails are both equal to 0.5 in theory, a variable can have

1. We discussed this in Section 1.5, here: https://pressbooks.bccampus.ca/

simplestats/chapter/1-5-discrete-and-continuous-variables/.
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an approximately normal frequency distribution while its
probability distribution is theoretically normal. In
short, we can expect some continuous variables
to be normally distributed. For example, we
can expect most people to be of average height or
thereabouts, and to have few people who are much
shorter or much taller, and the shortest and the
tallest to be so rare as to be exceptional.

This, however, is actually not why the normal
distribution is so important in statistics. What do we care
about “some variables” and whether their distribution is
normal or only approximately so? (Well, we do use that
information, of course, but that’s not the point here.) The
reason the normal distribution is so valuable is because
one specific very special distribution is normal — the
sampling distribution, as we will see in Chapter 6. (The
sampling distribution lies at the basis of statistical
inference.) But let’s not get ahead of ourselves.

After all this, you can see the normal distribution as
a normally distributed probability. (Or, instead of a
frequency distribution, it is a relative frequency
distribution). Thus, the area under the normal curve is
equal to 1 (or 100 percent, the whole probability), and
it can be sectioned off, as it were, to indicate various
outcomes’ probabilities. See the following set of Figures
5.6.

Figure 5.6 (A) Probability of 1 (100%)
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1
(100% probability)

Standard Deviations

Figure 5.6 (B) The Mean Gives Us Two Identical
(Symmetric) Parts of 50% Probability Each

0.5 05
(50% probability) (50% probability)

Standard Deviations

Figure 5.6 (C) 1 Standard Deviation from the Mean
Sections Off 68% Probability
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0.68
(68% probability)

Standard Deviations

Figure 5.6 (D) About 2 Standard Deviations from the
Mean Section Off 95% Probability

0.95
(95% probability)

Standard Deviations

Figure 5.6 (E) About 3 Standard Deviations from the
Mean Section Off 99% Probability
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0.99
(99% probability)

Standard Deviations

Thus, apart from what percentage of cases falls where,
now we can discuss what the probability that a case will
fall in a particular place is. Both refer to the same thing
essentially but the latter indicates the theoretical
expectation and allows us to be more precise (as
empirically cases are only approximately normally
distributed). Or, you can think of it like this: given the
properties of the normal probability distribution, we can
expect that much percentage of the data to be within that
many standard deviations from the mean.

You’ll see how the normal curve allows us to calculate
probabilities through z-values in the next and (to your
eternal relief) final section on the topic.






5.2.5 The Real Use of z-Values

Recall from Section 5.1.2
(here: https://pressbooks.bccampus.ca/simplestats/chapter/
5-1-2-the-z-value/) that any value/score can be converted
into a z-value, which tells us how far the value is from the
mean in terms of standard deviations. Now that we know
the normal curve has a bell shape reflecting probabilities
(the higher the curve at any point, the bigger the
probability), any point on the horizontal axis can be seen
as a z-value associated with a specific probability — or
rather, the probability below and the probability above the
z-value.

You can find the z-values’ probabilities listed in a
Normal Distribution Table, e.g., this
one: https://www.mathsisfun.com/data/standard-normal-
distribution-table.html. Note that since the normal
distribution is symmetric (i.e., the left side, below the
mean, is exactly the same as the right side, above the
mean), such tables usually only list probabilities between
the mean and the z-score and above the z-score. This needs
to be taken into account when calculating plrobabilities.1

Alternatively, online normal distribution calculators like

this one http://onlinestatbook.com/2/calculators/
normal dist.html give you the option to specify which

1. To make sense of that, the linked webpage also provides an interactive tool to
see all z-values with the normal curve with three options: between the mean
and z, above z, and below z.
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probability you need calculated based on a specific mean
and standard deviations.

Let’s take an example to see how this works.

Example 5.4 Hockey Player Heights

According to Hockey Graphs (REFERENCE
https://hockey-graphs.com/2015/02/19/nhl-player-size-
from-1917-18-to-2014-15-a-brief-look/), the average height
of players in the National Hockey League is about 185 cm,
with a standard deviation of about 5.3 cm’.

What is the probability that a new recruit (to your team of
choice) will be taller than 185 cm? (Suspend disbelief and
assume the recruit is randomly selected; i.e., his height (or
skill) has absolutely no bearing on his selection.)

This one is easy: 185 cm is the mean, so the probability of
a particular height being above the mean is 50 percent (equal
to the probability of a height being below the mean). (For a
visual, refer to Fig. 5.6 (B) in the previous section.)

So let’s complicate matters further: What is the
probability of the new recruit being taller than 198 cm?

2. 2014 data.
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To find it, we first need to convert the value into a z-score:

xi—,u:198—185: 13

=24
o 5.3 5.3 )

A=

where of course x;j is the original value, y is the mean,
and o is the standard deviation.

Then, using a normal distribution table (e.g., the one
linked above, https://www.mathsisfun.com/data/standard-
normal—distribution—table.htmla), we find that the probability
for a height to be above z=2.45 (i.e., above 198 cm)
corresponds to 0.71 percent, or less than 1 percent. (Of
course, if you’re curious, you’ll also know that the
probability of a new recruit to be shorter than 198 cm is
(100-0.71=) 99.29 percent.)

You can see the correspondence between the two graphs
below in Fig. 5.7, one showing the height values and the
other the z-scores. The area in which we are interested is
beyond/above 198 cm, i.e., beyond/above z=2.45.

Figure 5.7 (A) The Area Beyond 198 cm

3. Or its applet, set to "z onwards".


https://www.mathsisfun.com/data/standard-normal-distribution-table.html
https://www.mathsisfun.com/data/standard-normal-distribution-table.html
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99.29%

198 cm

165 170 175 180 185 190

Figure 5.7 (B) The Area Beyond z = 2.45

195

200

205

99.29%

0.71%

Standard Deviations
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We can also ask the probability of a team recruit being shorter
than 180 cm. Then:

Ci—u  180—185 —5
- — — 2~ _0.04
® o 5.3 5.3

Checking the normal distribution table, we find that the
probability up to/below z=-0.94 is 17.36 percent. Thus we have
found that the probability of a recruit to be shorter than 180 cm is
17.36 percent. (Alternatively, we also know that the probability of]
a recruit being taller than 180 cm is (100-17.36=) 82.65 percent.)
IAgain, see the graphs in Fig. 5.8 below.

Figure 5.8 (A) The Area Up To 180 cm

Figure 5.8 (B) The Area Up To z = -0.94
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Standard Deviations

Finally, let’s try finding the probability of a new recruit being
between 178 cm and 188 cm. In this case we need to find two|
z-scores, and add the probabilities between each of the z-scores
and the mean (i.e., above the lower score up to the mean, and
below the higher score down to the mean).

xi—,u:178—185 =7
o 5.3 9.3

zi—p _ 188185 3
o 5.3 5.3

Using a normal distribution table we find that the probability|
between z=-1.32 and the mean is 40.66 percent. The probability]
between the mean and z=0.57 is 21.57 percent. Thus, the
probability that a new recruit’s height will be between 178 cm and|
188 cm is (40.66+21.57=) 62.23 percent. See Fig. 5.9 below.

Figure 5.9 (A) The Area Between 178 cm and 188 cm (Or
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IRather Between 178 cm and 185 cm and Between 185 cm and 188‘
cm)

T T
wcm

178 cm

40.66% 21.579

L L
165 170 175 180 185 190 195 200 205

Figure 5.9 (B) The Area Between z = -1.32 and z = 0.57 (O
Rather Between z = -1.32 and 0 and Between 0 and z = 0.57)

40.66% [21.579

L
-4 -3 -2 -1 0 1 2 3 4
Standard Deviations

Time to practice on your own!
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Do It! 5.8 Test Scores

Imagine you learn that the average score on some test
you’ve taken is 110 with a standard deviation 8. You still
don’t know your score, so you’ll try to estimate some
probabilities. What is the probability that you have more
than 130? What about more than 95? Below 87? Between 90
and 115? Feel free to use the normal distribution table linked
above. (Hint: Drawing out the normal curve centered on 110
helps.)

(Answers: z=2.5, 0.62%; z=-1.88, 96.99%; z=-2.88, 0.2%; z=-2.5 and
7=0.63, 49.38% + 23.57%= 72.95%)

Now, with the concepts of probabilities and the normal
distribution under your belt, you are finally ready to delve
into statistical inference. Unfortunately for you, another
theoretical chapter looms on the horizon, next. Grit your
teeth and bear it, for the payoff (once we get to actually
applying the theory in practice) is well worth it.



Chapter 6 Sampling, the Basis
of Inference

While describing variables is all nice and good — and
useful — statistics would be rather limited if we only used
it for that. In reality, descriptive statistics, while popular
(consider sports statistics, for example), is only a relatively
tiny part of all that statistics has to offer. The true power
of statistics lies in granting us a superpower: the ability
to infer — to know (and even to predict), within reason,
things we cannot otherwise possibly know through
observation alone. This part of statistics is called inferential
statistics, and it’s based on probability theory, a branch of
mathematics of which you had a small taste in Chapter 5.

How do we know that life expectancy at birth is 82.3
years in Canada and 78.7 years in the United States
but only 51.8 years in Siera Leone (REFERENCE
World Bank, 2016)? How can we predict, with
reasonable certainty, the outcome of elections?
How can we predict how many people will die of
a particular cause in a specific country in a year?
How do we know if most Canadians approve of
immigration? Or what percentage of the Canadian
work force is employed part-time? How do we
predict how many people will be added to the
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world population in any year, or how many people
will the world have in 21007

Figure 6.1 World Population Projection 2100

World: Total Population

= median s
80% prediction interval |

- 095% prediction interval .

— observed -
*= +-0&child

60 sample trajectories

9 10 11 12 13 14 15 16 17
|
]

Population (billion)

@ e}
a
a=

T T T T T T T T T T T T T T T T
1950 1960 41970 1930 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Source: United Mations, Department of Economic and Social Affairs, Fopulation Division (2017).
World Populstion Prospects: The 2017 Revision. hiip-/esa.un.orglunpdinpp/

[https://population.un.org/wpp/Graphs/Probabilistic/
POP/TOT/]

Fig. 6.1 above might seem complicated to you now, but
soon enough you would be able to read it, as we will be
covering all the concepts listed in the legend.1

While TI’'ll leave the demography examples and
projections about the future aside (as the scope of this text
is quite more modest), let’s take an example from closer
to home and, say, talk about the attitudes to immigration

1. As it's somewhat difficult to see it on the graph, the answer to the last
question -- what is the projected population of the world for 2100? -- is
11.2 bln. people (REFERENCE UN Population Division, 2017). We can do
all that, and more, courtesy of inferential statistics.
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in Canada. How do we know if Canadians approve of
immigration? What do we mean when we even say
“Canadians”? If we say “Canadians approve of
immigration,” does that mean all Canadians do? If not,
how many Canadians approve and how many disapprove?

To answer these questions we need to introduce more
vocabulary than we have been using so far; vocabulary that
is generally used in all sorts of research, both quantitative
and qualitative, and not pertaining to statistics per se,
though very relevant to it. In short, we have to start
differentiating between a sample and a population (a term
that has a more general meaning than the way we use it in
everyday life), and we need to talk about sampling.

Following that, I’ll explain the concept of randomness in
greater detail, which, coupled with what you now know
about probability, will help us get to the sampling
distribution. With that and the Central Limit Theorem,
we’ll be ready. Then, and only then, we’ll be able to answer
questions like How do we know if Canadians approve of
immigration? along with any other question we might have
about things/entities about which we cannot directly obtain
information.

But I am getting too far ahead and too fast in my
overview which, as any abstract talk, easily gets confusing.
Let’s take it slowly from the beginning: samples and
populations in the next section, and build from there. Be
forewarned, however: what follows is indeed quite a bit
theoretical and abstract, I’m afraid. (Yes, more than the last
chapter, sorry.) Believe me, I wouldn’t do this to you if it
weren’t necessary.






6.1 Populations and Samples

Before we start, yet another word of warning: what
follows is only a brief overview of the topic of sampling
and types of sampling. What I offer is enough in terms
of a necessary background to statistical inference
— but the main learning objective
here is inference, not everything there is to know
about sampling methods and their intricacies.
Thus, if this is the first time you encounter the
concept, you would be better served to read a
thorough introduction on sampling and the
benefits and downsides of the different sampling
methods in virtually any one of the research
methods textbooks you can find as that would give
a more comprehensive treatment that I do here.

With that in mind, onward to the preliminaries:
populations and samples.

In the introduction to this chapter, I asked a question: Do
Canadians approve of immigration? How, do you think,
can we go about answering it?

Presumably, the simplest way to investigate this would
be t