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Preface

I have dedicated this book to my statistics students,
former and future, all of them. Future, because it’s all for
them; they’ll be the ones making use of it.

Former, because over the years they have been showing
me (and, in many cases, telling me in no uncertain terms
and with great emotion) how their first experience with
statistics went. Because, somehow, along the way they
have also taught me how to teach statistics to them. Not to a
mass of generalized “undergraduate social science students
in an introductory stats class,” with my initial preconceived
idea of these students’ abilities, prior knowledge and needs,
no — but to the actual them, the very real people I see in
my classes. During the almost ten years of “SOCI
2365 Introduction to Social Research Statistics”
instruction at Kwantlen Polytechnic University, I
have learned how best to approach teaching stats
to my students, in accordance to their actual
academic needs and their actual academic abilities.

So who are the students in my classes? (Forgive me,
now I’ll have to generalize after all.) The typical student in
my introductory stats class tends to be there because they
have to (the course is compulsory for our major, along with
a handful of others); is majoring sociology; is likely “not
very good with math” and, therefore, has delayed taking
the course as much as possible because, understandably,
they are terrified. I could have used “she is” instead of the
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gender-neutral “they are”– I typically have more female
than male students. That is not to say that students not
fitting this profile don’t take up my class; they do, and
they’re not few. This example simply gives me the
opportunity to give you a taste of what the book will be
about: statistics and sociology.

See, “tends to”, “likely”, and “on average” are all terms
with specific statistical meaning (as much as they can be
misused and misinterpreted in conventional, everyday
usage) — but you’ll have to go further into the book for
that. However, I can easily tell you that I also have
students, many of them, who are not majoring in the social
sciences, are in their second year (as they are supposed
to), are great with math, and who find the course easy.
Of course, many of my students are also male. Obviously,
none of what I just said contradicts the description of my
typical student (and if it’s not obvious, you definitely need
this book). The “typical student” description is simply
based on a brief statistical profile of an average class I
usually have. The various characteristics I listed may or
may not be statistically associated with each other, not
to mention anything about causal association. (Were you
perhaps thinking that, say, women in my classes are the
ones “not good with math” while men “find it easy”? I
actually never said, not even implied, that. But now you
see how easily statistical information can be misinterpreted
and how statements based on statistical information can be
taken to mean more than they actually do.)

Why sociology though? The description above can lead
us to a few questions (i.e., we can formulate hypotheses),
like, are students majoring sociology (or other social
sciences, except economics) really more likely to say they
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are “not good at math” than, say, students in the natural
sciences? For that matter, are women on average more
likely to major in social sciences and humanities than in
the STEM (science, technology, engineering, and
mathematics) fields? The answers to these questions can
be found through statistical analysis (both are “yes” by
the way) but the explanations (or theories) — i.e.,
why we observe the relationships between gender,
major, and perceived math ability — are
profoundly sociological.

In a similar vein, throughout this book I will
bring up questions of sociological relevance, I will
refer to sociological theories, research and
findings, I will give sociological examples, and
ultimately I will use sociological data.

Why does that matter? Stats is stats, right?..
Hmm, yes, and no — and in the case of applied
statistics, as the current text is, rather no. Yes; if
you go by the table of contents, you’ll see what
one typically sees in a generic introductory
statistics book (for social scientists); statistics is a
set of tools, and it can be presented as generically
and as generally as possible. However, like any
tool, its value is higher the more specialized it is
(you can take an ailing tooth out with a hammer
yet arguably it’s better to use specialized dental
equipment). Like any tool, it also matters what it is
used for and how.

In other words, in this book the statistics
instruction will be specialized: from a sociologist
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(granted, herself specialized in social statistics) for
sociologists. (If you are neither a sociology
student or sociology instructor, you can take this as
sort of a caveat emptor clause: buyer beware.) To
the extent that sociology itself is a rather broad discipline
and its use of statistics is equally as broad, one could use
the book as an introduction to social science statistics.
However, I do not go out of my way to engage in statistical
instruments more frequently used in, say, criminology or
psychology (i.e., small-size court case data, or experiment
data, etc.).

I’ll give you a different example: If you open an
introductory psychology textbook, you will likely find a
chapter on Sexuality and Gender. Yet “gender” and
“sexuality” are also huge topics in sociology, and any
introductory sociology textbook also has a chapter on
them. There will be some overlap in the treatment of the
topic by the two disciplines, but you’d be wrong to expect
everything — or even most — to be the same.

Simply put, psychologists and sociologists generally
tend to ask different questions, to approach a topic
differently, to have different concerns, to have different
preferred methods for collecting and analyzing
(quantitative) data, and to even reach different conclusions,
and to therefore offer different theories (as one would
expect from two separate disciplines). Why wouldn’t we
want specialized statistics for each discipline?

Think of this book as a crash course in statistics. As
such, I make these promises:

1) I promise to include only what is absolutely
necessary.
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2) I promise to skip on fluff and padding and any other
material that is not strictly relevant to the exposition.

3) I promise to avoid repetitiveness as much as possible
and instead explain everything only once but slowly and
patiently.

Given my promise, this book provides a necessarily brief
introduction to statistics. It is also a conventional
introduction in that, as almost all such books, it does not
include all there is about some of the more complex
concepts, i.e., it is not entirely truthful.

Don’t get alarmed by this admission. Rather, think of
this introduction as your first date with statistics. No one
tells all and bares all their secrets on a first date, do they?
(…Or it might be their last.) Some things need to be
revealed at a later time, once you’ve come to know your
love interest better. Statistics is like that too. Some
advanced concepts and relatively new developments in the
discipline would only make sense to you only after the
initial period of getting to know it has passed; then you can
learn more “truthfully” and understand in what way and
why the tools and concepts were simplified when they were
first introduced to you.

And if you never get to “a second date” with statistics,
never fear. What you will learn from this brief introduction
will be quite practical “in real life” and still will serve
you well. (You’ll just know there is more to what you’ve
learned — but that’s the case with everything, no?) You
will learn the basics of summarizing data and extracting
useful information out of it; how data can be manipulated
and how and why not to do that; how and when you can
generalize from data and the limits to your generalizations;
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what role probability and uncertainty play in statistics; how
to interpret basic statistical information; what to look for
in existing statistical reports; and how to execute a basic
statistics report on your own. You will learn how to talk
about statistics, and how to write about statistics. Finally,
you will learn where to go from here, should you ever feel
like going on a second date with statistics after all.

Given the purposefully streamlined content, some will
not like this book. If you are an instructor (or a student)
looking for theoretically comprehensive and expansive
introductory treatment of statistics, this is not the book for
you — but you also know many such books exist, freely
available online or otherwise. Statisticians will likely be
severely displeased by some of the things missing here,
as compared to a truly conventional introductory statistics
text.

But this indeed is why this book exists at all: to only
include what I’ve discovered my students need in order to
have a basic working knowledge about the most useful and
most frequently used simple stats tools.
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Introduction

This book is intended to be your “first date” with
statistics. It might end up as your last date with statistics
too, so I’ll try to make the most of it while given the
chance.

The book is organized as follows. Applied statistics is
about data. Chapters 1 and 2 introduce you to concepts
like variables and data sets and the type of information
collected wherein, and generally cover all the preliminaries
you need to know in order to start ‘doing’ statistics.
Chapters 3 and 4 follow with the ways we can summarize
and describe data. Altogether, this first part of the book is
usually called descriptive statistics; it allows us to learn
things from and about data that in many cases we cannot
readily see just from looking at it.

I have devoted Chapters 5 and 6 to some theoretical
concepts which are necessary to continue with the rest of
the book, i.e, the part usually referred to as inferential
statistics. You see, statistics would have a rather limited
value if all it allowed us to do were to summarize
or describe data (as useful as that is). The real power of
statistics comes from prediction and estimation (i.e.,
inference), the subjects of the latter part of the book. In
Chapters 7 through 10 you will learn how and why we
can know things that go beyond the actual data we have;
how likely they are and how confident we can be in this
newfound knowledge; what it means for variables to be
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statistically associated, and finally, whether we can identify
causes and effects in the social world with any amount of
certainty.

At this point, when promising all this to my students I
usually feel like a charlatan at a county fair: Come one,
come all, I’ll look at my crystal ball and the palm of your
hand and tell you things I cannot possibly know. After all,
yes, alright, describing data you can see is one thing — but
this inference thing?.. However, the more you learn about
statistics and statistical tools and methods, the less (and
less, and less) it will feel like charlatanry (I promise). Like
many things in science, it only looks like charlatanry at first
blush because you lack the knowledge of the principles
that make the seemingly impossible, possible. In reality,
what you will be learning in this book is not even all that
complicated. If you don’t believe me yet, check it yourself
— just promise to go consecutively and patiently through
all the parts until the end — no skipping!

So, ready to go?
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Chapter 1 Variables and Their

Measurement

Naturally, we start with preliminaries. Before you learn
the tools of any trade, you need to learn about your subject
matter, i.e., on what you will be applying those tools. In
this chapter I introduce you to the “building blocks” of
statistics: the concept of variables and some related
vocabulary. You will learn what variables are and about
their levels of measurement (what nominal, ordinal,
interval, and ratio scales are); how to determine the level
of measurement of an actual existing variable and whether
you should treat variables as discrete or as continuous for
the purposes of statistical analysis.

Think of this chapter as the one establishing the main
characters of a fictional story — the characters might seem
too many at first, appearing too fast one after the other, so
initially it might be hard to keep track of them and who is
who and who does what. In time, however, the more you
read about them (and sometimes going back to re-read key
passages) they become familiar to you; then and only then
you can comfortably follow their story.
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You can think of a variable as a characteristic that
varies across individual elements. For example, hair
colour varies across individuals: black, blonde, brown, red,
grey (or practically any colour if we include the wonders of
hair dying). If we go by other physical characteristics, we
can easily see that height, weight, body type, skin colour,
age, etc. are all variables.

Then what about social/economic characteristics like
level of education, annual income, occupation,
employment, citizenship, marital status, political party
affiliation, union membership, participation in sports (to
name a few)…? All variables. Or, what about personal
opinions and preferences? You might love chocolate a lot
but your friend might not care for it; another friend might
like it but just a little… Your friend might try to convince
you that classical music is great but you might find it
terribly boring, preferring rock instead. You might be a
dog person and might frequently extol the virtues of dogs
in comparison to cats, to the dismay of your cat-loving
significant other. You might think that legalizing marijuana
in Canada was the right decision but your parents might
feel it was a profound mistake on part of the government.
Clearly, opinions and preferences vary, so we can add
‘opinion on marijuana legalization’, ‘liking of chocolate’,
‘preferred music genre to listen to’, and ‘favourite pet
animal‘ to our ever growing list of variables.

So far, you might decide that variables only apply to
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people: after all, all the examples mentioned above discuss
characteristics that vary across human beings. However,
this is absolutely not the case, as we can just as easily
see that other things can have varying characteristics. For
example, universities can differ in their student enrollment
numbers, instructor-to-student ratios, type of degrees
awarded, geographical location, source of funding,
presence of medical school, percentage of international
students, etc. Countries vary on population size, climate,
geographical/geopolitical location, language, GDP (gross
domestic product), level of human development, presence
of minority groups, immigration (and emigration) rates,
fertility and mortality rates, access to universal healthcare,
average education level, age of majority, freedom of press,
type of government… you get the picture. Clearly,
variables apply to elements of anything that may be
compared on characteristics which vary across
these elements (hence the somewhat clumsy
definition I started with).

Researchers refer to units of analysis when they
want to specify the elements they study: When we
have information about characteristics of people,
we say that the unit of analysis is “individual”.
When instead of people, we study countries, the
unit of analysis is “country”, and so on.
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1.2 Concepts, Measurement, and

Operationalization

You might be wondering why we even need to introduce
a concept such as variables. Can’t we simply call them
characteristics, if that’s what they are? The short answer
is that we use the language of variables when we engage
in formal research, but the reason is not solely scientific
jargon. Variables, as opposed to characteristics, imply
measurement.

You see, sociologists and other social scientists study
concepts (i.e., ideas, notions) that are more often than not
abstract. If I say “I want to know if the average height
of Canadians has changed over time”, it’s easy for you
to suggest that I first collect information about people’s
heights (perhaps actually measure them, if I don’t trust
self-reports). By doing that, you might not realize it but
what you have done is actually offer a way to measure
a concept, which is what we call with the mouthful of
a word operationalization. In other words, you have
operationalized the abstract concept (height of Canadians)
through the actual, physical measurement of individuals’
heights (in centimeters or in inches) in real life.

So operationalization is that easy, right? Unfortunately,
no, not really.

What if, instead of average height of Canadians, I had
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wanted to study how poverty has changed in Canada over
time? Or homelessness? How about income? Or people’s
attitudes to immigration? Or their religiosity? What about
if I wanted to study self-esteem of adolescents? Or social
status among Canadian university students? Or bullying in
high school?

I’m sure you have no trouble understanding the concepts
as abstract ideas — but how do you measure
them?

1There are various ways one can measure
concepts. At the most fundamental level, this
depends on what the chosen method of inquiry
(or, research) is, qualitative or quantitative. We
shouldn't reify the boundary between quantitative
and qualitatve methods, however. Many scientists
mix their methods, employing both methods in
a single study with considerable success. Social
scientists use statistics predominantly when they
have chosen a quantitative method of collecting
and analyzing data, so here we'll focus on the
quantitative operationalization of concepts.

Do it! 1.1 Measuring Homelessness

Imagine you really do want to study the prevalence of
homelessness in your city (or any of the abstract concepts
mentioned above). Before you decide how to collect

1.
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information about it, you have to choose about what
exactly you will be gathering information. How are you
going to define being homeless in order to measure
homelessness? In a word, how are you going to
operationalize homelessness? Make a list of possible
definitions. What are the various aspects of homelessness,
which you may choose to consider in your definition or not,
that make defining homelessness difficult?

All in all, operationalizing a concept boils down to
choosing a working (i.e., operational), measurable
definition of a concept within a given study. Most concepts
can be (and regularly are) defined differently by different
researchers. What matters is that the definition of any
concept is provided and is used consistently within each
individual study.

If the Do It! exercise above seems too abstract still,
perhaps one easier way to understand the
operationalization of concepts into measurable variables
with concrete definitions is to imagine a survey question
about what you want to study. Sometimes one such
question can provide the operationalization/definition of
the concept under study. Other times a single question is
not enough and a set of questions can help a researcher
measure what they want to study.

Let’s say you want to study income (perhaps as a part
of a larger study on poverty). You want to ask people
about their income but how exactly? Will you be asking
about personal or household income? Are there types of
income you have in mind — from salary, from rent, from
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interest, etc.? Is it weekly, bi-monthly, or annual income?
Is it income before or after taxes? For that matter, do
you mean only taxable income? Furthermore, what kind of
answers would you accept? Will the respondents provide
an exact number? Or will you provide a set of multiple-
choice answers from which the respondents will choose?

For example, you can measure income in a hypothetical
study (through a survey question) like this: “What is your
household’s annual after-tax income (from any source)?”
This means that you have chosen to operationalize the
abstract concept income through the specific, measurable
variable annual household after-tax income.

The types of possible answers you choose to accept for
the question are also part of the measurement. Example
1.1. below offers three options to operationalize income.

Example 1.1. Operationalizing Income

Q1. What is your household’s annual after-tax income (from
any source)?

a) $0 – $50,000;

b) $50,001 – $100,000;

c) $100,001 – $150,000;

d) $150,001 – $200,000;

e) $200,001 or more;
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Q2. Is your annual household after-tax income (from any
source) less than $50,000?

a) Yes;

b) No.

Q3. What is your annual household after-tax income (from any
source)?

…. [Any number provided by the respondent will be recorded.]

The multiple choices provided in Q1 in the example
above can contain any number of categories to choose
from. I have chosen to go by 50 thousand dollars to create
the categories, but I could have done so by as little as,
say, five thousand dollars to as much as 500 thousand
dollars (and I would have ended with a different number of
possible answers). If we need the actual dollar amount of
the income reported by each respondent, we’ll chose to ask
Q3.

The way we choose to create categories or not depends
on the type of answers that will be suitable for our study
and what type of information we want. As well, Q2 offers
only two possible answers, yes or no. If the relevant
information for our study is whether household annual
income is below or above $50,000 (say, because the
average such income has already been established as
$50,000), Q2 would be the way to go.

Keep in mind that how a variable is operationalized
depends not only on the researcher’s goals and needs (and
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practical considerations like time and money) — but also
on their personal beliefs and preferences, the time period
in which they live/d and work/ed, etc. Operationalizing
concepts considered controversial at a specific time and
place can be quite political and itself become a controversy.
Consider the following example.

Example 1.2. Operationalzing Gender

It should come as not surprise to anyone studying sociology
that how people operationalize gender has changed over
time. Until recently, the conventional operationalization
went something like this:

Q1. Are you…?

a) Male

b) Female

With advances in the study of gender and sexuality, over time
our understanding of gender changed. Nowadays you are far
more likely to see an operationalization similar to the following
style of the American Sociological Association when collecting
information on their members:

Q2. What is your gender? Select up to two.
a) Female
b) Male
c) Transgender female/Transgender woman
d) Transgender male/Transgender man
e) Gender queer/Gender non-conforming
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f) Different identity (please specify) ……
g) Prefer not to state

In countries like Canada, using Q1 nowadays would might be
considered too restrictive for many purposes, and also offensive
by some. On the other hand, in some countries (like in Eastern
Europe) choosing to go with Q2 might be seen as quite
controversial and as political activism. Even in Canada the switch
to more inclusive gender oprationalization is gradual and quite
recent. As you will see later in the book, datasets collected in the
past typically use a binary operationalization of gender.

Before we continue with measurement in the next
section, here is a practical tip when working with SPSS.

SPSS Tip 1.1. Exploring How Variables in a Dataset Have Been
Operationalized

When exploring an existing dataset in SPSS (more on that in
Chapter 2), you can see a variable’s categories/values in the
Values column in Data View. (You can switch between Data
View and Variable View by clicking on their respective tabs
at the bottom of your primary data window.) Clicking on a
variable’s cell in the Values column will open a new window
listing all the categories/values through which the variable
has been operationalized.
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1.3 Levels of Measurement

Now that you know there are different ways to
operationalize concepts, let me introduce another term in
respect to variables: level of measurement. Each and every
variable has a level of measurement. Knowing, or being
able to identify, the level of measurement of a variable tells
us how it has been operationalized and vice versa: knowing
how an existing variable has been operationalized gives us
information about its level of measurement.

More importantly, however, knowing and being able to
identify a variables’s level of measurement allows us to
determine what we can do with that variable in terms
of statistical methods and procedures. This last point is
key to doing statistical analysis in a correct and meaningful
way. The flip side is also true: misidentifying a variable’s
level of measurement will inevitably end in erroneous
analysis and conclusions (that is, if the analysis can even
be performed, as in many cases the statistical software will
give an error message).

1

Why is the level of measurement so important for
statistical analysis?

Simply put, variables are not created equal when it

1. The more dangerous -- and quite frequent -- scenario, however, is when the

software will execute the analysis and produce results. In that case, without

an error message to warn them, the researchers would trust their analysis

and results without realizing both are bogus.
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comes to levels of measurement. Due to differences in the
nature of the information contained within, you can do very
little with some variables in terms of analysis while
you can do a whole lot more with others.

Do it! 1.2. Measuring Different Types of Variables

Imagine you have to analyze the following (individual-level)
variables:

a) religious affiliation,

b) educational attainment,

c) exam test scores,

d) age.

Think of what type of information would be contained
within the categories of each of the four variables above. (It
might help to imagine the possible answers respondents —
say, university students — could give if asked questionnaire
questions about each.)

What more (beyond collecting it), if anything, can you
do with that information? For example, can you say that
one answer is more/bigger than another? Can you identify
answers as different or the same as others? Can you do some
calculations with the answers?

The exercise above gives you a clue: there are
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four levels of measurement. They are called nominal,
ordinal, interval, and ratio. Each and every variable has
only one level of measurement once it’s operationalized.

2

A variable’s level of measurement is sometimes also called
its measurement scale.

The following sub-sections provide details about each
measurement scales.

2. Recall, however, that sometimes -- though not always -- one and the same

variable can be operationalized in different ways. These different ways can

sometimes be at different levels of measurement, depending on the type of

information we want to have.
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1.3.1 Nominal Variables

As the name of this level of measurement implies, the
information contained in the categories of a nominal-scale
variable is solely their… well, name. Think about the
religious affiliation variable from the Do it! 1.2. exercise.
You have already probably imagined people’s possible
affiliations in terms of religion (i.e., what religion they
subscribe to, if any) as something like Muslim, Jewish,
Christian, Sikh, Hindu, Buddhist, not religious — though
likely (and depending on your own religious affiliation) not
in this particular order.

1

Of course, I could have just as easily listed the possible
categories (or “questionnaire answers”) as Christian,
Muslim, Jewish, Buddhist, Hindu, Sikh, not religious. Or,
as Sikh, not religious, Buddhist, Hindu, Jewish, Muslim,
Christian. Or, as… virtually any possible variation in the
ordering of the list.

In other words, the information we have about religious
affiliation is simply in identifying the different categories,
and that is all. We cannot do much more than count the
different answers and specify what they are. We cannot

1. It's also likely that these general categories might have been

disaggregated to list variations/denominations, e.g. Catholic and

Protestant instead of simply Christian, or Shia and Sunni instead of simply

Muslim, etc. For simplicity's sake, I choose to use the most general

religious categories in the example.
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even use some inherent order to them, as they are only that,
names.

2

When researchers study religious affiliation in real life,
they usually list the groups' names by the size of the
religious group/popularity of a religion in their area. For
example, in the Americas and Europe the listings usually
start with Christian. In India, one can arguably assume they
start with Hindu, etc. This type of ordering by size is still
purposefully imposed, not an inherent one.

Do it! 1.3. Nominal Variables

Try to come up with at least three different nominal
variables. Can you explain why they are nominal? Try to
defend your choice in identifying the scale for these
variables as nominal.

2. Of course, we could order the categories alphabetically -- just like you can

order pretty much anything alphabetically. That would be an arbitrary

decision, however, not an inherent order contained in the names (like that

in small to big, left to right, slow to fast, less to more, etc.).
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1.3.2 Ordinal Variables

As with the nominal scale, the name of this scale is
indicative of it’s defining feature: an order. That is, the
categories of an ordinal variable cannot just be ordered
arbitrarily in any other way, like we can with nominal
variables, no: the categories of any ordinal variable have
an inherent order to them. Listing the categories of an
ordinal variable differently would violate the intrinsic logic
of their order and would make little to no sense; as well, we
would lose the information contained in their order.

Think back to the variable educational attainment from
the Do It! 1.2. exercise earlier. Educational attainment is
usually measured by the educational degrees attained by
an individual, so if you imagined the categories
being something like no degree, secondary/high
school, Associate’s, Bachelor’s, Master’s,
doctorate/PhD you are probably not alone. That is,
chances are, most, if not everyone, would come up
with a list in that particular order. Why? Because,
I can hear you explaining, no degree is the lowest
formal educational attainment one can have; it’s
clearly less than having finished secondary/high
school, which in turn is less than having a college
degree, which again is clearly less than achieving
a Master’s degree, while, finally, a PhD is the
highest degree one can get in academia. Arbitrarily
switching the categories in educational
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attainment to be listed as, say, Associate’s,
Master’s, no degree, PhD, Bachelor’s makes little
(rather, no) sense, and worse, it deprives us of
the information about there being an intrinsically
ascending order in the obtaining of the degrees
(as one can only have a doctorate if they had
previously finished college, which ca only be done
after secondary/high school).

Note that having an intrinsic order (in this case, from
less to more), however, is a necessary but not a sufficient
condition to identify an ordinal scale. There is an
additional requirement: a variable is ordinal only when
the categories do not have a precise (numerical) value.
In other words, while we know that a Bachelor’s degree is
more than an Associate’s degree, we don’t know how much
more. Having a PhD is more than a Master’s degree, but
again, we don’t know by how much. The same goes for any
of the categories. We know the order, but not the precise
“distance” between one category and another. As well, the
“distance” between the first category and the second one
might be unequal (while still unknown) to the “distance”
between the second category and the third, and so on. It is
not the size of the distance that matters here, only that the
distance exists and that a category is clearly less/more (or
bigger/smaller, nearer/farther, etc.) than another.

1

1. You might be tempted to measure the "distance" between the categories in

educational attainment in terms of years. For example, you could say that

the "distance" between secondary/high school and Associate's is two years,

or that between Associate's and Bachelor's is another two years, etc. This

would still be an imprecise measurement, however, because different

people take different times to accomplish their degrees, not to mention that

there is no way to measure the difference between no degree and

secondary/high school (as no degree can mean anything between no
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To summarize: As you can see from this example, the
key feature of ordinal variables is the intrinsic logical
ordering of their categories, a logic that would be lost if
we were to reorder them in any other way. As well, this
tells you that ordinal variables contain more information in
comparison to nominal variables: namely, the ordering of
the ordinal variable’s categories. Ordering the categories of
a variable is an additional action you can do above simply
listing them. Finally, the general order is the only additional
information: the “distances” between the categories could
vary and should not be measurable/ quantifiable. If the
latter is not the case, you are already moving into interval/
ratio scales territory.

Do It! 1.4. Ordinal Variables

With the risk of being repetitive, I’ll ask that you try to
think of three different ordinal variables. Can you explain
why they should be classified as ordinal? Remember to
make sure that the internal logical ordering of the categories
of your variables is of the “more/less” type rather than
involving precise measurement.

education -- still a sad reality in many countries -- to dropping out of school

a year before graduation. As well, doctoral studies vary enormously in

duration depending not only on the chosen discipline but also on the

country, etc. In short, measuring the "distance" in educational attainment

categories in years would vary far too much on a case by case basis to be

meaningful in any way. Note, however, that you could operationalize a

variable years of schooling measured in years but that would not be the

same variable anymore (nor would it be an ordinal variable).
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1.3.3 Interval and Ratio Variables

Going back to the original Do It! 1.2. exercise, I am sure
that you found imagining the categories of exam test scores
and age the easiest, as they would be simply numbers.
Perhaps something like 30, 65, 72, 88, 95, etc.… points
out of 100 in the former case (though I know you don’t
want to imagine a test score of 30 on any exam!), and,
if we’re imagining college students, something like 18,
19, 20, 22, 23, 24, etc…. years in the latter. Notice the
major difference from the categories of the nominal and
ordinal variables we discussed above: now we are working
with numbers. Not only are the exam scores and age
categories comprised of numbers (as opposed to words) but
they are also ordered in measurable “distances”. In other
words, there is a stable/unchangeable unit by which
the “distance” between any two categories can be
measured: a point in the exam scores case and a year in
the age case. This unit is called unit of measurement for
the interval and ratio variables.

Wait a second, you’re probably thinking now — the
exam scores above lists 30, 65, 72… as categories, and a
quick calculation reveals that the “distance” between 30
and 65 is thirty-five points, while the “distance” between
65 and 72 is only seven points. Thirty-five is clearly much
bigger (five times bigger to be precise) than seven: isn’t
that as arbitrary as the “distances” across the educational
attainment categories above? Well, no. The difference is
that for interval and ratio variables the information
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contained in the categories and their “distances” from each
other is not simply of the more/less, bigger/smaller, left/
right, etc. kind but is readily quantifiable and measurable
in precise, stable units. In practical terms, you can
specify exactly how much smaller/bigger a category is than
another (i.e., 65 points is thirty-five points more than 30
points; a 22 years-old is two years older than a 20 year-
old) — unlike with ordinal variables, where we know a
Bachelor’s is a bigger educational attainment than
secondary/high school but there is no agreed unit to
measure the “distance” precisely (as it’s neither measured
in years, not in numbers of degrees).

Furthermore, my exam scores example lists 30, 65, 72…
but I simply chose these numbers at random: I could have
just as easily listed 25, 45, 70…, or 12, 54, 69…, etc. The
point here is that one can have any number between 0
and 100 (in a conventional 100-point exam) as a potential
score, or be a college student of any potential age (say,
more than 5 years old),

1 while the categories of an
ordinal variable are fixed, or set, during
operationalization (to a usually relatively small
number), and cannot potentially be anything else
(unless you operationalize the variable in a
different way, which would result in a new
variable).

Finally, a happy corollary to the fact that interval and

1. You might think I'm joking but do look Michael Kearney up. He

graduated high school at age 6 and had earned his Bachelor's

degree at age 10, this making him the youngest university

graduate on record. (*January 15, 1995|RICHARD

KAHLENBERG | The LA Times)
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ratio variables’ categories are comprised of numbers is
our ability to perform mathematical operations on them,
beyond simple comparisons — something we can do
neither with nominal, nor with ordinal variables. (Exactly
what kind of mathematical operations we can do with
interval and ratio variables you’ll see in Chapter 2.)

To summarize, interval and ratio variables have
three defining features: 1) their categories (typically
called values) are comprised of numbers, 2) the
categories follow an order inherent in the fact that there
is a measurable, unit-based scale, so that we can speak
of a variable’s units of measurement, and 3) we can
perform mathematical operations on the values (that
the categories are).

Wait though… Why did I say that interval and ratio
variables are different when I keep defining them together,
and in the same way? Not to worry: the difference comes
next, as I saved what students usually find the trickiest part
for last.

With the risk of oversimplification (and, inevitably,
exaggeration), interval scales are “made-up” while ratio
scales are “real”. The difference is purely conceptual: you
have to know whether the scale o which the variable is
measured is “artificially designed”, as it were, or whether
it exists as a some sort of “objective reality”. A rule-of-
thumb advise on differentiating them that you may
encounter is the “existence of a true zero”: ratio variables
have a true zero while interval variables do not. (Clear
as mud, eh? I did say it’s tricky.)
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Examples usually help make this conundrum seem less
of a conundrum.

Example 1.3. Interval Variables: Temperature

Let’s take the classic example of an interval-scale
variable, temperature. If you go by centigrade, 0°C is, I’m
sure you know, the temperature at which water freezes. If
you go by Fahrenheit, however, 0°F is… well, nothing in
particular; it’s just equal to about -18°C. On the other
hand, if you are more scientifically-minded,
you might go by Kelvin, where 0°K is the
coldest-cold-and-nothing-could-ever -be-
colder temperature (a.k.a., absolute zero),
equal to -273.15°C, or -459.67°F.

Have you ever wondered why there are
three scales of measuring temperature? From
where did they come from? They were
“artificially designed” (or you might say,
invented) by people: Anders Celsius, Daniel
Fahrenheit, and Lord Kelvin were the
scientists who came up with them and whose
names we use to indicate in which scale we
have chosen to report temperature. Not only is
a temperature of 0 degrees different in all three
systems, they don’t indicate zero/nothing/
absence of something.2does indicate absence

2. Well, 0°K
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of all energy, a temperature where all atoms
stop moving, but it is still not an absence of
temperature. Temperatures of 0°C or 0°F do
not indicate an absence of temperature or no
temperature whatsoever, they are purposefully
(and one could say, arbitrarily) chosen by
people as a zero-point on an human-made
scale.

In a similar vein, a score of 0 points on an exam doesn’t
typically mean a complete absence of or no knowledge on
a subject whatsoever — such a score usually simply means
that the test-taker did not perform well on that particular
test. Arguably, an easier test on the subject could be
designed, and the test-taker would likely score more points.

Contrast this to our other variable from the original Do
it! 1.2. exercise, age. Age of 0 years means exactly that –
that we are talking about an infant who hasn’t yet reached
their first birthday, and thus has completed 0 years of life
(pardon the awkward phrasing).

3

3. Of course, we measure babies' ages in smaller
units, like months, or weeks, or even days and
hours -- just like we can measure any person's
precise age that way. However, we usually don't
do it for anyone who's not an infant, so I'll leave
it at that. Or consider a variable for, say, income: an income of $0

means the complete absence of income on dollars, i.e., no income. Both age

and income are not “made up”: they exist regardless of how we measure

them, and a zero on either indicates an absence of something (time in the

former case, dollars in the latter). Physical attributes like height and weight

work the same way.

Simple Stats Tools 29



Do It! 1.5. Interval/Ratio Variables

You saw it coming: Try to come up with three interval/
ratio variables (in addition to the ones I listed above). Try
to differentiate between the interval and ratio scales and to
identify which variable goes with each. Make sure you can
explain what makes each variable interval- or ratio-scale.
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1.4 Level of Measurement and

Operationalization Considerations

All in all, the difference between interval and ratio
variables exists more on a conceptual level rather than
in practical terms. As such, they are frequently grouped
together in an interval/ratio category and treated the same
for the purposes of statistical analysis. At this stage, while
it’s preferable to know the difference between them, it is
still far more important to be able to differentiate interval/
ratio variables from nominal and ordinal ones.

Here is proof how tricky identifying the correct level of
measurement of a variable can be.

Watch Out!! #1 … for Likert Scales

Most likely, at some point you have encountered survey
questions that read something like this:

“On a scale of 1 to 5, where 1 is the lowest and 5 is
the highest, how much do you like …?”
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… let’s say, “chocolate”. It is possible that you were
presented with the numbers from 1 to 5 to choose from,
or that they were accompanied with phrasing of
the strongly dislike, dislike, neither like nor dislike,
like, strongly like type. Now that you know about levels
of measurement, as what scale would you classify the
variable liking of chocolate: nominal, ordinal, or
interval/ratio?

Considering that the answers from which one can
choose are listed as numbers, many students are
tempted to classify such a variable is interval. However,
the strongly dislike, dislike, neither like nor dislike,
like, strongly like part should give you more clues. Ask
yourself: is there a uniform unit that allows us to
precisely measure the “distance” between dislike and
strongly dislike? Or between like and neither like nor
dislike? Is it even the same “distance”? We would be
hard-pressed to say “yes” to any of these questions.
We know that people who like chocolate like it more
than those who neither like it nor dislike it but we
don’t know exactly how much more. The numbers are
there to make analyzing the responses easier, and as a
sort of “code” for the ranking of preferences regarding
chocolate, but substantively the ranking contains only
order, not precise measurement of these preferences.

Variables such as these are called Likert scales. As
I just explained, they are ordinal by constitution
(although, in some special cases — for example, when
the possible responses are not five but, say, ten or more
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— they can be treated as interval for purposes of
analysis). Researchers use them usually to capture
people’s preferences — but preferences are generally
“fuzzy” and not fully-defined; they do not come with
a build-in, measurable, uniform unit scale, despite the
fact that it seems like the numbers represent one such
scale.

In Chapter 2 you will see that numbers can be used
to represent a lot more than actual numbers. (And you
were just starting to think identifying the level of
measurement is easy!)

A further word of caution: the examples I used in this
chapter might leave you with the impression that you can
simply hear the name of a variable and you should be able
to identify its scale of measurement. That would be wrong.
My examples are hypothetical and as such I imagine what
the variables’ categories might look like. (I also ask you
to imagine variables and their categories in the Do It!
exercises.) However, variables — not hypothetical, real
variables that we use for analysis — exist in real datasets,
where they have been operationalized in one specific,
concrete way.

As such, upon hearing the name of a variable, instead of
imagining what it looks like, you should always – always!
– actually look at it and its categories in the given/specific
dataset of which the variable is a part. Determining an
existing variable’s scale of measurement requires
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exploring the actual variable as it was created. Recall that
there is more than one way to operationalize a variable.
Thus, the researcher/s who created some variable into
which you might be looking might arguably have created
it differently than you would, or differently than some
other researchers might have created theirs — even if these
variables (the different researchers’ and your hypothetical
one) have the same name.

This leads us to the question: Can the same concept be
operationalized at different levels of measurement? The
answer lies in the nature of the concept (or that of the
hypothetical variable, if you prefer). Let’s go back to the
example of income from the previous section on
operationalization. There I provided you with a few
different ways to create income categories. One was based
on a yes/no question (“Is your income below…?” a specific
number), and few more ways listed several categories
based on income groups (“0-19,999”,
“20,000-29,999”,….etc.). Additionally, we could ask
people to supply their specific income, rounded to the
nearest dollar. Alternatively, thinking along the lines of a
survey questions, this would result in a) yes/no response,
b) multiple choice answer, and lastly, c) an open-ended,
respondent-supplied answer.

In this way, we can say that we can successfully
operationalize the concept of income at three different
levels of measurement: a) nominal, b) ordinal, and c) ratio,
respectively. This is only possible because of the numerical
nature of income: income is monetary, and money is
countable – and expressed in numbers. We can choose to
create several categories of income (out of the numbers
involved), or we could choose to create only a binary
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variable (i.e., with two categories) to indicate an income
below/above some threshold. In choosing either of these,
we also make the decision to forego, or lose the more
specific information of the actual income of everyone we
ask. Logically though, we can only forego/lose information
that is otherwise potentially available: we cannot make
information up.

What it all boils down to is that we can operationalize
down: from the highest level of measurement possible
for a variable towards the lower ones – but never vice
versa. A concept of numerical nature, i.e., an interval/
ratio variable can be operationalized down and created as
an ordinal variable, or even further down as a nominal
variable, losing potential information (actual numbers and
order) along the way. A concept of ordinal nature can
also be operationalized down to a nominal scale, again,
foregoing the potential information of order. However, a
“naturally” nominal variable cannot be operationalized as
anything else but nominal: there is simply no further
information available. The same goes for “naturally”
ordinal variables – they cannot be operationalized as
interval/ratio as the only information we can have is order,
while precision and measurable, defined constant units are
not possible to obtain.

1

1. Beyond the original operationalization, sometimes researchers actually recode

variables down within an existing dataset. Since they start with an interval/

ratio variable, they can choose which level of measurement they want to

use, and go back and forth between ordinal and nominal and back to

interval/ratio. They can do this only because the information has initially

been collected at interval/ratio level of detail. If the original information is

collected as nominal or ordinal data, no further information cannot be

accessed: recoding up is impossible.
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1.5 Discrete and Continuous Variables

I will introduce a final useful typology by which
variables can be grouped: discrete and continuous.

By definition, variables called discrete (note, not
discreet!) have finite number of categories (i.e.,”space”
between them, and nothing occupies that space), while
variables called continuous have potentially infinite
number of values (i.e., it’s possible that a value exists
between any two given values, in smaller and smaller —
infinite — number of “spaces” between any two the values,
to infinity). To make things easier to understand, and with
more than a little risk of oversimplification, in a very
broad sense you can think of nominal and ordinal
variables as discrete and of interval/ratio variables as
continuous.

1
For example, hair colour, religious

affiliation, and educational attainment (as measured in
educational degrees) are all discrete: they have finite
number of discrete categories.

On the other hand, age, income, or exam scores are
all continuous: a number (value) can exist between any
two given values, depending on how precise you want
your measurement to be. To take age, for example, if two
people report being 20 and 22, respectively, it’s obviously
possible that another person in 21. However, we need not

1. Technically speaking, in theory nominal and some ordinal variables are

categorical, ordinal variables with numerical categories are discrete, and

interval/ratio variables are continuous. In practice, things are less clear cut.

37



round to full years; between two people ages 20 and 21,
a value of 21.5 (or 21 years and 6 months) is possible
to exist. Further, between the ages of 21 years and 21
years and 6 months, we can have a value of 21 years
and 3 months, and so on, until we are down to counting
days, then counting hours, then counting minutes, then
counting seconds, then milliseconds, then microseconds,
then nanoseconds, etc…. The point is that, in theory, there
is always a smaller number between any two numbers
(which can be represented by the possibility of infinite
number of digits after the decimal point). The same can be
applied to income and exam scores too.

In practice, however, things are different. In
sociological research (as with other similar
disciplines), the data collected is empirically
discrete, as the values collected are a finite number
and are typically rounded to whole numbers: we
don’t bother to measure age in anything but years,
income in dollars (and not cents), etc. Still, we
usually call interval/ratio variables are continuous,
because of the potential for infinite number of
values.

At the same time, however, some ratio variables are
truly discrete. Think, for example, about a measure called
number of children of the respondent. Clearly, there is no
possibility for an infinite number of values, just like with
any “number of people”-type variable: people can only be
counted in whole numbers, and the count is always finite.

All this is undoubtedly confusing, so here is a practical
tip for applied research, and what you need to focus on.
Regardless if a variable is discrete or continuous in theory,

38



in practice all variables you will encounter in real-life,
actual datasets will be discrete. What we do is treat some
variables as discrete, and other variables as continuous
for the purposes of statistical analysis. The rule of thumb
is to make the differentiation based on the number of
categories/values: typically nominal and ordinal
variables have relatively few categories so we treat
them as discrete, while interval/ratio variables typically
have relatively large number of values, so we treat them
as continuous. If, however, an ordinal variable has
relatively large number of categories it may be treated
as continuous, and, on the flip side, if an interval/ratio
variable has relatively few values it may be treated as
discrete. Generally, and assuming proper justification
(i.e., a large number of categories/values), the
decision to treat an ordinal variable as continuous
or an interval/ratio variable as discrete remains a
matter of the researcher’s discretion.

Finally, what is the magic number in the
“relatively large number of categories/values”
rule? This also depends, but from what I have seen
in practice, the number is around 7-10 categories/
values for most (i.e., if a variable has more
categories/values that that it’s treated as
continuous, and if it has fewer categories/values
than that it is treated as discrete).
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1.6 Creating Variables

If you ever find yourself in need of creating your own
variables (perhaps, in creating a questionnaire), this brief
final note is for you. As well, you can learn to evaluate
whether an existing variable has been operationalized
properly.

To properly create a variable, its categories need to
satisfy two requirements: they need to be collectively
exhaustive and mutually exclusive. The first condition,
collectively exhaustive, refers to the requirement that the
categories cover all possible ways the variable can vary (or
all posisble answers to a questionnaire question) — none
can be excluded. The second condition, mutually exclusive,
adds the logical necessity that a specific variation (or an
answer to a questionnaire question) can exist in one and
only one category.

This is simpler than the definition makes it sound to be.
The following example illustrates.

Example 1.4. Logical Requirements to Operationalizing Variables
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Imagine you are filling out a questionnaire and one of the
questions is about age, like this:

Q1. What is your age?

a) 20-29

b) 30-39

c) 40-49

d) 50-59

What if you are 18 or 19? Which answer would you pick?
How about if the person filling out the questionnaire is 60 or
older? As stated, the Q1 question (i.e., the way the variable
age is operationalized by it) violates the first requirement, that
of providing an exhaustive list of all possibilities. All possible
variations need to be covered by the variable’s categories,
otherwise the variable is incomplete.

Now consider another hypothetical way to ask the same
questionnaire question:

Q2. What is your age?

a) 18-25

b) 25-30

c) 30-35

d) 35-40

e) 40-45

f) 45-50

g) 50+
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Assuming the questionnaire is administered only to adults, Q2
provides a collectively exhaustive list of possible answers; the
variable’s categories are too collectively exhaustive.

They are, however, misleading as they are not mutually
exclusive. Which answer do you pick if you are 25 — a) or b)?
Which answer do you pick if you are 40 — d) or e)? Logically,
one and the same possible variation cannot fall into two or more
categories; it can only fall in one of the variable’s categories.

Thus, one proper way to operationalize age is something like
this:

Q3. What is your age?

a) 18-25

b) 26-30

c) 31-35

d) 36-40

e) 41-45

f) 46-50

g) Above 50

See if you can spot and fix violations of the two logical
operationalization requirements in the exercise below.
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Do It! 1.6. What is Wrong with These Variables’
Operationalizations?

Q4. What year in college are you?

a) First-year

b) Second-year

Q5. How many siblings do you have?

a) 0

b) 1

c) 1-2

d) 3-4

e) 4 or more

Q6. How do you commute to your institution’s campus?

a) Car

b) Public transit

c) Bus

d) Bike

Now that we’ve covered the theoretical preliminaries, go
see what working with actual data is like, in Chapter 2.
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Chapter 2 What Data Looks

Like and Summarizing Data

This chapter moves us to more practical matters, namely
working with actual data. Once you get familiar with what
real data sets look like and how they are organized, you
will learn how to summarize the information contained
within variables. We can do that through tables and through
graphs. Both reflect the distribution of a variable (a
concept which we’ll discuss extensively from Chapter
3 on), which is the way the observations/data points are
distributed across a variable’s categories. (For example,
counting how many of your friends don’t have siblings,
how many have one sibling, how many have two siblings,
etc, and writing the information down will give you the
(frequency) distribution of the variable number of siblings
you friends have.)

We start with frequency tables, and explore the summary
information contained within. We end the chapter with
the way we can visually display variables (i.e., their
distribution) and the discussion of what type of graph (a pie
chart, a bar graph, or a histogram) is most appropriate for
variables at different levels of measurement.
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2.1 Data Sets and What Data "Looks"

Like

By now you have learned that variables are tools that
allow us to measure concepts and to collect information
about them. As such they are comprised of information
— information that varies across the units of analysis (the
‘things’ on which we collect information, be it people,
organizations, countries, etc.). So far, we have discussed
individual variables – but creating and collecting
information on a single variable is uncommon. Generally,
we collect information on many variables at the same time
(which, in turn, allows us to analyze variables together
and hypothesize about possible associations between
variables).

Variables “live” in data sets (or datasets, as I prefer; both
usages are common). A dataset is a collection of variables
that lists the information (or observations) gathered on
them from the units of analysis. As usual, I focus on
analysis of people for simplicity’s sake (but do keep in
mind the units of analysis can be something else.)

The best way to visualize a dataset is as a sort of a
table (a.k.a a matrix) which summarizes the responses from
every individual (in the raws of the table) on the variables
in the dataset (in the columns of the table). As such, the size
of a dataset depends on two things: the number of variables
and the number of individuals supplying information
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(a.k.a. respondents). Typically, datasets vary in size from
just a handful of variables and few respondents to hundreds
of variables and thousands of respondents. (Huge datasets
— comprising information on millions of people — exist
too; these are known as big data. Big data is not analyzed
in the conventional ways regular datasets are, so from now
on we’ll leave big data aside as it’s not the subject of this
book.)

To start small, imagine you have just four friends at your
university and you decide to list some items of information
about them (say, maybe you want to compare your standing
at the university with theirs, and to see differences and
commonalities between you and them). You could do that
in a sentence form, for example, thus: Arjun, who is twenty
years old, speaks Punjabi at home and is a first year student
in the Business School, has a job and his GPA is 3.6.
Benjamin, on the other hand, who is 25, speaks German
at home and is a third year Science student, also has a
job but his GPA is lower than Arjun’s at 3.2. Cecilia,
who speaks Spanish at home and is a fourth year Health
Sciences student doesn’t have a paying job and her GPA is
the highest of your friends, 4.0. Finally, Xingxing is also a
first year student and is employed like Arjun but she is an
Arts major, speaks Mandarin at home, and her GPA is 3.3.

Indeed, you might do that but the points of comparison
might get lost as they are not easy to see: one has to read
very carefully to keep track of who does what and has a
GPA of how much. Instead, you could present the same
information as it is in the table in Example 2.1 below.
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Example 2.1 (A) A Hypothetical Dataset of Four Friends’s
Characteristics

Age Year at
university Employment GPA

Major
(by

Faculty)

Language
spoken at

home

Arjun 20 1 yes 3.6 Business Punjabi

Benjamin 25 3 yes 3.2 Science German

Cecilia 22 4 no 4.0 Health Spanish

Xingxing 19 1 yes 3.3 Arts Mandarin

If you do that, what you have created is a dataset. Now
imagine that instead of this contrived combination of four
friends and their varying characteristics, I generalize the
example like so:

Example 2.1 (B) A Hypothetical Dataset of Four Individuals and
Six Variables
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Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

Respondent
#1 Response1.1 Response2.1 Response3.1 Response4.1 Response5.1

Respondent
#2 Response1.2 Response2.2 Response3.2 Response4.2 Response5.2

Respondent
#3 Response1.3 Response2.3 Response3.3 Response4.3 Response5.3

Respondent
#4 Response1.4 Response2.4 Response3.4 Response4.4 Response5.4

In Example 2.1 (B), the respondents are the four people
on whose varying characteristics we have information, and
these are represented by the six variables. This, however,
seems a rather cumbersome. Instead of “Variable 3”, and
“Respondent 5”, and “Response4.3“, etc., a simpler way
to represent all of these in a generalized way is through
mathematical notation.

1

So, prepare yourselves! Here comes notation:

1. A note on mathematical notation, about which, I know, many students feel

quite anxious: think of notation as a type of shorthand, or a sort of

simplified foreign language. It's used to simplify what you can write out in

words and sentences but would be too long and not as clear. The key to

notation, just like with any foreign language, is to know what the symbols

mean. Keep their meaning in mind, and you can read notation as fast and as

easily as your own language.
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Example 2.1 (C) A Hypothetical Dataset of Four Individuals and
Six Variables 2.0

X1 X2 X3 X4 X5 X6

I1 x11 x21 x31 x41 x51 x61

I2 x12 x22 x32 x42 x52 x62

I3 x13 x23 x33 x43 x53 x63

I4 x14 x24 x34 x44 x54 x64

In Example 2.1 (C), I1, I2, I3, and I4 are the four
individuals; X1, X2, X3, X4, X5, and X6 are the six variables;
and x11, x12, etc. stand for any specific characteristic/
response a respondent has on a variable. More specifically,
x53, for example, is the characteristic that Respondent #3
has on Variable 5. Scrolling up to Example 2.1 (A) will
allow you to see that x53 is Health, which is Cecilia’s Major
by Faculty.

Do It! 2.1 Reading Points of Information

In a similar vein, look up x22, x34, and x61. It’s a simple and
easy task but it will help you connect notation to what it

Simple Stats Tools 51



stands for, and to understand the logic underlying the way
information is presented in datasets.

From here, it’s not difficult to extrapolate the specific
dataset we had above to a general one. Thus, Example 2.1
(D) below presents a template of a typical dataset.

Example 2.1 (D) A Hypothetical Dataset of N Individuals and K
Variables

X1 X2 X3 X4 X5 X6 X7 … XK

I1 x11 x21 x31 x41 x51 x61 x71 … xk1

I2 x12 x22 x32 x42 x52 x62 x72 … xk2

I3 x13 x23 x33 x43 x53 x63 x73 … xk3

I4 x14 x24 x34 x44 x54 x64 x74 … xk4

I5 x15 x25 x35 x45 x55 x65 x75 … xk5

I6 x16 x26 x36 x46 x56 x66 x76 … xk6

I7 x17 x27 x37 x47 x57 x67 x77 … xk7

… … … … … … … … … …

IN x1n x2n x3n x4n x5n x6n x7n … xkn

N = number of elements in the dataset
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K = number of variables in the dataset

In the table above, you may think of N as the last row
on the table, i.e., the last individual for whom we have
information and you may think of K as the last column
on the table, i.e., the last variable we have in the dataset.
Both numbers can theoretically be “any positive number”,
though in practice the former is usually a number up to
several thousands and the latter a number up to few
hundreds. The ellipses in the next-to-last row and the next-
to-last column indicate that the table is truncated: there
are omitted rows between the seventh and the last
individuals (i.e., between I7 and IN), and omitted columns
between the seventh and the last variables (i.e., between X7
and XK). (They obviously have to be omitted so that the
table can fit on the page.)

Armed with this knowledge, let’s take a look at an
excerpt from a real dataset. The following Example 2.1
(E) provides a snapshot of the first ten respondents and
first nine variables in the Aboriginal Peoples Survey
2012 dataset (or APS 2012 for short)2 using a
software called IBM® Statistical Package for the
Social Sciences, commonly referred to as SPSS.

Example 2.1 (E) A Snapshot of Survey Data (APS 2012)

2. APS 2012 is a Statistics Canada dataset which I will formally

introduce in Ch. XX.
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Snapshot of APS 2012‘s Data View in SPSS:

Snapshot of APS 2012‘s Variable View in SPSS:

Do It! 2.2 Understanding How Datasets Are Organized

Make sure you can connect the data snapshots from the
example above with your understanding of how datasets are
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organized. What do the numbers in the first (blue) columns
in both images represent? (Hint: this is not a variable!) What
is listed in the first (blue) row in the top image? In the
top image what does 1 stand for in the first white row in
column ID_03G? How about the 1 in the fifth row in the
SEX column?

Answer: Registered/Status Indian and male, respectively.

One thing you might find surprising is the obvious fact
that all cell entries (i.e., the observations we have) are listed
in a number format. Does that mean that all variables in
this particular dataset are interval or ratio? What about
any nominal or ordinal variables – do they not exist in
this dataset? The answer is no on both accounts: the
variable SEX (i.e., “Sex of respondent” as stated in
Variable View) is nominal and the variable AGE_YRSG
(i.e., “Age group of respondent…”) is ordinal because of
the hierarchical arrangement of the responses. However,
the dataset cells contain only numbers because
statistical software can only analyze numerical data.

To that effect, nominal and ordinal variables appear “in
code” in datasets; i.e., the categories of nominal and
ordinal variables are assigned numerical values as
labels to represent them in the actual dataset you might
be working with. Thus, the numbers in nominal and ordinal
variables’ columns are not actual numbers, they are
artificially (and in the case of nominal variables, somewhat
arbitrarily) assigned to represent the words contained in
the categories in order to make computer-based statistical

Simple Stats Tools 55



analysis possible. (On the other hand, interval/ratio
variables’ categories contain actual numbers. Of course,
the trick then is to learn to differentiate the actual numbers
from the code/ number values used as labels in the cells
of a dataset.)

Therefore, you should always keep track of the code (see
the Watch Out! panel below for tips on Variable View in
SPSS which allows you to do that), and remember to refer
to the categories by their proper (word-based) names — not
by the artificial numerical values (i.e., code) representing
them!

Watch Out! #2 …for Making Hasty Decisions about Variables
Based Only on Data View or Only on Variable View

It’s tempting, but you cannot deduce all categories of a variable
with any certainty just by looking at the snapshot in Example
2.1 (E). You cannot do that even if, instead of a snapshot, you
had the real, interactive Data View window in SPSS in front
of you. Not only you might not be able to scroll through all
the data (depending on its size) but, more importantly, not all
characteristics might exist among the individuals. (For example,
imagine the variable hair colour, and say, not one respondent
having red hair: then a response “red” would not be visible in
Data View, even if such a category existed in the variable.) For
the same reasons you should also not decide a variable’s level
of measurement based on Data View. (Remember, all data in
the cells appears in numerical format, regardless if it’s an actual
number or just a value label/code!)
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To explore any dataset you might end up working with and
all the variables contained therein, you should always look to
explore not only the Data View but the Variable View of the
dataset as well (in SPSS you can toggle between Data View and
Variable View easily with a click of the mouse). The Variable
View lists all variables along with some information about them
— including something which looks like their level of
measurement, called Measure (it is not included in the bottom
snapshot above). The Measure information can be quite
misleading for students so: Never trust this software-
generated conclusion!

Instead, you should always explore both Variable View and
Data View. You should note the variables’ respective categories
(in Variable View, where you can click on any cell in the Values
column for a full category listing) and the type of the observations
you have in the cells in the table (in Data View). Then –and
only then — reach the appropriate conclusion about the levels of
measurement of the variables you have at hand.

What should guide your decision about a variable’s level of
measurement is what you see in the Values column in Data View.
To repeat, clicking on the respective column will open up a
window displaying the (nominal or ordinal) variable’s categories/
values along with the number label representing them in the
dataset.

Again, note that reporting on the variable should be done by
using its categories/values, never by the number label you see in
Variable View standing in for them! This point will become more
relevant and less abstract once we start learning what to do with
variables, in Chapter 3.
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2.2 Summarizing Data

Imagine a dataset containing a hundred respondents and
just five variables. Such a dataset would have 500 data
points and, while that may seem like a lot, a dataset of
this size is considered rather small. Typically, datasets used
in sociology (and other social sciences) tend to be larger.
What this tells you is that there is an enormous amount of
information housed within even an average dataset.

Just like a library containing thousands and thousands
of books but no catalog, unless we have the means to
make sense of the information – order it, systematize it,
categorize it – that information is all but useless. In the
previous section, I discussed exploring a dataset in SPSS’s
Data View. While that’s a useful (and necessary) task to
do before working with any dataset, it doesn’t provide
anything more than a sort of global view of the variables in
it.

In order to understand any variables better and to be able
to fully use the information they contain, we need tools to
allow us to zoom in each individual variable, as it were, and
to organize that information in a meaningful way.

Two of the most widely used such tools for exploring
variables and presenting their information in a
summarized, easy to understand way are, as you well
know, tables and graphs. In the next section I start by
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introducing frequency tables; then we will end this
chapter with introducing graphical displays.
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2.3 Frequency Tables

As usual, let’s start ground-up with an example and
work our way up to the concept under study. Consider the
following raw (unorganized) data.

Example 2.2 (A) Hypothetical Raw Data on Educational Attainment

Imagine that a group of 21 people were asked about the
highest educational degree they have attained. These are
their responses:
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Secondary/
High
School

Bachelor’s
Secondary/
High
School

No Degree Bachelor’s Didn’t
answer

Master’s Associate’s Master’s
Secondary/
High
School

Bachelor’s

Secondary/
High
School

Secondary/
High
School

Didn’t
answer

Didn’t
answer Bachelor’s

Secondary/
High
School

PhD Bachelor’s Associate’s Associate’s

What can we glean from this presentation of the
information? Can we easily see which is the most
frequently obtained educational degree in the group? How
many people do we have of each degree? What fraction/
proportion of the total are each?

Of course, we could always count — but what if I had
asked you to imagine a group of 36 people? Of 72? Or 200?
Or 2,000? Or more? Are you still going to painstakingly
count the different responses?

You may be surprised, but the answer is “yes, if we
had to”. In the past, researchers used to do a that, a lot.
Nowadays of course we have computers to do it for us.
SPSS can easily summarize this data but to understand the
process better, we’ll start from scratch.

The most obvious way we can organize the raw data
above into something less chaotic is the following:
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Example 2.2 (B) Hypothetical Data on Educational Attainment,
Organized

Table 2.1 Educational Attainment by Frequency

Degree
Count
(a.k.a.

frequency)

No degree 1

Secondary/High
School 6

Associate’s 3

Bachelor’s 5

Master’s 2

PhD 1

Didn’t answer 3

TOTAL 21

In the most basic sense, this is a frequency table. It
lists the different categories of a variable along with their
observed count, a.k.a. frequency. That is, we essentially
count how many times any given category appears, i.e.,
we count how frequent a response is among the
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respondents, and then indicate the number for each
category/response. Frequency is usually denoted by f in
statistical notation.

Real frequency tables, however, usually contain more
information than a simple count. The following few sub-
sections provide the details, while we work our way
through creating a full frequency table.
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2.3.1 Relative Frequency: Adding

Percentages

Simply counting the frequency of the different variable’s
categories (or the number of specific responses) is rarely
enough. Often, we also want to know what proportion —
or what percentage — of the total each category represents.
This is especially important when comparing across two
or more different groups. Thus we will stop on our way
to frequency tables to undertake a brief side quest into
relative frequency territory.

Watch Out!! #3… for Cross-Group Comparisons Using Counted
Numbers

Imagine that researchers are conducting a study on eating
habits and they have interviewed 170 people; 102 identified
as men and 68 identified as women. Say that the researchers
found that 17 of the men and 13 of women reported a vegan
diet. Can the researchers conclude that men tend to favour
vegan diets more than women do?

If you go by the actual, counted numbers reported, you
may decide that yes, the researchers’ conclusion is correct as
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17 is more than 13, i.e., four more men than women have
reported eating vegan. This, however, would be wrong. We
cannot compare the two groups (men and women) directly
since the groups have different sizes. That is, comparison
of the numbers as counted in the two groups has little
meaning since it does not take into account group size.
Yes, more men report eating vegan but men in the
study outnumber women by 24 to start with. Thus,
maybe we find more vegan men than women
simply because there are more men than women
in the study. What we should be asking ourselves
instead is whether a larger proportion of men eat
vegan, compared to women — and the correct answer
would require a comparison of the numbers relative
to group size.

A quick calculation reveals that 17 out of 102 is
actually less than 13 out of 68:

That is, the proportion of vegan men (0.167) is smaller
than the proportion of vegan women (0.191), so no, we
cannot say that men tend to be vegan more than women do.
Rather, it’s the other way around: more women than men
tend to eat vegan, because vegan women are a higher
proportion (i.e., the number for women is higher relative
to their group size).
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To conclude, never use numbers as counted to compare
between groups (unless they are of equal size). To make
comparison possible — and meaningful — you should
always use proportions or percentages (i.e., the numbers
relative to the size of each group).

A bit more notation then: if we denote frequency
by f, and you recall that N stands for number (of elements
in a dataset; of people in a group, etc.), it would be easy to
see that proportion — denoted by p — should be

.

While actual numbers represent frequency, proportions
are one way of expressing relative frequency. You
probably are more familiar with another way of expressing
relative frequency — percentages.

In the example I used in the Watch Out!! #3 above, we
concluded that more women than men were vegan based
on the fact that the proportion of vegan women (0.191)
was higher than the proportion of vegan men (0.167). In
everyday life, people usually tend to use percentages to
express that. To convert proportions to percentages you
only need to multiply by a 100

1
:

1. After all, percent or per cent comes from the Latin "per centum", meaning "by

a hundred"; i.e., whatever proportion you are expressing, standardized by a

hundred.
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Thus, we get the following percentages when comparing
vegan men and women from the Watch Out!! #3 above:

and

.

That is, we could rephrase our finding and say that since
only 16.7 percent of men reported being vegan while 19.1
percent of women did, clearly women are more likely to be
vegan based on this particular group of respondents.

Note that while proportions range from 0 to 1 and
typically get rounded up to three digits after the
decimal point (e.g., 0.167 and 0.191), percentages range
from 0 to 100 and usually get rounded up to one or two
digits after the decimal point (e.g., 16.7% and 19.1%).
Also note that differences in percentages are expressed
in percentage points, not in percent: in the current
example, the difference between men and women who eat
vegan is (19.1% – 16.7%=) 2.4 percentage points in favour
of women being vegan, not 2.4 percent.

A final way to express relative frequencies are ratios,
where a ratio is simply one frequency/count relative to
another:
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Using the numbers from the Watch Out!! #3 above, we
can say that in the group of 170 respondents (102 men and
68 women), we have a men-to-women ratio of 1.5 — or,
men in the study outnumber women by 1.5 to 1 since

.

It’s easy to see that if we want the women-to-men ratio,
we only need to switch the numerator and denominator of
the ratio:

This still tells us that men outnumber women as for
every 1 man there is only a “0.7 woman”. Since this type
of fractions, depending on the context, can lead to an
awkward phrasing (like in this case), you may choose to
report a ratio in the way most apt for easier interpretation.

Relative frequencies are all nice and good, but let’s go
back to our main quest, the frequency table. Since we
established that reported actual numbers are meaningless
for comparison purposes and that we need relative
frequencies to do that, it would only make sense to add
a relative frequency column to our educational attainment
Table 2.1 from Example 2.2 (B).
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The percentages in Table 2.2 below have all been
calculated using the steps described above: 1) obtain
proportion, and 2) multiply by a 100. For example, only
one of ours original 21 respondents had no degree. Then
the percentage of the 21 respondents with no degree is:

The rest of the categories’ percentages are calculated in
the same vain.

Example 2.2 (C) Hypothetical Data on Educational Attainment,
Organized and with Relative Frequencies Added

Table 2.2 Educational Attainment by Frequency and Percent

70



Degree
Frequency Percent

No
degree 1 4.7

Secondary/
High
School

6 28.6

Associate’s 3 14.3

Bachelor’s 5 23.8

Master’s 2 9.5

PhD 1 4.7

Didn’t
answer 3 14.3

TOTAL 21 100.0

This way we can easily see how the respondents are
distributed across the different educational attainment
categories and each category’s share as a fraction of the
total. If we had another group of respondents, we could
easily compare between our initial group of 21 and the
second hypothetical group by using the percentages above.
Or can we?
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2.3.2 Missing Data: Adding Valid

Percentages

If you’ve paid attention so far, you must have noticed that
three of our 21 respondents provided a “Didn’t answer”
response when asked about their educational attainment.
Sometimes respondents may refuse to answer a question,
or the question may not have been applicable to them and
wasn’t asked, or a response might not get recorded due to
an error, etc. In short, sometimes we have a case of what is
known as missing data.

What do we know about the educational attainment of
the three individuals who, for whatever reason, didn’t
answer this question? Nothing.

Can we in some way infer their educational attainment?
Not with the data provided in the example.

So then what do we do? How do we analyze our
educational attainment variable?

The most frequent — and strongly recommended
(especially for people just starting on their journey to
research) — course of action is to simply drop the missing
cases

1
. Missing cases have no part in any analysis and

1. Depending on the particular data and particular situation, and assuming strong

justification, researchers experienced in data analysis may have different

options, such as estimation, imputation of means, etc. These, however, are

beyond the scope of this text. The safest action for students/beginners to
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using them as they are would inevitably compromise
conclusions — after all, we have no information on what
we want to know about them, and we cannot make that
information up.

Generally, how statistical software deal with missing
data by default settings may vary. SPSS’s default is to skip
missing cases so that analysis is always based on valid
cases only.

As well, SPSS provides a separate column in Data View
indicating which values in the data stand for a missing
data point. As discussed in Section 2.1
(https://pressbooks.bccampus.ca/simplestats/chapter/
2-1-data/), you can find the coding of the values in the
Values column in Data View. Clicking the specific cell in
that column opens up a window with the values’ code.
There you may find several types of missing data, typically
values such as “Valid skip”/”Not applicable” (the
respondent had not been asked the question on which the
variable is based due to a previous answer)

2
, “Don’t know”

(the respondent did not know the answer to the question),
“Refusal” (the respondent refused to answer the question),
“Not stated” (when the question should have been
answered/ an answer should have been recorded but, for
whatever reason, it hasn’t been), etc.

Apart from “Not applicable”, the codes listed here are

take remains dropping any missing cases from the analysis. See

https://www.iriseekhout.com/missing-data/missing-data-methods/

imputation-methods/ for a discussion.

2. For example, if a respondent has indicated previously that they didn't smoke,

a subsequent question about how often they smoked would make no sense;

the respondent then would be "validly skipped" from answering this

subsequent question.
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standard Statistics Canada codes used in all their datasets
and can be found in any Statistics Canada dataset
documentation

3
.

So given that we had three cases of missing data within
our group of 21 respondents, are the percentages reported
in the previous sub-section’s Table 2.2 in Example 2.2 (C)
valid to use?

Watch Out!! #4… for Findings Based on Missing Data

This will be a short warning but it deserves it’s own
scary-red Watch Out!! reiteration: do not trust analysis and
findings that include missing cases as they would be
distorted and unreliable. Missing data is exactly that –
missing. It simply does not exist. As a beginner researcher,
always make sure you have dropped (i.e., excluded) any
missing cases before analyzing your data and reporting any
results.

Considering that Table 2.2 did include missing data in
the calculation of percentages, let us correct that by
modifying it and including another column, valid
percentages.

3. Currently, Statistics Canada uses 6, 96, 996, etc. for "Valid skip"; 7, 97, 997,

etc. for "Don't know"; 8, 98, 998, etc. for "Refused"; and 9, 99, 999, etc. for

"Not stated".
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Example 2.2 (D) Hypothetical Data on Educational Attainment,
Organized and with Relative Frequencies and Valid Percentages
Added

Table 2.3 Educational Attainment by Frequency, Percent
and Valid Percent
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Degree
Frequency Percent Valid

Percent

Valid No
degree 1 4.7 5.6

Secondary/
High
School

6 28.6 33.3

Associate’s 3 14.3 16.7

Bachelor’s 5 23.8 27.8

Master’s 2 9.5 11.1

PhD 1 4.7 5.6

Total
Valid 18 85.6 100.0

Missing Didn’t
answer 3 14.3

Total
Missing 3 14.3

TOTAL 21 100.0

As you see in the modified Table 2.3 above, I have
separated the missing cases from the valid cases (the cases
for which we have educational attainment data). Since we
have only 18 valid cases, we should use only those 18
cases for any calculations and analysis — and not the
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total of 21 cases (which includes the missing). Thus,
instead of having just

along with the rest of the categories’ percentages
calculated in this way, we should calculate the categories’
valid percentages, discarding he three missing cases, like
this:

(As usual, I only show you the calculation for the first
category as the rest follow in the same way.)

Despite the fact that we do have the percentages based
on missing data in the table, note that these – the valid
percentages — are the only percentages you should use
in your analysis and report in your findings.

Alright, you might say now, we added percentages and
valid percentages to the simple frequencies, this surely
means we have a complete frequency table by now.

Sorry, no, not yet. One thing remains.
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2.3.3 Summing Up: Adding Cumulative

Percentages

The thing that remains to add to our frequency table is there
only for convenience’s sake. It can be useful to know, for
example, what percentage of the 21 people in our original
group do not have graduate degrees, or what percentage of
people have not gone to university, etc. Of course, in our
specific educational attainment example it would be easy
to to the quick-and-dirty calculation of adding 11.1 percent
(those with Master’s degrees) to 5.6 percent (those with
PhD), thus finding that 16.7 percent of our respondents
have graduate degrees; or adding 5.6 percent (those
without a degree) to 33.3 percent (those with Secondary/
High School) and finding that 38.9 percent of our
respondents have not gone to university. Doing such
calculations all the time, depending on the question, might
get tedious, however, at best, and, at worst, it’s also
incorrect (hence the “quick-and-dirty” appellation).

Let’s then improve on our frequency table-in-progress a
final time, shall we? The version below is the final version,
ta-da!

Example 2.2 (E) Frequency Table for Educational Attainment
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Table 2.4 Educational Attainment by Frequency, Percent,
Valid Percent and Cumulative Percent

Degree
Frequency Percent Valid

Percent
Cumulative

Percent

Valid No
degree 1 4.7 5.6 5.6

Secondary/
High
School

6 28.6 33.3 38.9

Associate’s 3 14.3 16.7 55.6

Bachelor’s 5 23.8 27.8 83.3

Master’s 2 9.5 11.1 94.4

PhD 1 4.7 5.6 100.0

Total
Valid 18 85.6 100.0

Missing Didn’t
answer 3 14.3

Total
Missing 3 14.3

TOTAL 21 100.0

The final column I have added in our Table 2.4 is called
Cumulative Percent. What it does is keep a sort of a
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“running total”, adding the second category’s frequency
to the first and reporting the first two categories as a
fraction of the total; adding the third category’s frequency
to the total of the first two and reporting the first three
categories as a fraction of the total, etc. — in effect adding
each subsequent category to the total of all preceding
ones, one by one, until all categories are added together.

Note, however, that you should not add the percentages
in the Valid Percent column to obtain cumulative
percentages. Despite the quick-and-dirty trick I did before,
I actually calculated the cumulative percentages based on
the added categories’ frequencies, and so should you, if
you have to create a frequency table from scratch.

Like this: there is one person without a degree and 6
people with secondary/high school degrees, or 7 people
combined. Therefore, the cumulative percent of these two
categories is obtained thus:

and not by adding 5.6 percent (the person with no
degree) to 33.3 percent (the ones with secondary/high
school degrees) — even if in this case, both produce the
same result, 38.9 percent.

The reason why we need to add the original
frequencies and not the valid percentages themselves
is rounding. The percentages reported in the frequency
table are rounded to 1 digit after the decimal point; adding
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rounded numbers inevitably adds imprecision to the result,
which, depending on the situation, might end up being
crucial. In our case, it makes no difference but do note that
the percentages reported in the Percent column actually
only add up to 99.9 percent, not 100 percent; similarly, the
percentages reported in the Valid Percent column actually
add up to 100.1 percent rather than 100 percent. These
differences, as negligible as they seem when working with
a variable with few categories like the one here, can add up
and become more significant in variables with numerous
categories (like interval/ratio variables, for example).

You can see examples of real-data frequency tables in
the next-subsection.
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2.3.4 What Frequency Tables Really

Look Like

Before we move on to the last section of this chapter,
take a look at what frequency tables of real variables look
like, using SPSS. All three variables in the tables below
come from the General Social Survey 2016 (or GSS 2016)
(Statistics Canada 2018) which I’ll formally introduce in
Chapter XX.

Table 2.5 Frequency Table for Sex of Respondent (GSS
2016)

Table 2.5 shows a nominal variable, sex of respondent,
with no missing data (thus both Percent and Valid Percent
columns contain the same information).

Unlike it, Table 2.6 below shows an ordinal variable,
workplace size, where almost half (47.4 percent) of the
respondents didn’t supply a valid response. In cases like
this one it’s imperative you only use the data as presented
in the Valid Percent column, and not the Percent one.
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Table 2.6 Frequency Table for Workplace Size (GSS
2016)

Table 2.7 below presents a ratio variable, purchasing
grocery store takeout dishes in the past month, with
relatively moderate number of data points missing (9.3
percent). Again, Valid Percent is the column at which you
should be looking. As well, note that the first (blue) column
lists the categories (or values) of the variable as supplied
by the respondents, as it normally does. Since these consist
of actual numbers, you might be tempted to see them as
some sort of consecutive listing, and that would be wrong.
If you look carefully, you’ll see that numbers like 11, 19,
22, 23, etc. are not listed there. This is not because they are
somehow “missing” but because no respondent provided
such a response.

Table 2.7 Frequency Table for Purchasing Grocery Store
Takeout Dishes (GSS 2016)
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Finally, note that although the Cumulative Percent
column is less useful when we are dealing with nominal
variables, it’s quite handy to have when working with
ordinal and especially with interval/ratio variables. Thus
we can easily state that 83.2 percent of respondents work at
a small or a midsize workplace and that almost 90 percent
of respondents have purchased no more than 4 grocery
takeout dishes in the past month.

SPSS Tip 2.1: How to Request Frequency Tables

From the Main Menu:

• Click Analyze, then Descriptive statistics, and
then Frequencies;

• Select variable/s from the left-side of the
window and use the arrow button to move the
variable/s to the right side;

• Click OK.

• The Output window will display the selected
variable/s frequency table/s.
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2.4 Graphs

A picture is worth a thousands words, they say, so in
this section we will explore the most basic ways we can
summarize data using graphical displays rather than tables.
Unlike frequency tables which can be used to summarize
variables at all levels of measurement with a a table of
the same format, the types of graphs we use tend to differ
depending on the variable’s level of measurement. Almost
all graphs in this book are produced using SPSS.

The three most basic graphs used to summarize variables
are pie charts, bar graphs (or bar charts), and histograms.

Pie charts. You have undoubtedly encountered (and
likely used) pie charts before. Fig. 2.1 below presents one
such simple pie chart. The size of a slice of the “pie”
corresponds to the category’s size. The higher the
category’s frequency (and, of course, relative frequency),
the larger the slice.

Figure 2.1 Sex of the Respondent (GSS 2016)
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The pie chart in Fig. 2.1 corresponds to the frequency
table of sex of the respondent in the previous section,
namely Table 2.5.

Since the binary variable sex tends to look ‘boring’, in
Fig. 2.2 below you can find a bonus pie chart for marital
status which tends to be more colourful as it has more
categories.

Table 2.2 Marital Status of the Respondent (GSS 2016)
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Pie charts can be used with both nominal and ordinal
variables, though an argument can be made that the circular
form of the pie chart may “hide” valuable insights about
the order inherent in ordinal variables. As such, some
prefer to use bar graphs for nominal variables only, and
to use bar graphs for ordinal variables. Ultimately, it is a
matter of preference, and both usages are correct.

You should not try to use a pie chart for an interval/ratio
variable, however, as the “pie” in most cases will end up
divided into far too many and far too small slices which
will make “reading” the chart impossible.

Bar graphs. Fig. 2.3 below features a simple bar graph.
The height of the bars corresponds to the size of the
different categories. The higher the category’s frequency
(and relative frequency), the taller the bar.
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Figure 2.3 Workplace Size (GSS 2016)

This bar graph corresponds to the frequency table for
workplace size from the previous section (Table 2.6). Note
that the percentages reflected in the graph are the valid
percentages from the frequency table.

Again, using a bar graph with a nominal variable is
allowed, and it’s up to you whether you prefer to use a
pie chart instead, since the categories of a nominal variable
have no order and can be “moved around” without loss of
information. However, a bar chart can present the order of
a ordinal variable’s categories in a more intuitive manner,
so for some people bar graphs are the preferred graph
of choice for ordinal variables: this way the order goes
through the bars from left to right.

Like with pie charts, you shouldn’t use bar graphs with
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interval/ratio variables as the potential for ending up with
far too many bars is quite high, making reading the graph
difficult.

Histograms. Histograms are the graphical
representations used with interval/ratio variables. Fig. 2.4
presents one such histogram. Once again, the height of
each bar represents the frequency of a variable’s category.
In this case, the histogram corresponds to Table 2.7 from
the previous section which was the frequency table of the
number of takeout dishes respondents purchased in the last
month.

Figure 2.4 Purchasing Takeout Dishes from Grocery
Stores in the Past Month (GSS 2016)

At first glance, a histogram might look similar to a bar
graph – albeit usually with more bars/categories. However,
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the number of categories is not the only difference. Notice
how the bars in the bar graph in Fig. 2.3 have space
between them, wile the bars in the histogram in Fig. 2.4
do not. This difference represents the difference between
discrete and continuous variables: Discrete variables

1have
separate categories, hence the distance between
the bars in the bar graph. Continuous variables
(typically interval/ratio variables) have continuous
categories, therefore the bars representing the
categories touch each other to indicate their
continuous nature (i.e., their potentially infinite
number of values).

In the next two chapters you will learn how you can use
these graphs in greater detail (especially the histogram).
Here is how to produce them in SPSS.

SPSS Tip 2.2 Basic Graphs

To get a pie chart:

• From the Main Menu, click Graphs and then
Legacy Dialogs;

• From the pull-down menu of Legacy Dialogs,

1. If you recall from Section 1.5
(https://pressbooks.bccampus.ca/simplestats/
chapter/1-5-discrete-and-continuous-variables/),
nominal and (typically) ordinal variables are
considered discrete.
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select Pie; a Pie Charts window will appear.

• Leave Summaries for groups of cases selected
and click Define;

• Select your variable of interest from the left-
hand side variable list and, using the correct
arrow, move the variable into the Define Slices
by empty space.

• You can change what the slices represent — the
frequency (N of cases) or percentages (% of
cases) in the top right section of the window
called Slices Represent.

• When you are done, click OK. The pie chart
will appear in the Output window.

To get a bar graph:

• From the Main Menu, click Graphs and then Legacy
Dialogs;

• From the pull-down menu of Legacy Dialogs, select
Bar; a Bar Charts window will appear.

• Leave Simple and Summaries for groups of cases
selected and click Define;

• Select your variable of interest from the left-hand
side variable list and, using the correct arrow, move
the variable into the Category Axis empty space.

• You can change what the slices represent — the
frequency (N of cases) or percentages (% of cases) in
the top right section of the window called Bars
Represent.

• When you are done, click OK. The bar graph will
appear in the Output window.
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To get a histogram:

• From the Main Menu, click Graphs and then Legacy
Dialogs;

• From the pull-down menu of Legacy Dialogs, select
Histogram; a Histogram window will appear.

• Select your variable of interest from the left-hand
side variable list and, using the correct arrow, move
it into the Variable empty space.

• When you are done, click OK. The bar graph will
appear in the Output window.
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Chapter 3 Measures of

Central Tendency

Now that you have learned the preliminaries — what
datasets and variables are, and how to summarize the
information within a variable in tabular and graphical
formats — it’s time to turn to applied statistics proper.
Statistics allows us to analyze information , i.e., to learn
more than what we simply see at first glance. Thus we
scrutinize the data collected in great detail to get the most
out of it, in terms of both description (examining what we
see) and inference (reaching evidence-based conclusions).

Aptly, we talk about descriptive statistics and inferential
statistics. In the latter half of this book we will turn
to inferential statistics which is devoted to
inferential analysis on the basis of probability
theory. We now start with descriptive statistics
devoted to the descriptive analysis of variables,
i.e., to learning all we possibly can about a variable
and its distribution. If you recall from Chapter 2’s
introduction, a variable’s distribution is the way
the observations/cases are distributed across
the variable’s categories. The cases can be
concentrated closer together or more spread out,
and exploring such features of a variable’s
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distribution is the focus of this chapter and the
next.

In addition to the visual summary of a variable which we
get through graphs and which allow us to virtually see a
variable’s distribution, generally there are two further types
of information we can get through descriptive analysis.
They are called central tendency and dispersion.

Considering what a variable in a dataset looks like, recall
that a variable has a list of observations/ cases (think,
for example, of the responses collected through a survey
question) where the list is size N (N, again, is the number
of elements, in general, or respondents if we focus
specifically on people, as we usually do). Thus, on the one
hand, we talk about typical cases, or where cases tend to
cluster — for example, what the most frequent response
given is, if respondents tend to give similar answers, etc.
— and what the “centre” of the variable’s distribution
is. Measures related to this type of information are called
measures of central tendency. There are three of them
and we explore all of them in the current chapter in turn,
the mode, the median, and the mean.

On the other hand, we can also talk about how much a
variable’s distribution is “spread out”. That is, if a variable
is called that because the responses vary across people,
how variable a variable actually is – does it vary a lot or
does it vary a little? Are all responses clustered around
the “centre” or are they relatively dispersed? Measures
related to this type of information are called measures of
dispersion, and they are presented in the next chapter.

To summarize, we describe variables by providing and

96



exploring 1) the visual summary of their distribution
(i.e., a graph), 2) their measures of central tendency,
and 3) their measures of dispersion.

There is a catch, however: Not all measures of central
tendency and dispersion are appropriate for all
variables. Just like not all graphs are appropriate for each
type of variable, whether a measure of central tendency
or dispersion is applicable to a variable or not depends
on the variable’s level of measurement.

I did already warn you that determining the proper level
of measurement of a variable is key — without that, you
can execute correctly neither descriptive, nor inferential
analysis. Go back and reread Section 1.3 if
necessary (https://pressbooks.bccampus.ca/
simplestats/chapter/1-3-levels-of-measurement/)
or what comes next will make little sense to you.

But enough with the boring theory — on to the the
application of central tendency measures!
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3.1 Mode

Central tendency is the information about the clustered-
ness of a variable’s distribution; whether its observations/
cases/responses tend to group together (or not) and where
(i.e., in which categories/values) they tend to fall.

There are three measures of central tendency: mode,
median, and mean. In this section, we explore the mode.

To find a variable’s mode, you only need a frequency
table – or rather, even just the frequency column in the
table (although the Valid Percent column will do you just
as well). Here is a simple, small-N, real-world example.

Example 3.1 Religious Affiliation of Canadian Prime Ministers

Table 3.1 Religious Affiliation of Canadian Prime Ministers
(Wikipedia 2017)
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Religious affiliation Frequency

Anglican 4

Baptist 3

Evangelical 1

Presbyterian 3

Roman Catholic 10

United Church of
Canada (prev.
Methodist)

2

TOTAL 23

What is the most popular religious affiliation of Canadian
Prime Ministers as of 2019? Or, what religious affiliation
is most frequently reported by Canadian Prime Ministers so
far? In other words, what religious affiliation do Canadian
Prime Ministers most have tended to have?

Surprising no one with any knowledge about Canada,
the largest category among the religious denominations, or
the one that Canadian Prime Ministers most frequently
subscribe to — i.e., the category with the highest
frequency — is “Roman Catholic”, with 10 of the Canadian
Prime Ministers identified as such. (And are you surprised
that Canada has only had Christian Prime Ministers?)

As simple as that, the category/value with the highest
frequency is called the mode of the variable.
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Alternatively, you can easily spot the mode in a graph: it
would be the largest slice of the pie or the tallest column in
a bar chart or a histogram.

Do It! 3.1 Do all variables have a mode?

Considering that the only thing you need to do to find a
variable’s mode is to count the frequency of each of its
categories/values and indicate the one with the highest
count, will it be possible to find the mode of any variable,
regardless of its level of measurement? Or would the mode
be a descriptive statistics applicable only to some variables
depending on their level of measurement?

If by now you have a good grasp of what makes a
variable nominal, ordinal, interval, or ratio (and if you
do not — go back and really reread Section 1.3!
(https://pressbooks.bccampus.ca/simplestats/chapter/
1-3-levels-of-measurement/)), you should be able to easily
answer the questions in the Do It! 3.1 above. Obtaining the
mode, the simplest of all measures of central tendency,
does not require any calculations or complicated
procedures. To identify the mode, it doesn’t matter whether
the categories of a variable are made of words or numbers,
or if there is any order in them. All that matters is the count
— the frequency — of responses in each category/value
in order to identify where cases tend to cluster across
the categories/values. As such, the mode is a descriptive
statistic applicable to any and all variables.
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To illustrate, let’s bring back the Example 2.2 (B) from
Section 2.3:

Do It! 3.2 Educational Attainment’s Mode

Table 3.2 Educational Attainment

Degree
Count
(a.k.a.

frequency)

No degree 1

Secondary/High
School 6

Associate’s 3

Bachelor’s 5

Master’s 2

PhD 1

Didn’t answer 3

TOTAL 21

What is the mode for educational attainment based on the
21 respondents in the example?

Looking for the largest category in Table 3.2 above,
you undoubtedly already identified that the mode for
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educational attainment is “Secondary/High School”. That
is, to put this into language that even people non-trained in
statistics could understand, the most frequent educational
degree among the 21 respondents in the example is
“Secondary/High School” as it has the highest frequency/
the largest number of cases in it, 6. (It is generally quite
useful to get into the habit of translating statistics-ese into
English when you write reports so you should practice it on
all occasions.)

1

And this is all there is to finding out a variable’s mode.
Beyond simply counting (applicable to groups of relatively
small size, as generally no one would want to count
hundreds or thousands of cases by hand), the ways to
obtain a mode through SPSS are listed below.

SPSS Tip 3.1: Finding a Variable’s Mode

Option 1: Through a frequency table
2

• Use SPSS to create a frequency table for your

1. Note that most frequent category does not mean that it contains the majority

or most cases. Sometimes that may be the case, but it's not necessarily so.

In both examples above you can see that neither Roman Catholics nor

people with Secondary/High School degrees are a majority in their

respective groups (10 out of 23 and 6 out of 21, respectively). Thus, be

careful when writing about a mode as being "where most/the majority of

cases cluster" because many times the phrasing would be factually

incorrect.
2. You might want to avoid this option when working with interval/ratio variables, as

their frequency tables can be very, very long.
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chosen variable
3
;

• Look for the category/value with the highest
frequency (the relative frequency in the Valid
Percent column works too);

• Report the category with the highest frequency
as the mode of that variable.

Option 2: Directly requesting the statistic

• From the Main Menu, select Analyze, then
Descriptive Statistics, then Frequencies;

• Select your variable of choice from the left-hand
side and use the arrow to move it to the right side of
the window;

• Click on the Statistics button on the right;

• In the new window, check Mode in the Central
Tendency section on your right;

• Click Continue, then OK.

Note that SPSS gives you the option to display a
frequency table or not before clicking OK in the last step
listed in the SPSS Tip above. The reason is practical: the
frequency tables of interval/ratio variables can be quite
long depending on the number of values they contain. As
such, while identifying the mode from the frequency table
of a nominal or ordinal variable is fine, it’s often more
practical to request SPSS to report the mode of an interval/

3. See Section 2.3.4 (https://pressbooks.bccampus.ca/simplestats/chapter/2-3-4-what-

frequency-tables-look-like/)for the tip on how to create frequency tables in SPSS.
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ratio variable directly rather than through a frequency
table.

Watch Out!! #6… for Reporting Nominal/Ordinal Variable’s Modes
As Given by SPSS

One thing to keep in mind when requesting the mode
directly from SPSS is that SPSS will report modes by their
number labels, or code (i.e., not by the actual name of the
categories). If you recall from Section 2.1
(https://pressbooks.bccampus.ca/simplestats/chapter/
2-1-data/), datasets contain only numbers, with nominal and
ordinal categories appearing in code so that the software can
work with them. As such, your SPSS output will list the
mode of a nominal or ordinal variable as a number, and it is
your job to “translate” that number into its proper form, i.e.,
its the actual category.

For example, in the Religious Affiliation of Canadian
Prime Ministers example above, going in the order the
categories are listed, the categories would typically be coded
in the following way: “Anglican” =1, “Baptist” = 2,
“Evangelical” = 3, “Presbyterian” = 4, “Roman Catholic”
= 5, “United Church of Canada” = 6. The dataset would
contain only the code (i.e., the numbers) and SPSS would
report the mode as “5” in the output.

However, it is a mistake to report the code (the number
label assigned to the category) instead of the actual
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category’s name. You should always report the mode with
its real category name. (That is, it is up to you too look up
the code — recall that you can do this through the Values
column in SPSS’s Data View — and find the correct name
of the modal category). In this case, you should report the
mode of Religious Affiliation of Canadian Prime
Ministers not as 5 but as “Roman Catholic”. (The “5” has no
real meanings, it simply indicates that Roman Catholic is the
fifth category in the listing.)

I’ll end this section with a final consideration regarding
the mode: it is quite possible that a variable has more than
one mode. After all, two (or more) categories/values might
have the same frequency, so in that case we say that the
variable’s distribution is multimodal (bi-modal or tri-modal
in the specific cases of two or three modes). Depending on
the number of modes, it’s acceptable to report only the first,
while indicating that multiple modes exist for that variable.
Multiple modes are usually also easy to spot in bar graphs
and histograms: they appear as bars of equal height.
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3.2 Median

The three measures of central tendency are all measures
that tell us where typical cases fall or where cases tend to
cluster. After exploring the mode in the previous section,
in this section we turn to the second measure of central
tendency called the median.

The median lives up to its name: it derives from the
Latin root medi, meaning “middle”, and that’s exactly the
type of information it provides. Specifically, the median
divides the cases of a variable into two equal halves and
identifies the case in the middle. As such, it points out the
“centre” of the data in a very straightforward way — it
simply reports the middle observation.

Consider, however, the following point: even in
everyday life, the middle implies a beginning and an end
(e.g., “in the middle of the book”); something that is in-
between, a gradation from a point A to a point C, as it
were. From clothes sizes (“small, medium, large”) to how
spicy you like your Thai food (“a little, medium, or hot”),
through turning the volume up or down while listening to
music (“low, medium, high”), the “centre” category bisects
whatever it is applied to into a smaller/larger, less/more,
left/right, etc. parts. That is, to speak of the middle of
something we need to know where it starts (e.g., the
minimum) and where it ends (e.g., the maximum). Simply
put, we need an order.

What all this should tell you is that the median is not

107



applicable to nominal variables. Speaking of the middle
of gender, or the middle of ethnicity, or religious
affiliation, or hair colour, or degree major, or of the middle
of any other nominal variable makes no sense. After all,
the order the categories of a nominal variable appear is
either arbitrary or a matter of preference; nothing precludes
rearranging the categories in some other way so that a case
belonging to one category that ends up in the middle of
one arrangement would not necessarily be in the middle of
another arrangement. A case belonging to any category can
easily end up being the middle one. A statistic shouldn’t
depend on such a chance/preference; as such nominal
variables have no median.

On the other hand, as you know by now, ordinal
and interval/ratio variables do have an inherent
order arranging their categories/values. They have
a “beginning” and an “end”, and therefore a
“centre”. As such, the median applies (only) to
ordinal and interval/ratio variables.

Note that while the mode applies to a
category (freflecting the largest number of cases), the
median is determined by the case (observation) that falls
in the middle of the category-ordered listing of all cases.
Thus it’s not the middle category that is the median;
depending on the size of the categories, the median case
can belong to any category/value. The median category/
value is the one to which the middle case belongs.
Presented this way, the explanation sounds undoubtedly as
clear as mud but do not despair. It will get better when
we establish the manner in which we obtain the median, so
trust me and read on.
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Example 3.2 (A) Three Students, Five Students, Eight Students by
Year of Study, Counting

N=3

a) Let’s say we have three students at different levels of
their studies: one is a first-year, the second one a fourth-year,
and the third a third-year. Before we do anything else, we
need to establish the correct order. We rearrange the students
properly:

(1) a first-year student

(2) a third-year student ← median

(3) a fourth-year student

The case in the middle is Case #2, the second one on the
list (as there is one student below and one student above),
i.e., the third-year student. Thus we have established that the
median category is “third year of study”. That is, half of the
students are below the third year of study and half are above
(as odd as it sounds when we only have three cases).

N=5

b) What happens if I add two more students to our group, say, a first-
year student and a second-year student? The order will go like this:

(1) a first-year student
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(2) a first-year student (new)

(3) a second-year student (new) ← median

(4) a third-year student

(5) a fourth-year student

Once again, it’s easy to see that the middle case is Case #3, the third
one on the list (as there are two students below and two students above),
i.e., the second-year student. This time around the median category is
“second-year of study”. That is, half of the students are below their
second year of study and half are above.

N=8

c) What if I complicate matters further? What if I add
three more students to the group, say, two second-years and
a fourth-year? Their order will be:

(1) a first-year student

(2) a first-year student

(3) a second-year student The median is between

(4) a second-year student (new) ← this case

(5) a second-year student (new) ← and this case

(6) a third-year student

(7) a third-year student (new)

(8) a fourth-year student

If you go by the same logic as above, you’ll quickly find
that there is no “middle” student: unlike before, the students
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now are an even number. The middle of the group actually
falls between Cases #4 and Case #5, the fourth and the fifth
cases on the list (so that four are below and four above it).
Since both the fourth and the fifth students are second-year,
we can conclude that, again, the median is “second-year of
study”. Had the fourth and the fifth student been different
years of study, we could say that the median was between
their respective categories.

We could continue the same way as in Example 3.2 (A)
above for larger groups too: we could arrange the cases
in order of their categories/values, find the middle case
(or two middle cases) and report its category/value as the
median. However, you can guess that this would quickly
become impractical the larger the group size gets. We need
some other way of finding the median, one that generalizes
across groups of any size.

Consider the following formula:

“numbered position of the median case in the ordered
list of cases”

where, as usual, N is the group size.

Instead of counting, let’s apply this formula to Example
3.2 (A).
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Example 3.2 (B) Three Students, Five Students, Eight Students by Year

of Study, Using a Formula

a) N=3

(1) a first-year student

(2) a third-year student

(3) a fourth-year student

According to the formula,

That is, the “numbered position of the median case in the
ordered list of cases” is equal to 2; the middle case is Case
#2, the second one on the list, or like we established before,
the third-year student.

b) N=5

(1) a first-year student

(2) a first-year student (new)

(3) a second-year student (new)

112



(4) a third-year student

(5) a fourth-year student

According to the formula,

That is, the “numbered position of the median case in
the ordered list of cases” is equal to 3; the middle case is
Case #3, the third one on the list, or again, the second-year
student.

c) N=8

(1) a first-year student

(2) a first-year student

(3) a second-year student

(4) a second-year student (new)

(5) a second-year student (new)

(6) a third-year student

(7) a third-year student (new)

(8) a fourth-year student

According to the formula,
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That is, the “numbered position of the median case in the
ordered list of cases” is equal to 4.5. Considering we have
discrete numbers (after all, the cases are individuals), there
is no case number 4.5. Instead, we say that the median falls
between Case #4 and Case #5, the fourth and fifth cases
on the list, or between two second-year students, so it is
“second year of study”.

It is easy to see that we could substitute a group of any
size for the N in the formula. Even when working with
hundreds or thousands of cases, we can always use the
formula to find the place (or which case number) bisects
the variable’s distribution in two haves.

So far I only used an ordinal variable to illustrate the
median. How does finding the median work for interval/
ratio variables? Would it matter that interval/ratio variables
have numerical values rather than qualitative categories?
No, not in the least. After all, finding the median doesn’t
depend on the category or value of any case in any
substantive sense — only on its numbered position in the
ordered list of categories/values.

There is something a bit different in the way interval/
ratio variables look, however, that some people seem to
find a tad more confusing when working with values rather
than categories. To illustrate, I’ll give you another
example.
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Example 3.3 (A) Median for Number of Siblings, Raw Data

Imagine you talk to seven of your friends and ask them about
the number of siblings they have. Let’s say these are the
responses you receive: 2, 1, 4, 2, 1, 0, 3. That is, two friends
report having two siblings each, two friends report having
one sibling each, and three of your friends report having
four, zero, and three siblings each.

To find the median, the first thing we need to do is put the
responses in order:

(1) 0

(2) 1

(3) 1

(4) 2

(5) 2

(6) 3

(7) 4

Whether you visually identify Case #4 as the middle case
(three cases below and three cases above it) or use the
formula ( ) to obtain the same
result, it is clear that the median is “two siblings”: half of
your friends in this example have fewer than two siblings,
and half have two or more siblings.
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What might be confusing for some people is
differentiating between the numbered positions of the cases
on the list and their values since both are expressed
numerically. In this example I have tried to make it easier
to distinguish by putting the numbered positions of the
cases in brackets and the values next to them (just like the
categories in the ordinal example above). Thus you can see
that Case #1 has 0 siblings, Case #2 has 1 sibling, etc. Had
I chosen different set of values — for example, if Case
#1 had 1 sibling, Case #2 had 2 siblings, Case #3 had 3
siblings, etc. — you might have found it a bit harder. For
that reason, make a mental note to keep a clear track of
what is a case’s value and what is its numbered position.
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3.3 The Median With Frequency Tables

and Other Considerations

A similar — though far more widespread confusion – may
happen when working with frequency tables. Frequency
tables, as you know from Section 2.3.3
(https://pressbooks.bccampus.ca/simplestats/chapter/
2-3-3-summing-up-adding-cumulative-percentages/), list a
variable’s categories/values in the first column and their
frequencies in the second column. Take a look at the
incomplete frequency table of the fictitious number of
siblings variable used from before.

Example 3.3 (B) Number of Siblings, Aggregated

Table 3.3 Frequency Table for Number of Siblings

117



Value Frequency

0 1

1 2

2 2

3 1

4 1

Total 7

Can you as easily see that one of your (imaginary)
friends has zero siblings, two of your (imaginary) friends
have one sibling each, another two of them have two
siblings each, etc.? While Table 3.3 presents the same
information as Example 3.3 (A) in the previous section
does, the way the data is organized is different, so again,
make sure you differentiate the variable’s values (first
column) from the values’ frequencies (second column).

A further consideration is finding the median itself.
While we saw that the mode depended only on identifying
the category/value with the highest frequency (and it was
therefore just a matter of finding the largest number in the
Frequency column of a frequency table), are you able to
determine the median from the partial frequency table in
Example 3.3 (B) above? I would venture that the answer
would be “no” for most readers.

Of course, you can find a solution to our median-finding
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problem by “unpacking” the frequency column from Table
3.3 and reverting to raw (uncategorized) data again: one
0, two 1’s, two 2’s, one 3, and one 4 are 0, 1, 1, 2, 2, 3,
4. We already established (both visually and through using
the position-of-the-median formula) that the middle case
was Case #4, or “two siblings”. Would you like, however,
to do that for the following Table 3.4?

Table 3.4 Household Size of the Respondent (GSS 2016)
1

Most likely, you wouldn’t “unpack” the 19,609 cases
into raw data, so we should seek some other — and more

1. Note that this variable is technically an ordinal variable. Despite the

numerical values and equal "distances" (of one person) between the first

five categories, the last category "Six or more person household" prevents

us from categorizing the variable as ratio. After all, we don't know exactly

how many individuals live with any of the 426 people in that category: it

could be six, or seven, or eight, etc. Thus it is not possible to say how many

more persons live in the households of the respondents in the last category

compared to any of the preceding categories: the "distance" is no longer

one person. Any interval/ratio variable that has its last category truncated in

this way (i.e., it has "... or more" in its label) becomes technically ordinal.

Nevertheless, for heuristic purposes I will ignore the "...or more" part in

this example which allows me to assume that everyone in that last category

lives in a six-person household. This, in turn, allows me to pretend the

variable is a ratio. However, the example works the same way regardless if

the variable is truly ordinal or ratio.
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generalizable — method for finding the median through
frequency tables, one that would apply to N of any size.

We could, of course, use the formula to at least establish
the middle case’s numbered position, and then work our
way through the table to identify the median.

That is, Case #9,805’s household size will be the median
household size for these almost 20 thousand respondents.

How do we find it? There are 5,462 respondents who
reported living alone (“one person household”) so we know
that Case #5,462 does not “reach” the median yet, thus we
have to count further. We take the next 7,432 respondents
who reported living in two person households, but we need
to add them to the 5,462 people living alone in order to
obtain the second group’s case number positions. After all,
the case count for the 7,432 respondents does not start from
1 but from 5,463, and Case #5,463 will already be living
in a two person household. So will Case #5,464, Case
#5,465, etc. … all the way up to Case #12,894 (because
5,462+7,432=12,894), which will be the last respondent
living in a two person household.

However, we now see that we have “counted” too far
ahead — we have jumped not to Case #9,805 but all the
way to Case #12,894! We do know though that all cases
between Case #4,463 and Case #12,894 live in two person
households: this is enough for us to establish that Case
#9,805 lives in a two person household as well.
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In short, the median household size of the 19,609
respondents is two-persons household. That is, half of the
respondents live in two-person or smaller households and
half of them live in two-person or larger households.

Hmm, I hear you say, this is still quite the roundabout
way of getting to the median — can you do better?

Alright, let’s think of something else then. We tried
adding the frequencies together until we reached the
median… How about we try using percentages this time
around — and more to the point, cumulative percentages,
as they are already keeping a running total? We just need
to know which percent corresponds to the middle case.

Recall, then, that the middle case splits the distribution
of the cases in two equal halves. What percent is half of
something? Of course, 50 percent. Thus it would make
sense to simply look at the Cumulative Percent column
and try to figure out where 50 percent would fall. The
respondents living alone comprise 27.9 percent, so too low
for the median, but the respondents living in one or two
person households added together comprise already 65.8
percent of the total. Following the same logic as with the
frequencies, the 50th percent falls within the one/two
person household cumulative group. However, we know
it’s not within the one person household group. That means
the 50th percent can only fall within the respondents living
in two person household, which, again confirms what we
already knew: the median household size is made up of two
persons.

To generalize, if you’d rather not use the formula for the
median’s position and add the frequencies of a frequency
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table up in order to find the median, you can always simply
look for within which category/value the 50th percent
would fall. That category/value will be the median one.

Do It! 3.3 Median Workplace Size

Let’s revisit Table 2.6 from Section 2.3.4
(https://pressbooks.bccampus.ca/simplestats/chapter/
2-3-4-what-frequency-tables-look-like/). Can you identify
the median of workplace size? And since you’re at it
anyway, what about the mode?

Imagine you have to tell what you have found to some of
your friends who have no knowledge of statistics. How are
you going to explain to them your findings about the mode
and the median of workplace size?

Table 2.6 Frequency Table for Workplace Size of the
Respondent (GSS 2016)
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Finally, now that you have learned what the median
is and how you can find it, I will also casually mention
that you can use SPSS for that. (Okay, okay. Don’t throw
bricks, please: it really is important to work through the
examples and exercises manually so that you understand
what the SPSS output tells you and so that you are able to
interpret that output properly.)

SPSS Tip 3.3 Finding the Median Of a Variable

• From the Main Menu, select Analyze, then
Descriptive Statistics, then Frequencies;

• Select your variable of choice from the list on
the left and use the arrow to move it to the right
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side of the window;

• Click on the Statistics button on the right;

• In this new window, check Median of the
Central Tendency section on your right;

• Click Continue, then OK.

• The Output window will provide a small table
listing the median of the selected variable.

Keep in mind that the Watch Out!! #6 warning from
Section 3.1 about the mode applies equally to the median:
for ordinal variables, SPSS will provide the median in
numerical code. It is your job to “translate” the code
into the actual category’s name. In the case of household
size SPSS supplies “2” as the median, which stands for
“two person household”. Thus we say that the median
household is a two-person one; we do not report that the
median household is “2”.

Watch Out!! #7… for Misinterpreting the Formula for the Median

An extremely common mistake regarding the median is
to take the result of to be equal to the median itself.
This is patently not true. Again, what the formula provides
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is the place (or the numbered position) of the median once
the cases have been put in their correct order:

“numbered position of the median case in the ordered list
of cases”

Thus, once your calculation for the place of the median is
done, do not forget to do the final step: check the position
you have calculated and see what the category/value of the
median case is. You need to report only that value, not the
position itself.

Stability of the median. A final noteworthy observation
about the median is its stability as a measure of central
tendency. Since the median is entirely about the central
position in a variable’s distribution and all it takes into
account is the order of the cases, not their
substantive values, it’s impervious to the actual
magnitude of the values. Thus it doesn’t matter if we have
a set of values like 1, 5, 20, or one like 4, 5, 6, or another
like 0, 5, 9 — the median is the same for all three, even
if the values in the sets are different. Whether we have a
small or a large value is immaterial, all that it matters is
where the value goes into the order of the variable’s cases.

You will learn why this has important implications for
the central tendency in the next section, all devoted to the
mean.
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3.4 Mean

The third, and final, measure of central tendency is one you
have undoubtedly encountered before. It is one that most
people have had to calculate at least a few times in their
lives, and that everyone has heard reported about one thing
or another. You most likely know it by its common name,
the average.

Recall that the measures of central tendency provide
information about the typical cases, or where cases tend to
centre in a variable’s distribution. Thus a student’s Grade
Point Average (GPA) provides a measure for how well
they do academically, not in one class, but on average,
across all of them; a hockey player’s points season average
provides a measure of their performance on the ice not just
in one game but for a whole season; a monthly average
temperature gives indication of what the typical weather
for a specific month is, etc. All of these averages show
what is typical or expected.

The mean of a variable is therefore, quite simply put,
the mathematical average of the values of the variable’s
cases. Reported alongside the mode and the median, it
provides a fuller picture of where the cases tend to cluster,
or what the typical cases are. The mode does this in the
simplest way, by counting their frequency and reporting the
largest one. The median does that by providing the most
centrally located case in terms of order.
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Unlike the mode and the median, however, the mean
takes into account the actual values of the cases.

Keeping the last sentence in mind, do you think the mean
will apply to all and any variables? If you have been paying
attention, you would know that the answer is “no, of course
not”.

Nominal and ordinal variables have categories. Only
interval/ratio variables have actual numerical values,
therefore, the mean applies only to them. After all,
mathematical calculations are only possible when we have
numbers with which to do the calculations: we cannot
calculate an average of gender, or of race/ethnicity, or of
religious affiliation, etc.

1
We could, however, calculate an

average age, income, score, temperature, etc.

If you had ever calculated your GPA, you already know
how to calculate the mean. I will still give you an example
to strengthen your knowledge.

Example 3.4 (A) Mean of Number of Siblings, Raw data

1. Note that in specific cases it's possible to calculate something like an average

for certain ordinal variables, for example, Likert-scales, to the extent that

their numerical labels reflect a somewhat monotonic, stable-unit, distances.

This should be done with extreme care and ample justification, however,

and beginner researchers (like you) are advised against using means for

ordinal variables.
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If you recall our Example 3.3 (A) from the previous
Section 3.2 ( https://pressbooks.bccampus.ca/simplestats/
chapter/3-2-median/ ), you imagined yourself asking seven
of your friends about the number of siblings they had. We
imagined the responses as follows: 2, 1, 4, 2, 1, 0, 3. We had
to put these values in order to be able to find the median, but
the mean works either way, whether the values are in order
or not.

To calculate the average number of siblings your
imagined friends have, we simply add all responses together
and divide them by the total number of friends, i.e., by 7:

That is, your imagined friends have 1.86 siblings on
average (or not quite but closer to two, rather than one
siblings on average). We could also say that the mean of
number of siblings is 1.86.

Let’s do it again, as practice makes perfect.

Example 3.5 Textbook Prices For a Semester, Raw Data

Simple Stats Tools 129



Depending on the courses you take in a semester, what
you pay for books will vary but let’s say we’re interested
in how much you pay for books in a typical
semester. Perhaps you are very-well organized and
want to finish your degree as quickly as possible so
you have decided to take five courses per semester.
For simplicity’s sake, let’s assume your were assigned
one book per course. These are the books’ prices:
$120, $230, $300, $65, $30. How much did you pay
for a book on average?

That is, despite the fact that some of your books were
expensive (like the $300 one), and some relatively cheap
(like the $30 one), the average price you paid for a book in
that semester was $149.

Now that we’ve seen how the mean works in practice,
let’s generalize what we did in the two examples above
using proper notation. Fair warning: the formula below
does look complicated but remember what we just did: our
calculations were quite simple (adding all values, dividing
their sum by their total number), and so is the formula.
As usual, it simply restates what we’ve said in words in
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a mathematical shorthand. If you know what each symbol
in the shorthand stands for, you know what the formula
means. So, take a deep breath:

(1)

where ∑ stands for “sum”
2

, indicates to sum all cases

from the first (1) to the last (N), xi stands for any case with
a number between 1 and N, and indicates the mean

3,
i.e., the average of all the xi‘s. Thus, the formula
basically tells you to add all values and divide by
their total, just as we did in the examples.

So far, we only calculated the means for raw data, i.e.,
data not presented in a frequency table. Will the calculation
of the mean be different if we had a frequency table
instead? While the principle is the same, the fact that the
values are grouped by frequency in frequency tables
requires that we do a slight modification to our
calculations. Here’s a small-scale illustration to
demonstrate the principle before we do an example with a
larger N.

Example 3.4 (B) Mean for Number of Siblings, Aggregated Data

2. ∑ is pronounced "SIG-ma" and is the Greek letter S.

3. is pronounced "EX-bar".
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Arranging the raw data from Example 3.4 (A) above, we
again get the following table.

Table 3.3 Frequency Table for Number of Siblings

Value Frequency

0 1

1 2

2 2

3 1

4 1

Total 7

According to the formula for the mean, we need to add
all values together and then divide their sum by their total
number. When the values are disaggregated (i.e., raw), we
can proceed to adding them up right away. However, when
they are grouped by frequency, we first need to multiply
each value by its respective frequency, and then add the
value-times-frequency products together, before dividing
them by the total number, like this:
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Again, the average number of siblings of these seven
friends is 1.86, as previously calculated.

Now let’s apply the same principle to a new, larger-N
example.

Example 3.6 Age of Classmates, Aggregated Data

Imagine you are doing a survey for one of your class
assignments and one of the questions is about age. You
aggregate the data by frequency and you get the following
table.

Table 3.5 Mean for Age of Classmates
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Value Frequency

19 1

20 10

21 12

22 8

25 2

27 1

35 1

TOTAL 35

By the formula, we have:

Or, now you know that the average age of your classmates
in that class is 21.69 years, or a bit less than 22 years.
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3.5 The Mean With Existing Data and

Other Considerations

Let’s work through some real-world data, this time from
the Canadian Community Health
Survey 2015-2016 (Statistics Canada 2017),
a.k.a. CCHS 15/16, a very large dataset containing
information on more than 100,000 respondents.

Table 3.6 Number of Times the Respondent Consulted a
Mental Health
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Professional in the Last 12 Months (CCHS 15/16)

To calculate how many times Canadians consulted a
mental health professional in the last year preceding their
participation in the survey based on the data above, we
need to follow the principle we used in the age of
classmates and number of siblings examples in the
previous section.

Specifically, we need to multiply each value (1 through
12 number of times a mental health professional was seen)
by its frequency, then to sum all the products together,
and finally to divide the sum on the total number of
respondents, 15,462 (recall that we only use valid cases for
analysis and exclude the missing ones).
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That is, we have found that the respondents on average
consulted a mental health professional 4.76 times over the
12 months preceding the survey.

Do It! 3.4 How Many Times Has The Respondent Stopped Smoking
for at Least 24 hrs In the Past 12 Months (CCHS 15/16)

To save you you from calculating into the thousands,
here is a variable based on a question that 99.9 percent of
the respondents did not have to answer, which gives you a
manageable N=106. Calculate the average number of times
respondents have stopped smoking for at least 24 hrs for the
12 months preceding the survey. While you’re at it, find and
report the mode and median of this variable.

Table 3.7 Number of Times Respondent Stopped Smoking In the
Past Year (CCHS 15/16)
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I strongly encourage you to do the above exercise
yourself. Still, as usual, here is an SPSS tip on how to
obtain a mean in SPSS.

SPSS Tip 3.4 Obtaining the Mean
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• From the Main Menu, select Analyze, then
Descriptive Statistics, and then Frequencies;

• Select your variable of choice from the list on
the left and use the arrow to move it to the right
side of the window;

• Click on the Statistics button on the right;

• In this new window, check Mean in the Central
Tendency section on your right;

• Click Continue, then OK.

• The Output window will provide a small table
listing the selected variable’s mean.
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3.6 Outliers

Out of the three measures of central tendency, the mean is
the only one that takes into account the actual numerical
values of the cases. As such, it is easily affected by the
size of the values: a sequence of numbers such as “1, 5,
7, 10, 15” will produce a smaller mean than a sequence of
numbers like “100, 50, 75, 130, 90”.

When all values to be averaged are of relatively
comparable magnitude, the mean does a good job at
reflecting the central tendency of a variable — that is why
it is the most familiar and widely used measure. However,
when a variable contains an extremely small or an
extremely large value (or several values) compared to
the rest of the values, the mean gets easily distorted
and stops reflecting the central tendency “truthfully”, as it
were. Extremely small and extremely large values are
called statistical outliers.

While there is a convenient method for identifying
outliers (using a concept called interquartile
range which we will discuss in the next chapter),
at this stage it is not necessary that you be so
technical. You can visually identify outliers, albeit
less precisely, by the “disturbance” in the general
pattern of the data you observe. For example, if
you have values like “1, 5, 7, 10, 15”, a value
of 130 in that sequence would be considered an
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outlier. Similarly, if you have values like “100, 80,
75, 130, 90”, a value of 5 would be an outlier.

Let’s calculate the means of the two sequences, first
with and then without the so-called outliers and see what
happens.

The first sequence is 1, 5, 7, 10, 15 and we want to see
what happens when we add 130.

We add 130 to the sequence:

Both means, 7.6 and 28, are the true averages of the
sequences of values as listed. However, the addition of an
uncommonly large number “pulled” the mean away from
the “centre” of the original data.

How truthfully does 28 represent the “centre” of a
sequence where the majority of the cases’s values (in fact,
five out of the six values) are 15 and below? Not that
much.

1

1. If you believe it's not the magnitude of the value but just its addition that

causes the "pulling" of the mean, consider redoing the example with adding

18, instead of 130. Then we have

. The "pull" from 7.6 to 9.3 is

much smaller than from 7.6 to 28. The value 9.3 reflects the central

tendency of the data more truthfully than 28 does.

142



To demonstrate the effect of an extremely small value,
we continuing with the next sequence:

Adding a value of 5 to the sequence produces the
following:

Similarly as with the effect on the mean of the first
sequence, the mean here gets “pulled”, but in the opposite
direction, from 95 to 80. Both means are technically true
averages of their respective values but the latter one is
“artificially” low: after all, four out of the six values are the
same or higher.

2

What this tells you is that the mean is an unstable
measure of central tendency, prone to being affected by
outliers. Contrast this to what you know about the median:
the median does not take the magnitude of the values into
consideration, beyond their order. Thus, as explained in
the previous Section 3.3 (https://pressbooks.bccampus.ca/
simplestats/chapter/3-3-the-median-with-frequency-
tables/), adding a value (be it extremely small or extremely
large) to a sequence does not affect the median much —

2. Again, if we added a value of a comparable size to this sequence instead of 5,

the mean would not be impacted as much:

Consider the

"pull" from 95 to 80 vs. from 95 to 90.8.
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unlike the mean. The median of 1, 5, 7, 10, 15 is 7 (there
are two values above and two below it), and whether we
add 130 or 18, it doesn’t matter: it’s just an additional value
in the sequence.

3

Since the mean is prone to being affected by outliers,
while the median is not, in some situations it is advisable
to report the median as a more “valid” measure of
the typical cases/”centre” of the data rather than the
mean. Specifically, watch out for reports on average
income, average age, average weight, etc. where a few
outliers can skew a variable’s distribution.

Watch Out!! #8 … for Reports on Averages of Variables Prone to
Skewing by Outliers

Imagine a small company advertising an open position by
claiming that the average salary of their employees is 100
thousand dollars per year. For simplicity’s sake, let’s assume
the company has ten employees and these are their salaries:

Table 3.8 Employee Salaries (Hypothetical Data)

3. The median of 1, 5, 7, 10, 15, 18 is between 7 and 10, i.e., 8.5 (since we need

the half-way distance between 7 and 10, we use the average of 7 and 10,

that is 7+10=17 and divide it by 2 to get 8.5). The median of 1, 5, 7, 10,

15, 130 is exactly the same -- it is still half-way between the two middle

values, 7 and 10, or again 8.5.
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Value (in thousands) Frequency

70 5

87.5 4

300 1

TOTAL 10

You can check for yourself what the average annual salary
is:

or, indeed, 100 thousand dollars. However, how
representative this annual salary is for the regular employee?
After all, nine out of ten employees of the company get less
than that. The average annual salary reported is inflated by
the very high salary of one employee (perhaps the manager),
a clear outlier.

Let’s instead look at the median. We start by arrange the
values in order:

70, 70, 70, 70, 70, 87.5, 87.5, 87.5, 87.5, 300
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Using the formula for finding the position of the median,
we have

I.e., we find that the median falls between the fifth and
the sixth value in the order, or between 70 and 87.5. The
halfway point between these two values is found by
averaging them:

which shows us that the median annual salary of the
employees in that company is $78,750. This is a lot less than
the touted average of $100,000 and a lot more reflective of
what nine out of ten employees receive.

Examples like the Watch Out!! #8 above show that
relying on the mean can be tricky, and in some cases can
be deliberately used to “lie with statistics” (i.e., a report
might be technically correct but at the same time very
misleading). Thus, generally reporting all three
central tendency measures is the way to go and
you, as a beginner researchers should do that.
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Finally, you can observe a skew in the data even visually
by looking at an interval/ratio variable’s graphical
representation, i.e., its histogram. Extremely high values
tend to “pull” the mean to the right of the “centre”, i.e.,
with the majority of cases being relatively smaller, the
few high values will produce a “tail” on the right side of
the distribution (a.k.a. positive skew). On the other hand,
extremely low values tend to “pull” the mean to the left of
the “centre”, i.e., with the majority of cases being relatively
larger, the few low values will produce a “tail” on the left
side of the distribution (a.k.a. negative skew).

As well, since the median indicates the “centre”
of the data better, a mean smaller than the median
would typically indicate a negative/left skew,
while a mean larger than the median would
typically indicate a positive/right skew. When you
observe a skew in the data, the median would
typically be a the preferred measure of central
tendency.

Observe the positive skew in Fig. 3.2 below.

Figure 3.1 Number of Cigarettes Smoked Per Day by
Occasional Smokers (CCHS 15/16)
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The reason the numbers on the horizontal axis reach
as high as 100 despite the fact that there appears to be
nothing there is because there is at least one outlier case
— a respondent who said they were an occasional smoker
but reported smoking 99 cigarettes per day.

4
Thus the

distribution has a long right-side “tail”, as it were, which
you can better see in Fig. 3.2 providing the “zoomed-in”
version of the histogram above. (The “tail” is what you will
have if you trace an imaginary line through the tops of all
the bars in the histogram down to the single case of 99
cigarettes per day.)

Figure 3.2 Number of Cigarettes Smoked Per Day by
Occasional Smokers (CCHS 15/16), Zoomed

4. Whether this is to be believed is not important here, just the fact that such a

value exists in the data. You will learn what is to be done about outliers in

statistical analysis in Chapter 4.
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In this case the median is 3 cigarettes smoked per day by
an occasional smoker. The mean is 4.33, and as expected,
it is larger than the median.

Similarly, an exceptionally small value compared to the
bulk of the cases will produce a negatively-skewed
histogram where the distribution has a “tail” but on the
left of where most cases are. In that case the mean will be
smaller than the median.
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3.7 Central Tendency and the Levels of

Measurement

This chapter introduced a lot of new concepts and
terminology so a recap is in order. The three measures of
central tendency — the mode, the median, and the mean —
provide information about the so-called “centre of gravity”
of a variable’s distribution, or where the cases tend to
cluster. The mode provides the most frequent category/
value; the median provides the middle point/”centre”
of the data and bisects the distribution into two equal
part; and the mean is the mathematical average of
values.

One thing worth repeating is the caveat about the
appropriateness of each of the measures of central tendency
given the level of measurement of the variables at hand.
Below is a quick, “cheat sheet” type of a table
summarizing which central tendency measures are
appropriate for which levels of measurement.

Table 3.8 What Central Tendency Measures to Report for
The Different Types of Variables
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Nominal
Scale

Ordinal
Scale

Interval/
Ratio Scale

Mode ♦ ♦ ♦

Median – ♦ ♦

Mean – – ♦

In other words, the mode is appropriate for all
variables, regardless of their level of measurement; the
median works only with ordinal and interval/ratio
variables; and the mean can be calculated only for
interval/ratio variables.

I’ll also restate it in terms of the variable type: nominal
variables have only a mode; ordinal variables a mode
and a median; and interval/ratio variables have all
three measures of central tendency.

In terms of working with SPSS, as usual, it is you who
makes the decision to request modes, medians, and means.
You can either memorize the above Table 3.8, or, better yet,
understand the logic behind each central tendency measure
to know whether it’s logically possible to apply it to a
variable of a given scale — but in either case, SPSS will
not make the decision for you.

Watch Out!! #9… for Trusting SPSS to Provide Only Appropriate
Measures
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SPSS cannot tell you the appropriate central tendency
measures for a specific variable. Sometimes, if you make
a mistake, depending on the mathematical procedure
requested, SPSS might be genuinely unable to execute a
command which will alert you to the fact that you
have made an error. However, in many cases SPSS
will execute a command and will produce output,
regardless of whether the command makes logical
sense or not.

To your bad luck, the measures of central tendency
(and, as we will see in the next chapter, the measures
of dispersion) are exactly one of these cases where
SPSS will produce any measure of central tendency
for any variable you ask of it. Thus, for example, if
you request a mean for race/ethnicity, or a median for
religious affiliation, it will execute the commands and
give you what you asked for: it will produce numbers
(which, if you remember, stand for the numerical
labels of the categories). It will be then up to you to
interpret those numbers.

This, however, would be a logical impossibility —
there is no average race/ethnicity, nor “centre value”
for religious affiliation. You would have made a
mistake, and SPSS would have let you have your
meaningless output.

This basically illustrates the saying “garbage in, garbage
out”: if you input nonsense, the output will be nonsensical
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too. It thus falls on you to not input nonsense and to not
request measures of central tendency for variables for which
they are inappropriate.

Results aside, proper communicating of findings is also
very important. Even when output is produced correctly,
your job is still not done: you still have to interpret the
results and communicate what you have found.
Considering that people in general (including in the social
sciences) are variously trained in quantitative research, it is
always a good idea to “translate” the more technical jargon
into a more easily understandable, everyday language.

Specifically about descriptive statistics like the measures
of central tendency we explored in this chapter, or the
measures of dispersion in Chapter 4, the goal is to
communicate your findings not only about variables and
measures and modes, etc. but to explain what you have
found in terms of people (or whatever units of analysis
you happen to work with). Thus, “the mode of religious
affiliation is…” becomes “the most frequently reported
religious affiliation is…” or even “respondents most
frequently identified as … in terms of their religious
affiliation”. (As well, getting into the habit of “translating”
variable-centric jargon into people-centered statements is a
good practice for your understanding of the material.)

Finally, a related issue is remembering to use the
variable’s units of measurement when communicating
results. To give a few examples, the median of number
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of siblings is measured in “siblings”, the mean of income
is measured in “dollars”, the mode of age is measured in
“years”, etc. If you know the unit of measurement of the
variable you describe (and you should), use it: a median
age is never, say, 20; it’s 20 years.

With this done, we now turn to the last set of measures
used to describe variables, namely measures of dispersion.
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Chapter 4 Measures of

Dispersion

Early on in Chapter 3 we established that there are three
pieces of information which helps us describe variables.
Describing variables helps us to glean something from the
variables’ distribution beyond the raw list of observations
of which it is made. In other words, through descriptive
analysis we get to learn something about the cases that is
not readily observable when all we have is a collection of
data points.

Graphs provide a first glimpse at a variable’s
distribution. Measures of central tendency provide
information about the typical cases, where most cases tend
to cluster, or about the “centre” of the data. We now turn to
measures of dispersion, the last of the three key pieces of
descriptive information pertaining to variables. Measures
of dispersion tell us how”spread out” a variable’s cases are;
they provide a “clusteredness” measure of the data, as it
were, and of how dispersed cases are across the variable’s
values.

A simple illustration will make dispersion measures
easier to understand. Take two sets of three numbers: “4,
5, 6” and “2, 5, 8”. By now, you should be able to tell
immediately that the median of both sets is 5 (each set has
one value below and one above 5). You also might be able
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to easily see that the mean of both sets is also 5; if not, this
is how we get it:

Even if both “4, 5, 6” and “2, 5, 8” sets have the same
measures of central tendency, you’d be hard-pressed to
claim they are the same sets of numbers. Take a look at
the image below (or just look at a ruler of your own, if
you have one close by): the values of 4 and 6 are much
closer to 5, than 2 and 8 are. That is, the values of our
first set are more closely clustered around the “centre”,
while the values of our second set are more loosely spread
around it. This “clustering” vs. “spreading” is precisely
what dispersion measures.

There are four commonly used measures of dispersion.
1

1. A fifth measure of dispersion exists but is less commonly used. I'll introduce

it only insofar as it is useful for understanding the standard deviation, the

most widely used measure of dispersion.
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Before we turn to each of them in turn, note what I have
just demonstrated here: it is quite possible for two
variables to have the same measures of central tendency
but different measures of dispersion.

The four measures of dispersion can be divided into
two groups. We begin with the simpler two, the range and
the interquartile range, then turn to the more complicated
(but most widely used) pair, the variance and the standard
deviation.
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4.1 Range

Providing the range for a set of values is so easy, most
people don’t even realize it is an actual statistical measure
of dispersion. If you have ever said something to the effect
of “I have friends whose ages vary between seventeen and
twenty-seven” or “my scores on these exams vary from 25/
100 to 95/100”, etc., you have effectively been providing
the range of your friends’ ages or the range of your exam
scores.

To give you the more technical definition, the range of a
variable is the difference between its highest and lowest
values. That is, to get the range, we simply subtract the
lowest value from the highest value:

In the two quick examples above, the range of your
friends’ ages would be (27-17=) 10 years, and the range of
your exam scores would be (95-25=) 70 points.

I’ll use an older, familiar example for the longer work-
through, below.

Example 4.1 The Range for Textbook Prices Paid in One Semester
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Recall Example 3.5 from Section 3.4
(https://pressbooks.bccampus.ca/simplestats/chapter/
3-4-mean/) where we calculated the mean price of
textbooks we imagined you paid in a particular
semester. The books’ prices were $120, $230, $300,
$65, $30. The cheapest book (i.e., the lowest value,

) was $30 and the most expensive book (i.e., the
highest value, ) was $300. Thus

That is, now we have found that the range of textbook
prices for that semester was $270, with prices you paid
ranging between $30 and $300.

One thing to note here is that in order to have a
difference, i.e., in order to be able to do a mathematical
operation like subtraction, we need to have numerical
values.

In truth, as you are about to see, all measures of
dispersion are obtained through mathematical operations
and, as such, require numerical values. Since interval/ratio
variables are the only variables which contain actual
numerical values, all dispersion measures (including the
range) are only applicable to interval/ratio variables.

1

1. Some people find it useful to provide something like a range for ordinal

variables: after all, they do have a "lowest" category and a "highest"

category. While technically not a statistical measure of dispersion (as no

difference can be computed), it can still be useful to add a description about
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A final point about the range is that it is a rather
unsophisticated measure of dispersion, as you have already
noticed. (Hence the very short section about it.) By taking
into account solely the highest and the lowest values, the
range effectively ignores all other values, be they more
clustered or more spread out.

After all, if you recall from Section 3.6
(https://pressbooks.bccampus.ca/simplestats/chapter/
3-6-outliers/), outliers do exist. In the presence of outliers,
the range can end up being quite large, even if the majority
of the observations are closely clustered. Therefore, we’d
better find a dispersion measure which takes into account
more than just the two extremes of a variable’s distribution.

The interquartile range is one such measure which
provides a bit more information about the variability of the
distribution. Alas, the cost of this information is, of course,
an increased complexity in obtaining that measure. (An
ominous foreshadowing for what’s to come!)

the categories ranging between the lowest and highest points, e.g.,

"respondents' agreement with the statement varies between "strongly

disagree" and "strongly agree". Considering that the categories of nominal

variables have no inherent order, nothing of the sort can be applied to them.

All in all, providing a qualitative description of dispersion for ordinal

variables (like the agreement one I just mentioned) is optional and, strictly

speaking, not a statistical measure.
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4.2 Interquartile Range

Unlike the range which focuses on the extreme ends, the
interquartile range (frequently referred to as IQR) looks
into the distribution of observations around the “centre”.
To that purpose, it splits the distribution into four equal
parts called quartiles (from the Latin quartus, meaning
one-fourth, i.e., a quarter), and then provides the range
of the middle two parts taken together. This sounds more
complicated than it actually is, so let’s turn to examples and
make it better.

To begin, let me first demonstrate what all this means
with a set of raw values which we can call, say, hours
worked per week.

Example 4.2 Weekly Hours Worked (Raw Data)

Imagine you have been hired as a research assistant (RA)
on a research project. You have worked 20 weeks in total
in the past two semesters, ten weeks in each semester (with
your classes and all, you couldn’t work every week). The
maximum hours per week you could work was 15, limited
by the nature of your contract. You make a list of all hours
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you have worked in each of the twenty weeks, and you list
the twenty values in ascending order. Here they are:

2, 3, 3, 4, 5, 7, 7, 7, 8, 8, 10, 10, 10, 10, 12, 12, 13, 13, 13,
14

If you recall from our discussion of the median, to split
a group of values into equal parts we need the values’
positions in the order. You can find these in the table below:

Table 4.1 Values and Their Positions of Hours Worked per
Week

Position Hours Worked
per week Position Hours Worked

per Week

(1) 2 (11) 10

(2) 3 (12) 10

(3) 3 (13) 10

(4) 4 (14) 10

(5) 5 (15) 12

(6) 5 (16) 12

(7) 7 (17) 13

(8) 7 (18) 13

(9) 8 (19) 13

(10) 8 (20) 14

You might be tempted to use an intuitive method for
splitting the set of twenty values given in the example into 4

166



equal parts (i.e., into quartiles) by simply dividing 20 by 4,
which will let you have 5 values in each quartile:

2, 3, 3, 4, 5 5, 7, 7, 8, 8 10, 10, 10, 10, 12
12, 13, 13, 13, 14,

Thus the interquartile range (or “the range of the middle
two parts taken together”) of the entire set of 20 values
would be the range of 5, 7, 7, 8, 8, 10, 10, 10, 10, 12.

A quick-and-dirty calculation would show that the IQR
is (12-5=) 7 hours. You would be correct — indeed, the
interquartile range is 7 hours — but I’ll stop you
nevertheless. This worked out only because I’ve chosen the
numbers between the first and the second quarter of cases
to be both 5, and the numbers between the third quarter
and the last to be both 12. You need to read below to find
out the proper method for obtaining the IQR. (The example
continues further down.)

Quick-and-dirty calculations are not precise, even if they
serve their purpose to give you a basic idea of what we are
doing. Now that you’ve seen where this is going, let’s do
everything properly.

First, we need to calculate the precise positions of the
values that separate the quartiles. Recall how we used to
split a set of values in two in order to get the position
median. We used the following formula:

←“position of the median”
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We’ll follow the same logic to split each of the halves in
two themselves. Thus let me restate the above formula to
this:

←“position of
the median”

Since we effectively multiply N+1 by 0.5 in order to
split the entire set in two halves (or, to get one half of the
data), to split the first half of the values further in two
itself, we need to multiply N+1 by “half of 0.5”, i.e., by
0.25 (essentially getting one quarter of the data):

← “position of
the first quartile”

By analogy, splitting the second half in two itself will
require getting three quarters of the data, or to multiply
N+ 1 by “0.5 and a quarter”, i.e., by 0.75:

← “position
of the third quartile”

If you follow the logic, you’ll easily conclude that the
median is also de facto the second quartile (i.e., two
quarters of the data).

To restate, we have the following way to split the data
into four equal parts:

The position of the first quartile, Q1, is found through
.
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The position of the second quartile, Q2 (a.k.a the
median), is found through .

The position of the third quartile, Q3, is found through
.
1

Now let’s use our newfound formulas in the Example
4.2.

Example 4.2 Weekly Hours Worked, Continued

With N=20, we get:

Q1‘s position →

Q2‘s position →

Q3‘s position →

Once again, do not forget that all these formulas provide
the positions of the quartiles, not their respective values. To
see the values, we have to look at Table 4.1 above which
cross-lists the cases’ positions and values. Since there is no

1. Obviously, we don't speak of a fourth quartile, as four quarters comprise the

whole thing: the fourth quartile would simply be 100%, or all of the data.
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Case #5.25, we know that the value we’re looking for is
between Cases #5 and #6 (a quarter further than #5) — but
as the values of both Cases #5 and #6 are 5, we conclude that
the value of the first quartile is 5.

Similarly, there is no Case #15.75 (so the value we’re
looking for is three quarters past the 15th case), but both
Cases #15 and #16 are 12, so we conclude that the third
quartile is 12.

We are still interested in the interquartile range — or the
range of the two middle quarters of the data (or the middle
50 percent, so to speak). Then, since

Q3 = 12 and Q1 = 5,

we have that

Q3 – Q1 =

Or, we have found that the IQR for hours worked per
week is 7 hours per week. Or, at the mid-range, your hours
worked per week varied between 5 and 12 hours per week.

Alright, but why, you might ask — couldn’t we just have
the range and be done with it?

The value added of using interquartile range is that it
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takes care of outliers, so it’s frequently a better measure
of dispersion than range. The IQR provides the spread of
the centrally located 50 percent of the data which in many
situations paints a more accurate picture of how “the more
typical” of the variable’s cases are spread out, rather than
looking at the more extreme spread provided by the range
which encompasses all cases, even the clear outliers.

All in all, however, just like with choosing whether to
use a median or mean, the decision which of these two
measures of dispersion is the more appropriate one to be
used and reported depends on the specific situation and the
researcher’s discretion. I would urge you, as a beginner
researcher, to make a habit of reporting both the range and
the interquartile range, while simultaneously discussing the
effect of any potential outliers.

Instead of working with raw data, we might have
frequency tables at hand. How do we get the range and
IQR from aggregated data? For the range, simply
subtract the lowest value (the one listed first in the Values
column, of course) from the highest value (the one listed
last in the Values column) and report the difference (in its
appropriate units of measurement). For the IQR, look for
the 75th percentile (i.e., Q3) and the 25th percentile (i.e.,
Q1) in the Cumulative Percent column, then subtract the Q1
value from the Q3 value, and again report the difference.
(This is similar to how we looked for the 50th
percentile for the median, Q2, in Section 3.3
(https://pressbooks.bccampus.ca/simplestats/
chapter/3-3-the-median-with-frequency-tables/).)
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Exercise 4.1 Range and IQR for Cigarettes Smoked per Day

Practice your newly acquired skills to find Q1, Q2 (i.e., the
median), and Q3 in the following table. Calculate and report
the range and the interquartile range for number of cigarettes
smoked each day.

Table 4.2 Number of Cigarettes Smoked Per Day by Daily
Smokers (CCHS 15/16)
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To make sure you’re doing it correctly, let’s quickly
check your answers right away. The range is of course
(99-1=) 98 cigarettes per day. To find the IQR, you must
have first identified Q1= 10 (since 23.9 percent of the
cases make up to 9 cigarettes per day, the 25th percentile
falls in the 10 cigarettes per day category) and Q3 = 20
(since 65.4 percent of the cases make up to 19 cigarettes
per day, the 75th percentile falls in the 20 cigarettes per
day category). Then the IQR is (20-10=) 10. Thus you
see the difference between range and interquartile range:
while the range might leave you with the impression that
cigarettes smoked per day vary by almost a hundred for
daily smokers, the middle half of the cases actually only
vary by 10 cigarettes.

Of course, there’s also SPSS. Check below to see how to
find the range and IQR (semi-) directly.

SPSS Tip 4.1 Obtaining Range and Interquartile Range

• From the Main Menu, select Analyze, then
Descriptive Statistics, and then Frequencies;

• Select your variable of choice from the list on
the left and use the arrow to move it to the right
side of the window;

• Click on the Statistics button on the right;
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• In this new window, check Quartiles from
the Percentile Values on your top left and check
Range (and Minimum and Maximum if you
wish) from the Dispersion section below it;

• Click Continue, then OK.

• Range (along with the smallest and largest
values, if you asked for them) will be reported
in the Output directly.

• To obtain the IQR, simply subtract the value
reported as 25th percentile from the value
reported as 75th percentile.

With the range and IQR covered, we are halfway
through the typically used measures of dispersion. On to
the remaining two, the variance and the standard deviation.
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4.3 Variance

Similarly to how the median is about the central position
of a case while the mean is about the average of actual
numerical values, the range and interquartile range are
about positions in the overall (ordered) distribution of cases
while the remaining two dispersion measures, the variance
and the standard deviation, are about averaging numerical
values.

Thus, like the mean, the variance and the standard
deviation account for all cases, not just a select few. Unlike
the mean, however, instead of calculating the average of
all values, the standard deviation and variance calculate
(approximately) the average of the distances of each and
every value to the mean.

The mean is a measure of central tendency, as you know
by now, and it represent a sort of “centre” of the data,
value-wise (as opposed to position-wise, which is what
the median is). You know that all cases’ values enter the
calculation of the mean (after all, we sum all values and
divide the sum on their total number to get the mean), but,
at the same time, the values are different from the mean.
(That is, either all are different, or all but one —
it’s possible that one of the values is actually what
the mean is, in which case the difference is zero.)

This difference, between a value of a case and
the mean, is what we call distance to the mean.
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We have to average these (by adding all of the
distances of all cases’s values together and
dividing by their total number) to obtain the
variance and the standard deviation. Once we have
these dispersion measures, we’ll be able to tell
how all cases are spread out around the mean.
This, in turn, gives us information about how
much variability there is in a given variable’s
cases, if they are dispersed or clustered together.

You’ll be glad to know that the variance and the standard
deviation are calculated in almost the exact same way; the
standard deviation needs just one additional mathematical
operation after getting the variance. In a sense, they
calculate the same thing but are expressed differently, and
the standard deviation is usually considered easier to
interpret.

This is all the good news I have for you at this point, I’m
afraid, as what follows is a calculation process containing
several steps. On the whole, it may look complicated
though it really isn’t; the key is to not forget what you are
doing and where you are in the process. If you find yourself
losing track, simply go back and start from the beginning,
paying attention to what steps you go through.

Variance. Since we want an average of the distances of
the cases from the mean, it would make sense to start with
getting these distances as a Step 1. Step 2 would be to add
these distances together, then Step 3 would be to divide the
sum on their total number. This is easier said that done, as
you shall see (ominous foreshadowing!), so I’ll divide Step
1 into two sub-steps, Step 1A (getting the distances) and
Step 2B (a procedure I’ll keep as a mystery for now).
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As usual, we’ll do all this through an example. For
simplicity’s sake, I’ll reuse Examples 4.2/4.3 from the
previous section which we used to introduce the concept of
IQR.

Example 4.4 (A) Weekly Hours Worked, Revisited

If you recall, we had imagined you as a research assistant
(RA) on a research project and you had worked 20 weeks in
total in the last two semesters, ten weeks in each semester.
The maximum hours per week you could work was 15,
limited by the nature of your contract.

As there are a lot of calculations to be done, to simplify
our job, let’s imagine further that we’re interested in only
one of the two semesters you had worked, and these are only
the hours in the ten weeks of that one semester:

3, 3, 5, 7, 8, 10, 12, 12, 13, 14

Considering that for Step 1A we need the distances of
each of these ten values to the mean, we’ll calculate the
mean as a preliminary requirement.

1

1. Since N=10 or more makes for quite the long equations if the values are listed

(summed) one by one separately, from now on I will group values by frequencies in

the calculations I do as a matter of principle. (I.e., instead of 3+3, here I have (3)2,
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Armed with the mean of 8.7 hours, we can now proceed
to calculate the distance of every value to the mean (i.e.,
subtract the mean from each value to obtain the difference).
I list the values and their respective distances from the mean
in the table below.

Table 4.3 Step 1A Calculating Distances To the Mean

instead of 7+7+7, I would have (7)3, etc.) Coincidentally, this is exactly what we do

when working with data organized in a frequency table.
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3 (3 – 8.7) = -5.7

3 (3 – 8.7) = -5.7

5 (5 – 8.7) = -3.7

7 (7 – 8.7) = -1.7

8 (8 – 8.7) = -0.7

10 (10 – 8.7) = 1.3

12 (12 – 8.7) = 3.3

12 (12 – 8.7) = 3.3

13 (13 – 8.7) = 4.3

14 (14 – 8.7) = 5.3

Again, as usual, is the value of each and any Case
# (from 1 to 10), and is the distance (i.e.,
difference) between each and any Case # (from 1 to 10) to
the mean.

Now if we were to jump directly to Step 2 (summing
all distances together) and Step 3 (dividing by the total
number), we would be in trouble. You see, since the mean
averages all values and provides a “centre” of the variable’s
distribution value-wise, distances of the values below the
mean equal the distances of the values above the mean,
albeit with opposite signs.

That is, summing all values below the mean (i.e., the

Simple Stats Tools 181



negative differences) would equal the sum of all values
above the mean (i.e., the positive differences). As one sum
is negative and the other positive (but with the same
absolute value

2 ), they cancel each other out —
adding them together would result in 0, every
time. This is due to the very nature of the
calculation of the mean; it’s a mathematical
inevitability.

Don’t believe me? Try it. The sum of the distances below
the mean is:

The sum of the distances above the mean is:

Thus, the sum of all distances from the mean is

Told you: Zero. Every. Time.
3

2. The absolute value of a positive number is the number itself; the

absolute value of a negative number is the number itself but

without the negative sign; the absolute value of zero is zero.

Absolute value is noted with two straight vertical line. For

example, the absolute values of -1 and 1 are equal to each other:

|-1| = |1| = 1.
3. If you're still not convinced and think that maybe I selected the numbers just

so that the distances to their mean add up to zero on purpose, you are

welcome to try this 'trick' with any set of numbers.
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So if the sum of the distances to the mean is always
zero, then what? How are we to average those distances,
since dividing the sum (i.e., zero) on any N would give us
zero? Are we to give up?

The thing is, the distances (below and above the mean)
only cancel each other out because we consider the
distances below the mean as negative. This, however, is
a somewhat of a mathematical conceptual artifact: in real
life, there is no such thing as a negative distance from one
thing to another. Imagine yourself standing between two
of your friends, one on your left and the other on your
right. Let’s assume they both stand a meter away from
you: you wouldn’t say that one is a negative meter away
while the other is a positive meter away, would you? There
are no negative and positive meters, just meters (and well,
they are always positive, as distance in the physical sense
always is).

Thus we are actually not interested in summing the
cases’ distances from the mean as calculated but only in
their “positive version” ignoring their signs, i.e., we want
their absolute values.

True, we could proceed with our Steps 1 and 2 using
only positive distances. When done, this produces an actual
dispersion measure called mean deviation (or mean
absolute deviation). The mean deviation is easy to
understand and quite intuitive, however (and perhaps to
your chagrin), it is rarely used — specifically because we
have the variance and standard deviation which are found
to be much more useful (this comes into play in inferential
statistics, as you will see in the latter part of this book). Due
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to its unpopularity, I’ll therefore skip the mean deviation —
we’ll have to look for another way of getting only positive
numbers for our calculation of the average distance from
the mean.

4

Now stop and think: beside absolute values, is there
another way of turning numbers positive?

If you thought of squaring, good for you! A (non-zero)
number squared is a positive number:
. Thus one other way of getting around our distances-
summing-to-zero problem is to square the distances before
adding them up! Nifty trick, eh?

Let’s test how this works with our Example 4.4.

Example 4.4 (B) Weekly Hours Worked, Revisited

4. For the curious souls out there (all three of them), this is what the mean

deviation looks like, using the numbers from Example 4.4 (A) above. As

the below-the-mean sum was -17.5 and the above-the-mean sum was 17.5,

ignoring the negative signs we would get

. Since N=10, by averaging the distances we get (the mean

absolute deviation). That it, the average distance of a case's value from the

mean is 3.5, or, in terms of our example, your weekly hours (which ranged

from 3 to 14) on average varied by 3.5 hours from
the mean of 8.7 hours, across the ten weeks you
worked as a research assistant.
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A reminder: what we are trying to get is a dispersion
measure giving us an average distance of the cases to the
mean; something to account for the variability of all cases,
not just a few (unlike the range and IQR). To make the
calculations look more orderly, I add a third column to Table
4.3 above, one with the squared distances. Thus, our
mysterious Step 1B is squaring each individual distance.

Table 4.4 Step 1B Squaring Individual Distances

3 (3 – 8.7) = -5.7 (-5.7)2 = 32.5

3 (3 – 8.7) = -5.7 (-5.7)2 = 32.5

5 (5 – 8.7) = -3.7 (-3.7)2 = 13.7

7 (7 – 8.7) = -1.7 (-1.7)2 = 2.9

8 (8 – 8.7) = -0.7 (-0.7)2 = 0.5

10 (10 – 8.7) = 1.3 (1.3)2 = 1.7

12 (12 – 8.7) = 3.3 (3.3)2 = 10.9

12 (12 – 8.7) = 3.3 (3.3)2 = 10.9

13 (13 – 8.7) = 4.3 (4.3)2 = 18.5

14 (14 – 8.7) = 5.3 (5.3)2 = 28.1

We are thus ready for Step 2: summing up the (now-
squared) distances from the mean:
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← Sum of Squares

As you can see above, the sum of the squared distances
from the mean is called the sum of squares (sometimes
indicated by SS).

Finally, to get the average distance from the mean we
need Step 3: to divide the sum of squares by the total
number, N:

← variance

That is, the variance of your hours worked per week is
15.21, or the average of the squared distances from the mean
is 15.21. (Note that we cannot say 15.21 hours as now we
are working in squared units.)

And this is it, the variance. It is denoted by a small-case
Greek letter s, i.e. σ

52 (SIG-ma-squared).
6

variance

5. It is pronounced SIG-ma, just like Σ which is the
capital-case Greek letter S. and, since it’s in squared units,

actually σ

6. An alternative notation for
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you might encounter is var(x) where x is the
variable in question.
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4.4 Variance Continued, Standard

Deviation

I’m sure you’ll agree the preceding section was a lot to
take in. And here’s the kicker: after all that, we arrived at
something which we cannot easily or intuitively interpret,
given the squared units. However, the variance is used a lot
in statistics, for great many things. Generally, the larger the
variance, the greater the variability of the variable, or the
larger the “dispersed-ness” of the cases.

Despite the seemingly convoluted way we arrived at
the variance and all the calculations and mathematical
notation, what we did was actually quite simple. (No,
really!)

To recap: just like we average all values by summing
them up and dividing the sum on their total to get the
mean, we average the distances of the values from the
mean by summing them up and dividing the sum on their
total. The only difference is that in order to be able to sum
the distances, we need to square each of them first, or we
cannot proceed.

Here are the formulas for the mean and the variance
together so that you can compare:

← mean
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← variance

Now that I have you feeling somewhat comfortable, I
have a confession to make. This above isn’t the only
version of the formula for variance that exists or that
we will be using.

Bear with me (and welcome back, to those who threw
the reading away in disgust) — I promise to explain
everything when we get to inferential statistics further in
the textbook, as the explanation requires concepts and
terminology we have not yet covered and which cannot
be easily introduced at this point. (Hint: it deals with
estimation and uncertainty.)

1

← variance

As you can see, the modification is quite small -- instead
of dividing the sum of squares by the total number
N, we actually divide it by the total minus one, N-1.
If it makes you feel better, dividing just by N or by N-1
produces generally similar results, in terms of magnitude
of the variance. We also denote this version with a
regular small-case .

One thing worth noting, however, is that despite the
lack of proper explanation as of yet, when working with
typical datasets SPSS will produce variances by dividing
the sum of squares by N-1 instead of by N.

1. If you'd like a preview, the alternative, to-be-explained-later, formula for

variance is:
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Watch Out!! #9 … for The Order of Operations

When considering the formula for variance, and the steps
we took to calculate it, pay special attention to the sum
of squares. That is, we need a sum of squares (a.k.a., to
add the squared distances from the mean together): we first
calculate the distances, then square them, and finally
sum the squared distances up.

A common mistake, however, is to try to calculate the
distances, sum them up, then square the sum. As explained
above, the (un-squared) distances add up to zero, and
squaring the zero will not improve things. A version of
this mistake is also to calculate the distances, then try to
sum them and divide them by N-1, and then square the
result. Obviously this would also be unsuccessful. To avoid
these type of frustrations, try to remember the purpose of
the squaring: to “turn” all distances into positive numbers.
Everything else we do (summing, dividing), we do to the
already squared distances.

In an effort to show you that the calculation of the
variance is simple when done without the protracted
explanations, take another example we have used before,
number of siblings.
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Example 4.5 Variance for Number of Siblings

In discussing the median in Section 3.2
(https://pressbooks.bccampus.ca/simplestats/chapter/
3-2-median/), we imagined you asked seven of your friends
about the number of their siblings. These were the values we
used: 2, 1, 4, 2, 1, 0, 3.

Let’s produce the variance, in four simple steps, after
calculating the mean; Step 1A, obtain the distances from the
mean; Step 1B, square the distances from the mean; Step 2,
obtain the sum of squares (i.e., sum the distances up); Step
3, divide by N.

Preliminary step: obtain the mean.

Steps 1A and 1B are presented in the table below:

Table 4.4 Calculating Distances To the Mean and
Squaring Each Distance
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2 (2 – 1.857) = 0.143 (0.143)2 = 0.02

1 (1 – 1.857) = -0.857 (-0.857)2 = 0.734

4 (4 – 1.857) = 2.143 (2.143)2 = 4.592

2 (2 – 1.857) = 0.143 (0.143)2 = 0.02

1 (1 – 1.857) = -0.857 (-0.857)2 = 0.734

0 (0 – 1.857) = -1.857 (-1.857)2 = 3.448

3 (3 – 1.86) = 1.143 (1.143)2 = 1.306

Step 2, obtain the sum of squares:

←Sum of Squares

Step 3, divide the sum of squares (rounded down to two
digits) by N, i.e., by 7:

← variance

Thus, we find that your seven friends have an average
of about 1.6 squared distances from the mean number of
siblings 1.9 (rounded up from 1.857).
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Oh, great, you are probably thinking now, and I can
imagine the sarcasm — we calculated something we can’t
even interpret properly. I mean, it’s more than a tad
awkward to try to explain “an average of about 1.6 squared
distances from the mean number of siblings” to anyone not
versed in statistics. Maybe it would be better if we could
get rid of the “squared-ness”?

You know what? We can. The standard deviation is here
to help.

Standard deviation. Believe it or not, after all the steps
we went through to get to the variance, calculating the
standard deviation is a breeze: specifically, a breeze that
turns back the squared units into standard units, hence the
name.

See for yourself:

← standard deviation

Despite its scary looks, this is actually just the formula
for variance under a square root. That is, we take the
square root of the variance to get the standard
deviation. That’s it. Nothing more. Just a regular square
root, and we’re there. Cue in a sigh of relief!

2

2. Note, however, that just like there is an "alternative", to-be-explained-later,

formula for variance, there is an "alternative" formula for standard

deviation, following the same principle regarding dividing the sum of

squares by N-1 instead of by N:
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← standard deviation

As well, SPSS will use this (N-1) version of the formula
when working with variables in a dataset.

Now that we know how to get back to standard units,
let’s do that for the two examples we used. We had a
variance of σ2 = 15.21 for hours worked per week in the
previous section and a variance of σ2 = 1.6 for numbers of
siblings in the example above. Square-rooting gives us the
following:

and

Now these we can interpret: on average, your hours
worked per week deviated from the mean of 8.7 hours per
week by 3.9 hours, and your friends deviated from the
average number of siblings,1.9, by 1.25 siblings.

To repeat, the standard deviation is the square root
of the variance. The standard deviation is a measure
of dispersion which gives us the average deviation of
the cases from the mean. (Technically, an average of the
squared distances from the mean in standard units.)
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Do It! 4.2 Longevity of The First Fifteen Canadian Prime Ministers

Calculate the variance and standard deviation of the
longevity of the first fifteen Prime Ministers of Canada. In
chronological order (starting with Macdonald and ending
with Pierre Trudeau), their ages at the time of death were:
76, 70, 72, 49, 93, 94, 77, 82, 86, 75, 76, 91, 83, 75, and
80. Interpret your results (i.e., explain what you have found
beyond “the standard deviation is …”).

You can use a table like Table 4.4 to organize your
calculations. (Hint: Start with calculating the mean age at
death, , and round it up to a whole number to make your
job easier.) Here is age at death for each PM and N=15.

You can check your answers in this footnote.
3
The mean is 79

years; the sum of squares 1,717; the variance 114.5; the standard deviation

10.7 years. However, if you calculated the variance and standard deviation

with N-1 in the denominators, you will get a variance of 123 and a standard

deviation of 11.1 years. The difference is as large as it is due to the small

N. Had we been working with a real dataset of hundreds or thousands of

cases, the difference between the just-N and N-1 versions of the formulas

would have been less pronounced.

Of course, one wouldn’t normally calculate variances
and standard deviations by hand: we only do it so that you
can understand what the measures are and what they really

3.
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provide us with, by obtaining them ourselves. Usually,
however, we simply use SPSS.

SPSS Tip 4.2 Obtaining Variance and Standard Deviation

• From the Main Menu, select Analyze, then
Descriptive Statistics, and then Frequencies;

• Select your variable of choice from the list on
the left and use the arrow to move it to the right
side of the window;

• Click on the Statistics button on the right;

• In this new window, check Variance and
Standard deviation in the Dispersion section on
the left at the bottom;

• Click Continue, then OK.

• The Output window will provide a table with
the requested measures.

• Make sure you know how to interpret your
results! (Try to use as little statistics jargon as
possible.)
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4.5 Summary

It sure feels like we’ve covered a lot! You might need a
recap. You will find it below.

The measures of dispersion tell us how a variable’s cases
are distributed: whether they are more tightly clustered
together, or more loosely spread out. After all, it’s perfectly
possible to have two variables with the same central
tendency measures but with different measures of
dispersion!

There are four measures of dispersion that are typically
used: range, interquartile range (IQR), variance, and
standard deviation. While the former two are simple and
account for the dispersion of cases only through the
positioning of a few cases in the (ordered) distribution, the
latter two employ all cases’s values to produce somewhat
more complicated and comprehensive measures of a
variable’s spread.

The range reports the difference between the highest
and the lowest values. The IQR provides the same but
for the middle half of the cases. The variance calculates
something like an average of the squared distances of all
cases from the mean (in squared terms), while the standard
deviation, through square-rooting the variance, provides us
with an almost-average of the distances of all cases from
the mean (in standard — i.e., regular — units). Generally,
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the larger the measures of dispersion, the more variability
the variable has.

Finally, as they all require numerical values, all
measures of dispersion are applicable only to interval/ratio
variables: we cannot provide dispersion measures for
nominal or ordinal variables.

With this, we have the full range of measures to describe
variables: we not only learned how to graph variables to
see their distribution visually, but also to calculate how
their cases cluster (through the three measures of central
tendency, the mode, the median, and the mean) and how the
cases can spread (through the four measures of dispersion,
the range, the interquartile range, the variance, and the
standard deviation).

We also learned that while we can graph all types of
variables, the measures of central tendency and dispersion
vary in their applicability depending on a variable’s level
of measurement. While the mode applies to all variables,
and the median to ordinal and interval/ratio variables,
the mean, the range, the IQR, the variance, and the
standard deviation apply only to interval/ratio
variables. Keep this in mind when deciding what kind of
information to provide about a specific variable.

1

Before we continue inching toward inferential statistics,
starting with the normal curve and basic of probability in
Chapter 5, here is a handy list of things you should know
before proceeding further.

1. Again, do not trust SPSS to make that decision for
you: it cannot and it will not.
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What You Need To Know So Far

• How to visually display a variable’s distribution
(i.e., how to graph variables) and the proper
graph for each variable type depending on level
of measurement;

• How to display a variable’s distribution in a
tabular format, specifically how to create and
how to read frequency tables;

• What the central tendency measures are, how
many and what they are, their applicability to
variable types depending on level of
measurement, and what methods there are to
obtain them (including calculation);

• What the central dispersion measures are, how
many and what they are, their applicability to
variable types depending on level of
measurement, and what methods there are to
obtain them (including calculation);

• What outliers are and how they affect the
central tendency and dispersion measures, and
what makes a more appropriate measure of
central tendency or dispersion in the presence
of outliers.

• How to interpret graphs, frequency tables,
measures of central tendency, and measures of
dispersion both by using statistical jargon and
without using statistical jargon. (You should be
able to explain what any of these concepts are
and what they mean to someone not trained in
statistics.)
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• Finally, to use proper and precise vocabulary to
express yourself both orally and in writing
when discussing statistics concepts — including
variables, measurement, operationalization,
levels of measurement, units of analysis, units
of measurement, etc.

• Hint/Warning: If any of the above gives you
trouble, go back and reread the relevant
section. Proceeding further with gaps in your
knowledge will only make things worse.
(There is no hope that by reading the more
complicated material which follows you will
suddenly learn/understand the things
discussed so far!)
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Chapter 5 The Normal

Distribution and Some Basics

of Probability

A variable’s distribution, you recall, is the way the
observations/cases are distributed across the
variable’s categories. Frequency tables, graphs, as
well as measures of central tendency and
dispersion all provide information about the
distributions of variables.

All variables have a distribution (of course!) but
some variables have a special type of distribution:
one whose features and uses in statistics go beyond
being simply “a variable’s distribution”. We call
this distribution normal distribution.

In the first part of this chapter I introduce the normal
distribution, detailing its features that make it so special.
The latter half of the chapter is devoted to a concept
without which we wouldn’t be able to do any statistical
inference and estimation, namely statistical probability.
You will learn some basics of probability theory which
are necessary for us to eventually proceed to statistical
inference.

203



You might be wondering why these two seemingly
unrelated things — a variable’s distribution and probability
theory — are in the same chapter together. For now I will
just give you a hint: probabilities have distributions too.
Read on to find out more.
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5.1 The Normal Distribution

You might have already heard of bell curves (or bell-
shaped curves), or even normal curves. If you have, you
also probably know they look similar to the one in Fig. 5.1.

Figure 5.1 Body Mass Index of Respondents (CCHS
2015/2016)

Fig. 5.1 shows a histogram with the distribution of the
variable body mass index (or BMI) of respondents to the
CCHS 2015/2016. Judging by the height of the bars that
comprise it, the histogram illustrates the fact that most
cases tend to cluster at the centre (i.e., most people’s BMI
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is average), while a decreasing number of cases end up in
the “tails” of the distribution (i.e., the further their BMI is
from the average, the fewer cases there are).

You can easily notice that the distribution (as reflected
in the green bars) is not perfectly symmetric but a bit
positively skewed: the right “tail” is longer than the left.
Still, its shape approximates a bell well-enough (note for
comparison the black curve in Fig. 5.1 which is a true bell
shape). We call this type of distribution approximately
normal.

A great many interval/ratio variables in the world tend
to have an approximately normal distribution when plotted
(true for both the social and natural sciences). That is,
the majority of observations are centered in the middle
of the distribution (i.e., they tend to be average); we find
fewer observations just below and just above the average,
and fewer still which are much below or much above the
average.

Think about height, for example. Most people are of
average height (that’s why it’s called average height after
all), some people are above and some below average, fewer
people are much taller or shorter, and rather rarely are some
people extremely short or extremely tall. Variables like age,
or weight (which you can see in Fig. 5.2 below

1
) but also,

1. The reason you observe the "double" distribution -- one shorter (darker) while

the other taller (lighter) -- is due to the self-reporting of weight. Most

people tend to report their weight in whole numbers, and here some have

done so, stating their weight as 65 kg or 85 kg, etc.; these are the tall bars.

Others, however, may have reported it with grams and/or in pounds (which

when converted to kilograms would produce a non-whole number weight),

thus resulting in weights such as 65.35 kg or 85.75 kg, etc., leading to the

short bars and to the histogram appearing like two histograms plotted on
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say, test marks, or points scored per hockey game, or text
messages sent per day, etc. are similar. There will be an
average, and a continuous decrease in frequency the further
one gets from that average.

Fig. 5.2 Weight of Respondents (CCHS 2015/2016)

As fascinating as all this is, you might be thinking now,
why do we care about it? It’s just one type of a distribution
among many.

True, but as I already mentioned, the normal distribution
is special, and not just because many variables’ histograms
tend to plot an approximately normal curve. To understand
why, we need to start exploring the normal distribution as a

top of each other. Had the responses been rounded to the nearest whole

kilogram, the histogram would have taken a regular, "single" normal-curve

shape.
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theoretical concept (or, to borrow from Max Weber, as an
ideal type).
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5.1.1 Properties of the Normal Curve

Recall that we describe a distribution via three things: its
shape, its central tendency measures, and its measures of
dispersion. The perfect (i.e., theoretical) normal
distribution thus has three defining features.

First, the normal curve is bell-shaped and perfectly
symmetric (i.e., if you bisect it in the middle, the left side
will be identical to the right side).

1

Second, the normal curve is centered on the mean,
which also happens to be equal to its median and mode.
That is, for the normal curve all measures of central
tendency fall on the same value.

Third, the normal curve’s standard deviation tell us
what percentage of observations fall within a specific
distance from the mean. When we have a normal curve,
the area below the curve contains 100 percent of all
observations. Then, 68 percent of all observations fall
within 1 standard deviation from the mean

2
; 95 percent of

observations fall within about 2 standard deviations from

1. It's also asymptotic to the horizontal axis line, i.e., it gets as close to it as

possible in the "tails" without ever touching it. More on this after you learn

about probabilities.

2. Given the symmetry, this means 34 percent fall within -1 standard deviation

below and 34 percent fall within +1 standard deviation above the mean.
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the mean
3
; and 99 percent of observations fall within about

3 standard deviations from the mean
4
. Fig. 5.3 illustrates.

Figure 5.3 Normal Curve with Standard Deviations

If you imagine Fig. 5.3 interposed on top of an
approximately distributed variable’s histogram, you can
see what percentage of observations will fall within 1, 2,
and 3 standard deviations from the mean. (Obviously, the
mean is at 0, since the normal curve is centered on the
midway point of the curve, and is neither below nor above
itself, i.e., “the mean is 0 standard deviations away from
the mean”, as awkward as it sounds.)

Let’s make sure this makes sense to you in applied terms,
through the example below.

Example 5.1 Normally Distributed Test Scores (Hypothetical Data)

3. That is, 47.5 percent fall within about -2 standard deviations below the mean

and 47.5 fall within about +2 standard deviations above the mean.

4. That is, 49.5 percent fall within about -3 standard deviations below the mean

and 49.5 percent fall within about +3 standard deviations above the mean
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Imagine your statistics class has taken a test. The average
test score is 65 with a standard deviation of 10 and the
following scores distribution. (You can imagine a histogram
whose many bars follow the curve in the three Fig. 5.4
below.)

Figure 5.4 (A) Test Scores within 1 Standard Deviation

Figure 5.4 (B) Test Scores within About 2 Standard Deviations
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Figure 5.4 (B) Test Scores within About 3 Standard
Deviations

Given the properties of the normal curve, we now know that
68 percent of students in the class scored between 55 and 75
(i.e., between -1 and +1 standard deviations from the mean, and
since the standard deviation is 10, then and

). We also know that 95 percent of students
scored approximately between 45 and 85 (i.e., between about -2
and +2 standard deviations from the mean, or

and
). Finally, we know that 99

percent of students (almost everyone!) scored approximately
between 35 and 95 (i.e., between -3 and +3 standard deviations
from the mean, or 65-3(10)=65-30=35
65+3(10)=65+30=95$).

As is typical of normal distributions, the majority of scores (68
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percent) are clustered in the middle (within -1 and +1 standard
deviations) around the mean; the remaining 32 percent are split
between the “tails” of the distribution, with about 16 percent in
each “tail” beyond -1 and beyond +1 standard deviation from the
mean. Only 5 percent of test scores are as far away as -2 and +2
standard deviations from the mean, with just 2.5 percent at the tips
of each of the “tails”. And at the very, very far ends of the “tails”,
beyond the -3 and +3 standard deviations from the mean, you

have 1 percent split between them, so a minuscule 0.5 percent of
students has a score below 35 and another 0.5 percent has a score
above 95.

These features of the normal distribution (symmetrical,
centered on the mean/median/mode, measured in standard
deviations from the mean) make it very useful to work
with. Simultaneously, now you can begin to see why the
standard deviation is the most popular measure of
dispersion, due to its unique relationship with the normal
curve.

Can we find more uses of the normal distribution? Read
on to find out.
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5.1.2 The z-Value

In the previous section you discovered that we can “orient”
ourselves about where a specific value lies along the
normal distribution in relation to the average by means
of the standard deviation. In Example 5.1 we saw that 68
percent of students’ test scores were between 55 and 75
(i.e., between -1 and +1 standard deviations from the
mean), 95 percent of scores were
between approximately 45 and 85 (i.e., between
about -2 and +2 standard deviations from the
mean), and that 99 percent of scores were
between approximately 35 and 95 (i.e., between
-3 and +3 standard deviations from the mean).
Thus, if your score was, say, 60, you would know
that it was below the mean, but within 1 standard
deviation away, which wouldn’t be as bad as, say,
had you scored 40, which is more than two
standard deviations away from the mean.

Hmm, do we really need standard deviations to tell us
that a test score of 40 is bad news, you ask. Everyone
knows that.

In absolute terms, sure, a score of 40 (out of 100) would
be considered a failing one. In relative terms, however —
which is also known as grading on a curve — a score of 40
doesn’t tell you anything, unless you know the mean and
the standard deviation.
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To better illustrate this, imagine another set of test
scores, and that on that test you get a score of 80. In
absolute terms, a score of 80 (out of 100) would be quite
good. What about in relative terms? Can you think of a
situation where a score of 80 would be considered worse
than a score of 40?

What if I told you that the mean in the first case (when
we imagine you scored 40) was 35 with a standard
deviation of 5, while the mean in the second case (when we
imagined you scored 80) was 90 with a standard deviation
of 2? (You might find it easier to see the point if you grab
a pen and paper and simply draw a line with the mean
in the middle, then add and subtract that many standard
deviations away from it in each direction, above and
below.)

A score of 40 (i.e., ) is 1 standard
deviation above the mean of that test. A score of 80 (i.e.,

) is 5 standard deviations below the mean
of that other test. In fact, 80 is well below the even 3
standard deviations away from the mean where 99 percent
of scores are; it’s at the very far end of the left “tail” of the
distribution, likely an outlier.

It turns out that the second test we imagined was so easy,
scoring 80 on it was too low given how easy it was. On the
other hand, scoring 40 on the first test we imagined was
quite good given how hard it was.

This mental exercise shows you that expressing values
in terms of standard deviations has its merits, as it puts
the values into perspective — which allows us to make
comparisons. A score/value in and of itself doesn’t tell

216



you anything — not unless you know where it falls in
relation to the mean and how far away it is. Now only if
there was a way to express any value in terms of standard
deviations without having to always calculate 1 standard
deviation away, 2 standard deviations away, 3 standard
deviations away from the mean (or to have to resort to pen
and paper)…

Guess what? There is! Expressing a value in terms
of standard deviations is a process aptly called
standardization (as it produces scores that have a uniform,
standard meaning allowing comparison) and the
standardized values are called z-values (or z-scores). We
standardize values by expressing the distance of the
value from the mean in standard deviations, i.e.:

Or, in proper notation, where we denote the mean
by μ1, the small-case Greek letter
for m (from mean):

Following this formula, a score of 40 when the mean
is 35 and the standard deviation is 5 (i.e., when μ=35
and σ=5) has a z-score of

1. The Greek letter μ is pronounced as "MYU". The difference between using

and μ and the reason we use the latter here will be explained in Chapter 6.
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and a score of 80 when the mean is 90 and the standard
deviation is 2 (i.e., when μ=90 and σ=2) has a z-score of

Thus, we formally found what we already knew from
before: that in the former case, the score of 40 was 1
standard deviation above the mean (i.e., its ) and
the score of 80 was 5 standard deviations below the mean
(i.e., its ). If this seems repetitive — after all, we
reached the same conclusion without any fancy formulas
— that’s only because I chose easily calculatable numbers
to illustrate my point more easily. Perhaps an example with
less “easy” numbers will convince you of the formula’s
worth.

Example 5.2 Average Monthly Rent for a Two-Bedroom Apartment
in Vancouver

The Vancouver Sun recently reported that the average
monthly rent of a two-bedroom apartment in Vancouver, BC
was $2,915, at the time of writing the highest in all Canada.
(REFERENCE https://vancouversun.com/news/local-news/
vancouver-two-bedroom-apartments-now-cost-close-
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to-3000-report) While the standard deviation was not
reported, for the purposes of this exercise we can imagine it
as $150.

What is the z-score of a family which pays $2,630 per month
for their two-bedroom condo? How about the z-score of someone
who pays $3,450 for theirs?

Of course, we could grab a pen and paper and draw the normal
distribution demarcating where 1, 2, and 3 standard deviations
away from the mean fall in order to see where the two listed
rents are relative to the demarcations. However, using the z-score
formula makes for a faster (and a more precise) answer.

In the first case, we have:

In the second case, we have:

That is, the first family’s monthly rent of $2,630 is below the
average but not that unusual: with a z-score of -1.9, it falls within
2 standard deviations away from the mean, which is within what
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95 percent of renters in Vancouver pay for their two-bedroom
apartments.

On the other hand, the second person’s rent of $3,450 is quite
high: with its z-score of 3.6, it falls beyond 3 standard deviations
away from the mean, i.e., it’s higher than what 99 of people pay
monthly for a two-bedroom apartment.

Again, we see the use of standardization and z-scores, as it
allows us to put values into perspective.

Now is your turn to try.

Do It! 5.1 Comparing Average Monthly Rent for a One-Bedroom
Apartment in Vancouver, Toronto, and Montreal

According to the National Rent Rankings monthly report
for July 2019 by Rentals.ca (REFERENCE
https://rentals.ca/national-rent-report), the average monthly
rent for a one-bedroom apartment was $2,028 in Vancouver,
BC, $2,259 in Toronto, ON, and $1,231 in Montreal, QC.
Assume the standard deviations are $140 in Vancouver,
$180 in Toronto, and $125 in Montreal.

Using z-values, compare and analyze where in the
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distribution a rent of $1,950 will put a Vancouverite, a
Torontonian, and a Montrealer who all pay the same rent but
in different cities.

(Answer: Vancouverite’s z=-0.6, Torontonian’s z=-1.7, Montrealer’s z=5.8.)
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5.1.3 Percentiles

Remember quartiles? We used them in Section 4.2 to
find the interquartile range
(https://pressbooks.bccampus.ca/simplestats/chapter/
4-2-interquartile-range/). They would split the cases in the
distribution in four equal parts (i.e., in quarters) giving us a
first (1 percent to 25 percent of the data), a second (26
percent to 50 percent of the data), a third (51 percent to 75
percent of the data), and a fourth quartile (76-100 percent
of the data).

What if, instead of splitting the distribution into four
equal parts, we decided to divide it into five? That would
be easy: Instead of having four parts, 25 percent of the
data in each, we can just have five parts, 20 percent of the
data in each. Like this: 1 percent to 20 percent, 21 percent
to 40 percent, 41 percent to 60 percent, 61 percent to 80
percent, and 81 percent to 100 percent. This time, we call
the five equal parts quintiles (from the Latin root “quin”
like quinctus, meaning five).

Just as easily, we can divide the distribution into ten
equal parts: 1 percent to 10 percent, 11 percent to 20
percent, etc. … all the way up to the last part, 91 percent to
100 percent. Then we have ten deciles (from the Latin root
“dec” like decem, meaning ten).

Following the same logic to the smallest possible whole
number by which we can divide a distribution, we get
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percentiles — a distribution divided into a hundred equal
parts, 1 percent in each. It turns out percentiles can be
quite useful when working with a normal distribution. (You
didn’t forget that’s our current topic, did you?)

The key piece of knowledge you need to recall from our
discussion about quartiles is that to split the distribution,
we need the cases lined up in order from the lowest value
to the highest (or else we wouldn’t be able to speak of first,
second, third or last quartiles). Applying this to the normal
distribution, we might be tempted to imagine the normal
curve as illustrated in Fig. 5.5 below.

Figure 5.5 What Percentiles Do Not Look Like

Fig. 5.5 lists the position of four randomly selected
percentiles, had the percentiles been evenly spread over the
horizontal axis. Of course, this is wrong. If we do this, we
would be ignoring the actual distribution — you know,
the blue curve on the graph. After all, we have established
by now that 68 percent of observations fall in the middle,
within only 1 standard deviation way from the mean, where
the curve is as its highest. (Recall that the height of the
curve — and the fact that it’s a curve, not a line — reflects
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the larger frequencies of the values around the mean, and
the smaller, and smaller frequencies of the values further
away from the mean, in the “tails”.)

What this should tell you is that we can’t just assume
the percentiles are uniformly spread — because the data is
not. We need to account for the fact that that values in the
middle are way more popular than the ones in the “tails”.
Then how do we know what percentile a particular value
has?

Again, it’s easy. We have z-scores for that. You see,
every value has a z-score and the z-score reflects the
percentage of cases which fall below or above that value.
This is precisely the reason we know that 68 percent of the
data fall within 1 standard deviation from the mean and that
95 percent of data falls within about 2 standard deviations
from the mean.

Thus, with a normal distribution, you can turn any value
into a z-score (as we saw in the previous section), and
this z-score into a percentile. While there are z-score tables
providing percentages associated with any z-value, the
easiest way to find a percentile is through online
calculators like this one by Measuring
U: https://measuringu.com/pcalcz/.

1
There, you can enter a

z-score (make sure you choose “one-sided”) and see what
percent of data falls below it (on the normal curve on the
left) and what percent of data falls above it (on the normal
curve on the right). The exact percentile is the number
reflecting the data “below”.

1. For that matter, you can use an online calculator to find the z-score of any

value. You can try one here (provided by Social Science Statistics):

https://www.socscistatistics.com/tests/ztest/zscorecalculator.aspx.
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Do It! 5.2 Finding Percentiles Using an Online Calculator

Using the percentile calculator linked above, you find that
the percentile for z=1 is 84. Explain where this result comes
from. (Hint: The mean bisects the distribution in two equal
halves. A z-score of 1 is of course 1 standard deviation
above the mean.)

Answer: The area below the mean is 50 percent. To that we add the 34 percent

between the mean and 1 standard deviation above the mean and get 50+34=84

percent. (Since 68 percent lies between -1 and +1 standard deviations and the

normal curve is symmetrical, 34 percent fall between -1 standard deviation and

the mean, and 34 percent fall between the mean and +1 standard deviation).

Cool, you say (probably quite sarcastically), we now
know how to find percentiles. But for what do we use them?

I’m glad you asked. Percentiles allow us to compare a
score in relation to the rest of the data; just like z-scores,
they put things into perspective. Let’s say you have 69
on a test. Turning your score into a percentile will tell
you exactly what percent of the test-takers scored below
you, whether it’s 35 percent (then your score wouldn’t be
considered too impressive) or 99 percent (which would be
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most impressive, seeing how you’d be in the top 1 percent
of test-takers) or any other percent it might be.

2

Let’s make sure you understand all that, shall we?

Do It! 5.3 Hourly Wage

Imagine you have applied for a job and your employer
offers you \$13.5/hour. You also learn that the average
hourly wage your potential employer pays to their
employees is \$17.5/hour with a standard deviation of \$2.5/
hour. See if this is a generous offer (after all, you would
be just starting) by finding its z-score and percentile and
comparing it to how the other employees of the company are
fairing. (Don’t forget to interpret both the percentile and the
z-score.)

Answer: z = -1.6, percentile = 5.5. Only 5.5 percent of the employees in

the company receive less than \$13.5/hour; almost 95 percent of the employees

receive more, so no, it’s not a generous offer at all.

And now that you might be starting to feel somewhat
comfortable with the uses of the normal distribution, I’ll
pull the rug a bit from under you, as it were. Recall how

2. This is exactly what standardized tests (e.g., SAT) do to interpret individual

scores. They provide percentiles so that any test-taker can find how they

did relative to others (i.e., it provides the place of a score in the overall

distribution of scores).

Simple Stats Tools 227



I started the chapter by explaining that many real-world
interval/ratio variables tend to be approximately normally
distributed? (That part’s true.) And then we talked about
where the variable’s observations fall in the normal
distribution? Well, there I lied. (It was necessary!)

If you think about it carefully, both statements cannot
be true. On the one hand, a real-existing variable has a
specific distribution — an approximately normal one. But
would two real-existing variables have exactly the same
approximately normal distribution? That would be
unlikely, considering that different variables, in different
datasets, with different number of observations, units of
measurements, units of analysis, means and standard
deviations, etc. cannot possibly look exactly the same if
plotted on a histogram. How then do we get these very fixed
and very specific numbers and percentages associated with
the z-scores and the percentiles?

The thing is, everything I told you about the normal
distribution, starting with its defining features and ending
with the z-scores and percentiles, refers to the ideal-type,
only-existing-in-theory, perfect normal distribution. All the
numbers and calculations and percentages we discussed
reflect the theoretical normal distribution; they serve as a
sort of expectation of how a (continuous, random)

3
variable

is expected to be distributed. Of course, real-existing
variables generally fall short of this ideal, and therefore we
call their distributions approximately normal.

3. I explain randomness a bit in the next section, and further in Chapter 6. For

now, know that in statistics it doesn't mean "arbitrary" or "accidental" but

rather "obtained in an unbiased way" (i.e., with every element having an

equal chance to be picked).
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I repeat: the theoretical (perfect) normal distribution
provides us with what we can expect the actual
frequencies of the variable’s values to be, in theory.
(In reality, the distribution differs from that expectation
to varying degrees). It turns out, when we work with
z-scores and associated percentages and percentiles, we
work with what is expected, not with what is. (The
variables’ observed distributions differ but the normal —
expected — distribution is always the same.)

What do we do then, with this reality versus expectation
we have here? Why did we learn all we did about the
normal distribution if “it isn’t real”?

4

This is where probability comes in. Hold the thought
about the normal distribution being an expectation; we’ll
come back to it in the remaining sections of this chapter.

4. That said, again, some standardized tests can be designed in such a way that

their test scores to be distributed normally. Thus, real-existing data can

have a normal distribution, it's just that usually it's an approximation.
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5.2 Probability Basics

Whenever we talk about the likelihood of some future
event taking place, we talk about probability. This
likelihood serves as a prediction — what we can expect to
happen or not happen. For example, people might mention
the odds of winning the lottery, or the probability of being
hit by lightning, or to discuss the fact that it’s likelier to
die in a car accident rather than an airplane crash, or to
think that the odds of having a baby girl are the same as
the odds of having a a baby boy. Sociologists in particular
might typically be interested in an individual’s life chances,
things like the probability of going to college, the
probability of being unemployed, or to have a high-paying
job, etc. and comparing the probabilities for any of these
happening based on characteristics like race/ethnicity,
gender, socioeconomic class, religion, sexual orientation,
etc.

Probability is predicated on uncertainty; as the old song
goes, “the future’s not ours to see”. We use probabilities
to manage the uncertainty, usually by quantifying it. For
example, life expectancy at birth is the predicted longevity
that a newborn will have (given current death rates). Or
you might have even taken important decisions and made
choices based on odds and likelihoods (i.e.. on
probabilities). An entire industry — betting and gambling
— is based on the fact that we don’t know what will happen
but we nevertheless try to predict what might happen.
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Given the dealing with uncertainty and predictions, it
shouldn’t be too surprising that probability is completely
and entirely theoretical. It’s an expectation for the future,
which can’t be anything but abstract. (After all if
something had already happened, and has become reality,
we wouldn’t need to predict it or to discuss its probability
of occurring.)

Let’s start with an example which is familiar to
absolutely everyone, usually from an early age. At some
point in your life you have likely uttered the phrase “there’s
a fifty-fifty chance of…” Like “I didn’t do too well on
my last test, by now there’s a fifty-fifty chance to pass
the course.” Or “the traffic looks bad but it might clear
up; I still have a fifty-fifty chance of making it to the job
interview on time.” Or “this plan has a fifty-fifty chance of
success.” Or even “these nachos look disgusting, you have
a fifty-fifty chance to get food poisoning.”

A fifty-fifty chance of course means an equal probability
of something happening or not. Out of two possible
outcomes, either can happen with equal likelihood so it’s
impossible to predict in favour of any of them.

I’m sure you know that the fifty-fifty chance expression
comes from the impossibility of predicting the outcome of
a flipped coin: be it heads or tails. Assuming a coin cannot
possibly fall on its edge, when flipped it has only two
outcomes, represented by its two sides, falling as heads or
as tails. Thus, the probability of its falling on a side (a 100
percent) is divided by two — giving us 50 percent chance
to get heads and 50 percent chance to get tails.

The 50/50 percent is a prediction. The moment the coin
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falls, one outcome has been realized and the prediction no
longer applies because the event is no longer in the future.
The distinction between the factual reality (the event has
happened) versus the theoretical probability

1
(of the event

happening) might seem trivially easy to make at this point
but its nevertheless very important. Keep it in mind, you’ll
need it for what’s to come.

Imagine you flip a coin two times in a row. Can you
predict that you’ll get once heads and the other time tails?
Is it possible that you get heads twice in a row? What if
you flip a coin ten times? Would you get tails exactly
5 times and heads exactly 5 times? Or could you
perhaps get 3 heads and 7 tails? What about 9
times heads and 1 time tails? And what if you flip
a coin a hundred times? Or more?

You might have already reasoned it, or you might have
even tried it at some point: it’s quite possible to flip a
coin and get the same side twice in a row. Or three times.
Or four times. Or more. (It’s even possible to flip heads
ten out of ten times in a row… or even a hundred out
of a hundred. In this case possible means that there is
such a probability, as small as it is. Possible doesn’t mean
necessarily plausible.) How do you reconcile this with the
knowledge that the probability of getting heads is 50
percent?

And that — the probability — is just it. We know that
theoretically with each coin toss the coin can fall as either

1. Note that the theoretical probability is still grounded in the reality of there

being only two possible outcomes. Thus predictions we base on probability

are not wild, baseless guesses but a product of rational thinking and

calculations.
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heads or tails, and the prediction/expectation is a fifty-fifty
chance.We know that in theory, if we flipped coins forever,
heads and tails will average at 50 percent of the time each

2
.

We can’t flip coins forever, however, so it’s possible we
get a different outcomes distribution in any finite number
of times we do it (but the larger the number of times, the
likelier we’ll be getting to 50/50 percent, or close

3
).

Thus there is no contradiction in theoretically expecting
a fifty-fifty chance of flipping tails out of, say, ten tosses
and actually getting heads 6 times and tails only 4, as I’m
sure you know. The former is a probability distribution, the
latter is the observed, actual frequency distribution of the
cases/observations/data. Keep this thought too.

Before we continue on to something more novel and
exciting than the old coin toss example, however, let
formalize our discussion a bit.

2. This website provides a neat visualization of both the probability/expectation

and a digital coin toss: https://seeing-theory.brown.edu/basic-probability/

index.html. There you can try flipping the coin 100, even 1000 times, and

see that the larger the number of flips, the closer you get to the fifty-fifty

expectation. The same website allows you to throw a die and to pick a card

out of ten consecutively numbered cards

3. You can find more on this property of large numbers in Chapter 6.
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5.2.1 Working with Probabilities

We express probabilities as proportions (and we also
denote them with p, just like we do proportions

1
), as this is

indeed what they are:

Or, the probability of a specific outcome is the
proportion of the number of such outcomes out of the
number of all possible outcomes.

Thus the probability of getting heads in a coin toss is:

The same of course applies to tails:

1. If you need a reminder, the relevant part is in Section 2.3.1, here:

https://pressbooks.bccampus.ca/simplestats/chapter/2-3-1-adding-

percentages/
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Heads and tails together exhaust all possible outcomes,
so the probability that a coin will fall on any of its two sides
is:

Now how about we extend our example to something
that has more that two outcomes? With six sides, a
conventional die will serve us perfectly.

Following the same logic as with the coin, the
probability to throw, say, a five is:

The same goes for throwing a one, a two, a three, a four,
or a six:
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Or, imagine you have a bowl with ten balls inside (i.e.,
the balls have numbers from 1 to 10). The probability of
selecting each one out (without looking!) is, you guessed
it, 1 out of 10, as each number appears only once and there
are ten possible outcomes:

While this principle applies to N of any size — so we can
increase the number of outcomes as much as we want —
note the key prerequisite for the calculations to work:
the outcomes must happen randomly. A coin toss and
a die throw are classical examples of random chance. But
when picking balls out of a bowl we have to make sure
we don’t look or we might (consciously or subconsciously)
choose one. Choosing a ball with a specific number
introduces bias and thus invalidates randomness — i.e., it
invalidates the principle of the outcomes having the same
probability. Without this principle we cannot calculate
anything: the only way to know the probability of an
outcome is, in a sense, to divide the total probability, as
it were, (i.e., 1) by the number of all possible outcomes,
giving us equal probability for each. We know the
probability of an outcome only if we know how many
outcomes are possible in total and they all have the
same probability. (Chapter 6 has more on the topic as it’s
devoted to the topic of how random selection works.)
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5.2.2 Simple Probability Calculations

This section is a brief side quest which shows you how to
calculate combinations of probabilities. For example, back
to die rolling, what is the probability of throwing a two or
a four?

I’m certain you already know the answer. In this case
the “outcomes of interest” are two instead of one, so the
probability is two out of six possible outcomes:

Or I could have just as easily simply added the two
outcomes’ individual probabilities:

And this is it: to combine the probabilities of two
outcomes which cannot happen at the same time (a.k.a.
disjoint events

1
), you simply have to add them together.

1. You can recognize dijoint event by the usage of "or": it's one or the other (or a

third one, etc.). When flipping one coin, you can either get heads or tails;

when you roll one die, you can get only one of its sides at a time. Hence,

we add their probabilities.
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(Recall we already used this when we started with the
probability of getting heads or tails being 1; it’s simply the
probability of getting heads (0.5) added to the probability
of getting tails (0.5)).

Do It! 5.4 Adding Probabilities

Since we already imagined a bowl with ten consecutively
numbered balls inside, let’s save ourselves the effort of
imagining a new one and reuse it again. What is the
probability of randomly selecting the #5 ball or the #7 ball
or the #9 ball out of the ten numbered balls in our bawl?

(Answer: 0.3)

On the other hand, combining probabilities of events
that can happen at the same time, or that happen one
after another in time (both a.k.a. independent events

2
) is

a tad more complicated and requires multiplication.

For example, the probability of throwing double two’s
when rolling two dice (or throwing a two with one die and
then immediately throwing again another two) is:

2. Events are called independent when the outcome of one doesn't affect the

outcome of the other whatsoever. (Contrast this with getting heads in a coin

toss, which precludes getting tails; same with throwing any number on a

die as it precludes the other numbers from being thrown.)
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Or, if we flip a coin three times (or three coins at the
same time), the probability of getting three tails is the
probability of getting tails once out of one coin flip (i.e.,
0.5) multiplied by the same probability and then multiplied
by the same probability again (or simply 0.53):

Thus the probability of flipping three tails in a row
(or three tails with three coins at the same time) is 1.25
percent.

Do it! 5.5 Multiplying Probabilities

Using the same imaginary bowl with ten consecutively
numbered balls inside as in the previous exercise, what is the
probability of randomly selecting first the #3 ball, then the
#4 ball, and then the #5 ball, if you return the selected balls
immediately back in the bowl before selecting the next one?
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(Answer: 0.001)

Now take the time to note the italicized condition at
the end of the question in the exercise you just did. It’s
important enough to necessitate its own scary-red warning,

Watch Out!! #10… for Replacement When Working with
Probabilities

What would have happened had I not specified that in the
calculation in Do It! 5.5 you should consider the selected
balls being returned right after their random selection? Why,
you would have tempered with the number of all possible
outcomes, of course.

After all, after randomly selecting the first ball, unless you
imagine returning it back in the bowl, there will be only (10-1=)
9 balls left from which to make the second selection. Then after
removing the second ball, and again not returning it back in the
bowl, you’d have left only (9-1=) 8 imaginary balls from which
to select your third ball. Then, unlike the you

should have used above, the calculation now becomes:

242



The difference between this result and the one in the exercise
seems small but that’s only because we’re working with small
numbers. It’s still important to understand how random selection
with replacement differs from random selection without
replacement and to use the correct calculations.

Before we move on using probabilities with actual data,
you could use a bit more practice.

Do It! 5.6 Adding and Multiplying Probabilities, With and Without
Replacement

Imagine you and four of your friends (let’s call them
Adam, Bhav, Chen, and Dila) are in a class of 25 students.
Assume that it’s the first time your class meets and your
professor doesn’t know any of you; she only has the class
roster in front of her so any name she calls, she calls from
the roster at random. Answer the following questions:

• What is the probability that your professor will
call your name?
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• What is the probability that she calls on Bhav?

• What is the probability that she calls on you,
then Chen, and then Dila, one after the other?
(Hint: She won’t call a name twice in a row, she
remembers that much.)

• What is the probability that she calls either your
name or Adam’s?

• What is the probability that she calls on any one
of your friends?

• Your professor also needs to randomly pair up
students for a group assignment; what is the
probability that she selects Chen and Dila to be
in the same group?

(Answers: 0.04; 0.04; 0.000; 0.08; 0.16; 0.002)
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5.2.3 Probabilities with Frequency

Tables

So far we’ve been working only with small-N examples but
there is no reason to think what you learned from coins and
dice and balls in bowls will not apply to actual, large-N
data.

We already established that probabilities are proportions,
and they can also be expressed in percentage terms.
Conveniently enough, I had the foresight to introduce
percentages (a.k.a relative frequency) as early as Section
2.3.1 (https://pressbooks.bccampus.ca/simplestats/chapter/
2-3-1-adding-percentages/). (I am that wise.) It turns out,
we can work with the percentages we find in frequency
tables as easily as we can with any of the imaginary
examples we did in the previous sections. I’ll prove my
claim with an example.

Example 5.3 Social Class (GSS 2016)

Supposedly everyone thinks they’re middle class and
Canadians are not different. And while Table 5.1 shows that
not really everyone thinks so, the majority of them do.

Table 5.1 Respondent’s Social Class (GSS 2016)
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Out of all 19,161 respondents who provided a valid response
when asked about their social class, what would be the
probability of randomly selecting a middle-class person?

Going by the formula we’ve used so far, we have:

Or, the probability of randomly selecting a middle-class
respondent from this group of people is 63.8 percent

1
, exactly as

the Valid Percent column tells us.

1. In Chapter 6 will will see that this is also the probability of a randomly selected

Canadian (out of all Canadians) to be middle class, and why that is. This of course

applies to all the calculations below.
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And what would be the probability of randomly selecting
either an upper-class or an upper-middle-class person?

Or, the probability of randomly selecting an upper-class or an
upper-middle-class respondent is 18.5 percent, as we can well see
in the Cumulative Percent column.

Finally, what would be the probability of randomly selecting
(with replacement) first a respondent who reported being lower
class and then a respondent who reported being upper class?

Or, the probability of first selecting a person who reported
being lower class and then a person who reported being upper
class is a minuscule 0.004 percent. (A quick-and-dirty
multiplication of the valid percentages of two groups, 1.2 percent
and 3.3 percent, will give you the same result.)

See, it works! Now try it on your own.
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Do It! 5.7 Marital Status (GSS 2016)

Look at Table 5.2 and answer the questions listed below.

Table 5.2 Respondent’s Marital Status (GSS 2016)

• What is the probability of randomly selecting a
person (out of the 19,609 people) who is living
common-law?

• What is the probability of randomly selecting a
person (out of the 19,609 people) who is either
separated or divorced?

• What is the probability of first randomly
selecting a person (out of the 19,609 people,
with replacement) who is married and then one
who is single?

(Answer: 0.091; 0.117; 0.106)
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In passing, we can also extrapolate that since
percentages and proportions are relative frequencies, and
probabilities are proportions and percentages, probability
is relative frequency too.
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5.2.4 The Real Normal Distribution Is a

Probability One

Now back to the normal distribution, as promised.

Recall, if you will, the distinction between discrete and
continuous variables

1
. Flipping coins and throwing dice

and selecting respondents from a small number of
categories are all discrete outcomes, so their probability
distributions are also discrete.

On the other hand, continuous variables (i.e., mostly
interval/ratio variables) have continuous probability
distributions. The normal distribution — whose features
we discussed at length — is one type of a continuous
probability distribution.

As well, recall that probabilities are expectations. Thus,
while some continuous random variables might have an
approximately normal observed distribution, their
probability distribution (i.e., expected in theory) is
perfectly normal — because it’s theoretical.

I said it before and it bears repeating: just like a few
coin flips can produce an unequal number of heads and
tails despite the fact that the probabilities of getting heads
or tails are both equal to 0.5 in theory, a variable can have

1. We discussed this in Section 1.5, here: https://pressbooks.bccampus.ca/

simplestats/chapter/1-5-discrete-and-continuous-variables/.
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an approximately normal frequency distribution while its
probability distribution is theoretically normal. In
short, we can expect some continuous variables
to be normally distributed. For example, we
can expect most people to be of average height or
thereabouts, and to have few people who are much
shorter or much taller, and the shortest and the
tallest to be so rare as to be exceptional.

This, however, is actually not why the normal
distribution is so important in statistics. What do we care
about “some variables” and whether their distribution is
normal or only approximately so? (Well, we do use that
information, of course, but that’s not the point here.) The
reason the normal distribution is so valuable is because
one specific very special distribution is normal — the
sampling distribution, as we will see in Chapter 6. (The
sampling distribution lies at the basis of statistical
inference.) But let’s not get ahead of ourselves.

After all this, you can see the normal distribution as
a normally distributed probability. (Or, instead of a
frequency distribution, it is a relative frequency
distribution). Thus, the area under the normal curve is
equal to 1 (or 100 percent, the whole probability), and
it can be sectioned off, as it were, to indicate various
outcomes’ probabilities. See the following set of Figures
5.6.

Figure 5.6 (A) Probability of 1 (100%)
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Figure 5.6 (B) The Mean Gives Us Two Identical
(Symmetric) Parts of 50% Probability Each

Figure 5.6 (C) 1 Standard Deviation from the Mean
Sections Off 68% Probability
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Figure 5.6 (D) About 2 Standard Deviations from the
Mean Section Off 95% Probability

Figure 5.6 (E) About 3 Standard Deviations from the
Mean Section Off 99% Probability
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Thus, apart from what percentage of cases falls where,
now we can discuss what the probability that a case will
fall in a particular place is. Both refer to the same thing
essentially but the latter indicates the theoretical
expectation and allows us to be more precise (as
empirically cases are only approximately normally
distributed). Or, you can think of it like this: given the
properties of the normal probability distribution, we can
expect that much percentage of the data to be within that
many standard deviations from the mean.

You’ll see how the normal curve allows us to calculate
probabilities through z-values in the next and (to your
eternal relief) final section on the topic.
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5.2.5 The Real Use of z-Values

Recall from Section 5.1.2
(here: https://pressbooks.bccampus.ca/simplestats/chapter/
5-1-2-the-z-value/) that any value/score can be converted
into a z-value, which tells us how far the value is from the
mean in terms of standard deviations. Now that we know
the normal curve has a bell shape reflecting probabilities
(the higher the curve at any point, the bigger the
probability), any point on the horizontal axis can be seen
as a z-value associated with a specific probability — or
rather, the probability below and the probability above the
z-value.

You can find the z-values’ probabilities listed in a
Normal Distribution Table, e.g., this
one: https://www.mathsisfun.com/data/standard-normal-
distribution-table.html. Note that since the normal
distribution is symmetric (i.e., the left side, below the
mean, is exactly the same as the right side, above the
mean), such tables usually only list probabilities between
the mean and the z-score and above the z-score. This needs
to be taken into account when calculating probabilities.

1

Alternatively, online normal distribution calculators like
this one http://onlinestatbook.com/2/calculators/
normal_dist.html give you the option to specify which

1. To make sense of that, the linked webpage also provides an interactive tool to

see all z-values with the normal curve with three options: between the mean

and z, above z, and below z.
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probability you need calculated based on a specific mean
and standard deviations.

Let’s take an example to see how this works.

Example 5.4 Hockey Player Heights

According to Hockey Graphs (REFERENCE
https://hockey-graphs.com/2015/02/19/nhl-player-size-
from-1917-18-to-2014-15-a-brief-look/), the average height
of players in the National Hockey League is about 185 cm,
with a standard deviation of about 5.3 cm

2
.

What is the probability that a new recruit (to your team of
choice) will be taller than 185 cm? (Suspend disbelief and
assume the recruit is randomly selected; i.e., his height (or
skill) has absolutely no bearing on his selection.)

This one is easy: 185 cm is the mean, so the probability of
a particular height being above the mean is 50 percent (equal
to the probability of a height being below the mean). (For a
visual, refer to Fig. 5.6 (B) in the previous section.)

So let’s complicate matters further: What is the
probability of the new recruit being taller than 198 cm?

2. 2014 data.

258



To find it, we first need to convert the value into a z-score:

where of course xi is the original value, μ is the mean,
and σ is the standard deviation.

Then, using a normal distribution table (e.g., the one
linked above, https://www.mathsisfun.com/data/standard-
normal-distribution-table.html

3
), we find that the probability

for a height to be above z=2.45 (i.e., above 198 cm)
corresponds to 0.71 percent, or less than 1 percent. (Of
course, if you’re curious, you’ll also know that the
probability of a new recruit to be shorter than 198 cm is
(100-0.71=) 99.29 percent.)

You can see the correspondence between the two graphs
below in Fig. 5.7, one showing the height values and the
other the z-scores. The area in which we are interested is
beyond/above 198 cm, i.e., beyond/above z=2.45.

Figure 5.7 (A) The Area Beyond 198 cm

3. Or its applet, set to "z onwards".
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Figure 5.7 (B) The Area Beyond z = 2.45

260



We can also ask the probability of a team recruit being shorter
than 180 cm. Then:

Checking the normal distribution table, we find that the
probability up to/below z=-0.94 is 17.36 percent. Thus we have
found that the probability of a recruit to be shorter than 180 cm is
17.36 percent. (Alternatively, we also know that the probability of
a recruit being taller than 180 cm is (100-17.36=) 82.65 percent.)
Again, see the graphs in Fig. 5.8 below.

Figure 5.8 (A) The Area Up To 180 cm

Figure 5.8 (B) The Area Up To z = -0.94
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Finally, let’s try finding the probability of a new recruit being
between 178 cm and 188 cm. In this case we need to find two
z-scores, and add the probabilities between each of the z-scores
and the mean (i.e., above the lower score up to the mean, and
below the higher score down to the mean).

Using a normal distribution table we find that the probability
between z=-1.32 and the mean is 40.66 percent. The probability
between the mean and z=0.57 is 21.57 percent. Thus, the
probability that a new recruit’s height will be between 178 cm and
188 cm is (40.66+21.57=) 62.23 percent. See Fig. 5.9 below.

Figure 5.9 (A) The Area Between 178 cm and 188 cm (Or
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Rather Between 178 cm and 185 cm and Between 185 cm and 188
cm)

Figure 5.9 (B) The Area Between z = -1.32 and z = 0.57 (Or
Rather Between z = -1.32 and 0 and Between 0 and z = 0.57)

Time to practice on your own!
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Do It! 5.8 Test Scores

Imagine you learn that the average score on some test
you’ve taken is 110 with a standard deviation 8. You still
don’t know your score, so you’ll try to estimate some
probabilities. What is the probability that you have more
than 130? What about more than 95? Below 87? Between 90
and 115? Feel free to use the normal distribution table linked
above. (Hint: Drawing out the normal curve centered on 110
helps.)

(Answers: z=2.5, 0.62%; z=-1.88, 96.99%; z=-2.88, 0.2%; z=-2.5 and

z=0.63, 49.38% + 23.57%= 72.95%)

Now, with the concepts of probabilities and the normal
distribution under your belt, you are finally ready to delve
into statistical inference. Unfortunately for you, another
theoretical chapter looms on the horizon, next. Grit your
teeth and bear it, for the payoff (once we get to actually
applying the theory in practice) is well worth it.
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Chapter 6 Sampling, the Basis

of Inference

While describing variables is all nice and good — and
useful — statistics would be rather limited if we only used
it for that. In reality, descriptive statistics, while popular
(consider sports statistics, for example), is only a relatively
tiny part of all that statistics has to offer. The true power
of statistics lies in granting us a superpower: the ability
to infer — to know (and even to predict), within reason,
things we cannot otherwise possibly know through
observation alone. This part of statistics is called inferential
statistics, and it’s based on probability theory, a branch of
mathematics of which you had a small taste in Chapter 5.

How do we know that life expectancy at birth is 82.3
years in Canada and 78.7 years in the United States
but only 51.8 years in Siera Leone (REFERENCE
World Bank, 2016)? How can we predict, with
reasonable certainty, the outcome of elections?
How can we predict how many people will die of
a particular cause in a specific country in a year?
How do we know if most Canadians approve of
immigration? Or what percentage of the Canadian
work force is employed part-time? How do we
predict how many people will be added to the
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world population in any year, or how many people
will the world have in 2100?

Figure 6.1 World Population Projection 2100

[https://population.un.org/wpp/Graphs/Probabilistic/
POP/TOT/]

Fig. 6.1 above might seem complicated to you now, but
soon enough you would be able to read it, as we will be
covering all the concepts listed in the legend.

1

While I’ll leave the demography examples and
projections about the future aside (as the scope of this text
is quite more modest), let’s take an example from closer
to home and, say, talk about the attitudes to immigration

1. As it's somewhat difficult to see it on the graph, the answer to the last

question -- what is the projected population of the world for 2100? -- is

11.2 bln. people (REFERENCE UN Population Division, 2017). We can do

all that, and more, courtesy of inferential statistics.
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in Canada. How do we know if Canadians approve of
immigration? What do we mean when we even say
“Canadians”? If we say “Canadians approve of
immigration,” does that mean all Canadians do? If not,
how many Canadians approve and how many disapprove?

To answer these questions we need to introduce more
vocabulary than we have been using so far; vocabulary that
is generally used in all sorts of research, both quantitative
and qualitative, and not pertaining to statistics per se,
though very relevant to it. In short, we have to start
differentiating between a sample and a population (a term
that has a more general meaning than the way we use it in
everyday life), and we need to talk about sampling.

Following that, I’ll explain the concept of randomness in
greater detail, which, coupled with what you now know
about probability, will help us get to the sampling
distribution. With that and the Central Limit Theorem,
we’ll be ready. Then, and only then, we’ll be able to answer
questions like How do we know if Canadians approve of
immigration? along with any other question we might have
about things/entities about which we cannot directly obtain
information.

But I am getting too far ahead and too fast in my
overview which, as any abstract talk, easily gets confusing.
Let’s take it slowly from the beginning: samples and
populations in the next section, and build from there. Be
forewarned, however: what follows is indeed quite a bit
theoretical and abstract, I’m afraid. (Yes, more than the last
chapter, sorry.) Believe me, I wouldn’t do this to you if it
weren’t necessary.
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6.1 Populations and Samples

Before we start, yet another word of warning: what
follows is only a brief overview of the topic of sampling
and types of sampling. What I offer is enough in terms
of a necessary background to statistical inference
— but the main learning objective
here is inference, not everything there is to know
about sampling methods and their intricacies.
Thus, if this is the first time you encounter the
concept, you would be better served to read a
thorough introduction on sampling and the
benefits and downsides of the different sampling
methods in virtually any one of the research
methods textbooks you can find as that would give
a more comprehensive treatment that I do here.

With that in mind, onward to the preliminaries:
populations and samples.

In the introduction to this chapter, I asked a question: Do
Canadians approve of immigration? How, do you think,
can we go about answering it?

Presumably, the simplest way to investigate this would
be to simply ask — imagine we contacted everyone and,
indeed, simply asked them whatever version of the
question we have decided on (i.e., whichever way we have
operationalized our variable, attitudes to immigration),
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noting everyone’s responses. Many governments, both
historically and to this day, have employed and still employ
this method for gathering information.

When we gather information from everyone in whom
we are interested, we are doing a census. You probably
know that the Government of Canada, through Statistics
Canada, conducts a census of the Canadian population
every five years. (You might have even filled the form
yourself, if you are of age, or seen your parents do it,
otherwise.) Then, can the government (or any researcher/
agency for that matter) collect information about
everything it might need or want through censuses, every
time the information is required?

Theoretically, it’s an option. In practice, no way: it
would be prohibitively expensive. You might find the
reason prosaic, but any research is limited by the
availability of resources, money and time. Asking one
additional question on a questionnaire to one additional
person has costs, which add up quickly the more questions
and the more people are included in the study. Thus,
censuses of the population are enormous undertakings
reserved for collecting only really important (typically
demographic) information, and are usually quite limited in
scope.

12

Given that conducting censuses for everything
1. For more information on the Canadian census program see here:

https://www12.statcan.gc.ca/census-recensement/index-eng.cfm

2. Censuses of the population are so expensive, some governments cannot afford

to do them (or at least not regularly) and instead rely on survey data from

samples. As well, in some places censuses can be fraught with

controversies due to racial/ethnic and/or religious tensions, etc. and are

therefore avoided. (REFERENCE Weeks 2015).
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anyone (researches, governments, etc.) might want
information on is generally impractical/unfeasible,
what can be done when information about a
population is needed?

Here is where statistics saves the day: with
probability theory and inferential statistics, we can
use the next best thing to a census — random-
sample surveys! My job in this chapter will be to
convince you that you don’t need to do a census
of the population you want to study as long as you
have a well-selected sample.

You, undoubtedly, have taken a survey at some point in
your life in one form or another: a survey for which you
were selected/invited or you volunteered; which included
other people but definitely not everyone. In other words,
unless we are discussing a census, surveys typically are
administered to samples (i.e., sub-groups) of the
population. However, not all surveys are created equal:
those that can “substitute” for the population, as it were,
rely on the just-mentioned technique of random sampling.

But first off, let’s establish what samples and
populations really are. While it’s intuitive to think of
population as the population of a country (say, 36.7 mln.
Canadians), and of sample as a sub-group of that
population (say, ten thousand Canadians), this is only a
special case of the general terms sample and population.
In research, a population is a group encompassing
everyone on whom we want information, i.e. everyone
(or everything) we want to study. Considering that we
might not be studying people (recall that the units of
analysis can be countries, organizations, etc.), we say that a
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population encompasses all elements under study. This
means that we could have study populations such as
“countries in South America”, or “hospitals and medical
clinics in Toronto”, or “departments of sociology in
Canadian universities”, etc.

As well, while the elements may be people, instead of
the whole population of a country, we might be interested
in studying “university students in Canada,” or “early
childhood educators in British Columbia,” or “dog walkers
in downtown Vancouver,” or “Telus company employees,”
or “dentists in Surrey, BC,” etc. All of these examples are
of populations that can be defined as such by researchers
interested in them.

Thus, a sample is any sub-group of the population
under study. For example, if I decide to study “KPU
students”, my study population would be defined as
“everyone registered as a student at KPU”. If I select a
hundred students for my study, I would have a sample of
N=100.

Ultimately, again, what the population for a particular
study is depends on what the researcher wants to study.

If we go back to the Do Canadians approve of
immigration? example, the population under study would
be, of course, “Canadians” but we have to be very careful
how we define “Canadians”: Are we interested in all
Canadians, regardless of where they live/are at the
moment? (I.e., do we include ex-pats, people with dual
citizenship residing abroad, Canadian tourists travelling the
world, etc.?) Or do we only want to study Canadians in
Canada? And do we want to study permanent residents
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in Canada too or only people with Canadian passports?
Regardless of how we want to define our study population,
it has to be precise and to have objective criteria that we
follow consistently.

Once a researcher has decided on and defined a study
population, and collecting data on all elements of that
population is considered unfeasible (and, as you will
eventually see, collecting data on all elements of the
population might be even undesirable as its unnecessary,
even if it were feasible), the researcher needs to select a
sample for their study.

The procedure of selecting a sample is called
sampling.There are two broad types of sampling, non-
random and random, and the next section is devoted to
that.
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6.2. Non-random Sampling

How do we go about selecting elements (be they
individuals, organizations, etc.) for a study, once we have
decided on a population? In short, how do we go about
sampling?

You know by now (if only because of the title of this
section) that the two broad types of sampling are non-
random and random. Statistics (specifically, inferential
statistics) is based on random sampling, therefore in
what follows I disproportionately focus on that. This is not
because non-random sampling is not used or isn’t useful —
not at all! Non-random sampling comprises several very
much valid and valuable sampling techniques, typically
used in qualitative studies. However, these are situated
outside the scope of this book. As such I will do an only
passing overview of non-random sampling (so that you are
able to spot it and differentiate it from random sampling).

1

With that in mind, I start my lopsided mini-presentation
on the topic; non-random sampling first and random-
sampling in the next section.

1. You would be doing yourself a favour to learn about all research (and

sampling) methods available. After all, not every research question can be

approached and studied from a quantitative perspective. (And, at the very

least, there are study populations that can only be sampled non-randomly.) I

thus very much encourage you, if you haven't already, to take an

introductory course in research methods to learn all there is to learn about

sampling, both non-random and random.
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Professors in social science classes sometimes ask
students to interview or administer surveys as part of class
assignments. You might have had to do that, or you can
just imagine such an assignment — so how did/would you
select your subjects? Most likely you would go with what’s
most convenient — fellow students in your class, students
that happen to be in, say, the cafeteria when you had time
to do the assignment, your closest relatives or friends if you
were instructed to chose non-fellow students. Any of these
ways of sampling are generally classified as non-random
(a.k.a non-probability) sampling.

Non-random sampling techniques typically include
convenience sampling (selecting whichever elements are
closets/most convenient to you), purposive sampling
(sampling with a purpose: selecting only the most useful
(e.g., most knowledgeable/ rich in information) cases as
judged by the researcher, also called judgment, selective, or
subjective sampling), snowball sampling (where selected
few initial participants contact/invite/recruit others in their
respective circles to become participants in the research),
and quota sampling (sampling on a specific desired
characteristic, e.g., specifically selecting a certain number
of men and a certain number of women for a study).

As well, any time the subjects of a study are
self-selected (i.e., the study is based on people
volunteering to participate), it is also considered non-
random sampling.

The one defining feature common to all non-random
sampling methods is related to the probability of elements
to be selected/included in the study. If the probability of
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the elements of the population to be included in the
study is unequal — i.e., if some elements have higher
probability to be in the study than others — the
sampling is called non-random. Non-random samples are
in this sense biased — they focus, and select information,
on some elements more than others.

The information about these specific elements might be
very useful but it reflects only the elements from which
it was collected. In other words, such information (and
studies based on it) is said to have limited
generalizability. To the extent that there is a claim to
generalizability, the generalizability is assumed (perhaps
by assuming the population is so uniform that any sub-
group would reflect it).

A word of caution, however: The limited
generalizability of non-random sampling techniques
should never be taken as somehow detracting from, or
invalidating, research who legitimately uses them. To take
a prime example, ethnographies usually rely on non-
random sampling methods, yet they typically provide a
wealth of information and levels of detail that could never
be achieved through a quantitative survey research alone.
Thus, non-random sampling techniques should never be
considered as inferior to random ones — just different, and
serving different purposes.

The purpose of random sampling, then, is to find a
way for a sample to truthfully reflect — i.e., to stand in
for — the population from which it is taken. This truthful
reflection – i.e., generalizability — is no longer assumed
(as it is in non-random sampling), but rather it is verifiably
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proven through mathematical means based on probability
theory.
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6.3 Random Sampling

In order to be able to use what we know about probability
distributions and the normal curve and to be able to apply
this knowledge in the service of inference (how exactly we
do that comes later in the chapter), we need to know the
probabilities of the population elements to be selected. The
problem is, estimating these probabilities (every time, for
each and any new study) can be way too burdensome, if not
outright impossible. Consider the following example.

Example 6.1 Mode of Transportation of Students

Imagine that you are interested in what mode of
transportation the students in your university usually take
to campus. You decide that a sample of N=100 sounds
reasonable. Imagine further that you don’t know anything
about sampling (or logic) so you decide to go to the nearest
bus stop to your campus and talk to the first hundred
students that happen to come by once you’re there.

Arguably, if you did that, you could expect close
to 100 percent of your sample to choose bus as their
usual mode of transportation to school — after all,
you have talked only to students waiting at a bus
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stop. True, it’s possible that some of your respondents
were taking the bus only at that particular time (their
car might have broken down, or they didn’t feel like
driving that day, etc.) but it’s hardly likely this to
be the case for more than a few out of the selected
hundred.

So far, what you could learn from your study is
that some hundred (or close to it) students in your
university happen to usually take the bus to school.
In and of itself, there is nothing wrong with that.
The question, however, is whether you can use this
information to conclude that bus is the usual form
of transportation for students in your university in
general. To paraphrase in the language of research:
is the information regarding usual modes of
transportation gathered by you from a hundred
students at a bus stop generalizable to your
institution’s student body as a whole?

Even going by logic alone you should be able to easily
see that the answer is no, of course not. After all, you only
talked to students at a bus stop who were there specifically
to take the bus, at a specific time, on a specific day. What
about the students that directly went to the parking lot to
take their cars, or those who went to retrieve their bikes from
the bike racks, or who simply walked home? Then what
about students who had no classes on the day that you went
to the bus stop? Or the students that were in class at the
time you were interviewing your subjects? Or the students
in your institution whose classes were at a different campus
and never came to the one you happened to be in?
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In short, your method of collecting information had
produced a biased sample: some elements in it (students
who happened to be taking the bus at the time of your
survey) had a higher chance at participating in your study
than others (everyone else). The sample is biased toward
bus-takers — those who you talked to had something like
100 percent chance to be in the study (and they did); other
bus-takers who weren’t there had a smaller but still potential
chance to be in the study, and those who never take the bus
had 0 percent probability to be in your study.

What’s more, not only are the probabilities to be selected
different for the different students, calculating the exact
probability for every element in every new study and
accounting for the differences would be a fool’s errand, as
unfeasible (or outright impossible) as collecting information
on the entire population under study in the general case.

The takeaway from Example 6.1 is that in statistics we
want elements to have easily known (to make calculations
easy) and equal (so as to not produce bias) probabilities
to be selected. Fortunately for us, random sampling (also
called probability sampling) provides both — as the way
for the probabilities to be known is based on the fact that
when chosen at random, the elements have the same/equal
probability of being chosen.

Recall that in a coin flip the probability of getting heads
is the same as the probability of getting tails, and they are
both , one outcome out of two possible outcomes, or 0.5.
The probabilities of throwing a die and getting a one, or a
two, or a three, or a four, or a five, or a six are all equal,
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and known: , one outcome out of six possible outcomes,
or 0.167. Similarly, the probability of selecting one person
at random out of a group of thirty-five people is the same
for all thirty-five people, and equal to , or 0.028.

Throwing dice, flipping coins, and selecting at
random are all random (chance) events – there is no
bias in them, as the probability of any outcome is the
same as any other outcome, and easily calculatable as
one out of the total number of possible outcomes.

If we apply the same logic to sampling, we can see that
the only thing we need is to make sure that our selection is
random and that it applies to all elements in a population of
a particular known size: then the probability of selecting an
element will be always one out of the total number of
elements, i.e., the total study population size.

When this condition — equal probability of
elements to be selected — is met and we know that
probability, we know its frequency distribution.
We can thus use probability theory and its
theorems and postulates which provide
mathematical proof that a random (i.e., unbiased)
sample reflects and represents the population from
which it was drawn truthfully. Then and only then,
whatever we learn from the sample would be
generalizable to the population. (Of course, it’s not
that simple; there is more to it — like sample size
— but I’ll leave this for later when we get to the
Central Limit Theorem).

So what would have been the best way to get a
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representative answer to the question regarding usual
modes of transportation for students in your institution?
Theoretically, you could have obtained a list of all students
from the registrar, selected your hundred at random from
the full list, and contacted only the persons selected. Their
responses would indicate the most popular mode of student
transportation and now, with random sampling, they would
reflect the entire student’s body.

In practice things are more complicated: How exactly do
you chose at random any desired number of elements from
a list of all elements?

1
How do you even obtain a list of all

elements in the first place? Even if we had one, do we put
every element’s name/number in a hat and pull them out
one by one?

While providing details on how random sampling is
done in real life is also outside the scope of this text, I
can assure you several such methods exist (though pulling
names out of hat isn’t one of them). For a comprehensive
treatment, again, I encourage you to consult a research
methods textbook; for my purposes here I will just list the
major ones.

Simple random sampling is the closest that you can get
to the pulling-names-out-of-a-hat proposition, however, in
this day and age it is usually done with computers using

1. The comprehensive list of all elements in a population is called a sampling

frame. Note that in practice some sampling frames might not include all

elements they purport to have. For example, using the phone book as a

sampling frame for a population is a frequently used method, yet we know

that some people have unlisted numbers -- or, possibly, do not have a phone

-- so they are not listed in the phone book. Thus there is a difference

between the population and the sampling frame for it, where the sampling

frame is an approximation of, but not quite a list of the entire population.
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random number generators. The same goes for systematic
random sampling (when the selection starts at a random
starting point and proceeds at a fixed interval). Then there
are also stratified random sampling (the population is first
divided into strata based on similar characteristics of the
elements, not unlike in quota sampling but then the
selection from each strata is random), and cluster random
sampling (the population is divided into clusters — think
sub-groups — and then clusters are selected at random),
where the latter can be even done in several stages (called
multistage cluster random sampling).

To conclude: ultimately, the important thing to learn
here is not how the sampling is done empirically but the
key difference between non-random and random sampling.
Non-random/non-probability sampling methods select
elements arbitrarily at researchers’ discretion, with
unknown and unequal probabilities of elements to be
selected; this, in turn, precludes the use of probability
theory and therefore allows for only assumed (but
unprovable) generalizability of the samples produced in
this way.

On the other hand, random/probability sampling
methods, in selecting elements at random, ensure that
elements have equal (and therefore known) probability to
be chosen; this random selection allows for the use of
probability theory, the normal curve, and everything
that is already mathematically proven regarding
features of random variables and their probability
distributions. Probability theory demonstrates that
randomly selected samples (of sufficient size) are
representative of and generalizable to the population
from which they were drawn. Therefore, conducting
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a census of all elements under study becomes
unnecessary as long as we are able to draw a random
sample (of sufficient size) of the population.

At this point, (if you are still awake) you have
probably noticed that I ask you to accept the fact
that random samples are representative of their
populations on my word, with little proof. While I
will not go about proving this mathematically (and
you’ll be happier for it), I will provide the theorem
on which my claims are based soon enough. First,
however, we still have a few other things to cover,
and the logic of inference is next.
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6.4 Parameters, Statistics, and

Estimators

The logic underlying statistical inference is that we want to
know something about a population of interest but, since
we cannot know it directly, what we do is study a subgroup
of that population. Based on what we learn/know about the
subgroup, we can then estimate (i.e., infer) things about the
population. In the previous section, we already established
that not any subgroup of the population will do — what we
need is a randomly selected sample, created through one of
the random sampling methods I listed (simple, systematic,
stratified, and cluster). What we do is collect data from/
about elements of a sample (e.g., respondents) with the
explicit goal of finding something and drawing
conclusions about a population. (Again, we can do that
due to the fact that random sampling allows us to use
probability theory through the normal curve.)

Saying we want to find “something” about the
population of interest is hardly formal (much less precise)
terminology but I wanted to get the message across before I
introduced you to the proper statistics jargon. Let’s do that
now.

Populations have parameters and samples have
statistics. We describe populations with their parameters
while we describe samples with their statistics. When
we study something, we are interested in the parameters
of the population, however, in most cases it is difficult
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to collect the information to calculate them. What we do
instead is we take a random sample of the population
and calculate the sample’s statistics. We then use the
sample statistics to estimate (i.e., infer) the population
parameters. Thus, sample statistics are also called
estimators of population parameters.

For example, if we want to know the average age of
Canadians, we could either do a census and ask everyone
or simply take a nationally representative sample.
Considering how expensive and time-consuming it would
be to ask all 36.7 mln. Canadians (and Statistics Canada
conducts the official census only every five years), we can
poll a random selection of people across Canada, calculate
their average age, and use that as an estimate of the average
age of all Canadians

1
.

In this example, the average age calculated based on
the people in the sample is the statistic which we use to
estimate the average age of all Canadians, the population
parameter. All measures of central tendency and
dispersion describing variables based on sample data are
statistics. On the other hand, if we have data from all the
population when calculating measures of central tendency
and dispersion, we would have parameters.

1. When people who have no statistics background learn of this, they usually

protest that the information is not accurate because it's not based on

everyone. What you will learn in this chapter is that you don't need

everyone, and a sample is perfectly enough because random samples of

sufficient size are mathematically proven to produce the best (closest,

truest, most unbiased) estimates of the population parameters. To the extent

that there is a difference between a statistic and the parameter it estimates,

this difference is accounted for by reporting levels of certainty/confidence.

More on that later.
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Consider if you will, examples I have used in past
chapters: whenever the example was based on actual data
from a dataset, and SPSS was used, this was sample data
producing statistics

2
. Even if we haven’t used statistics in

this way yet, they can be used to estimate things
about Canadians as a whole. On the other hand,
any time I have used examples using hypothetical
(imaginary) data about “your friends”, “your
classmates”, “hours you have worked per week”,
etc. can be considered as having population data,
as we imagine we have all the information about
those things, and there’s nothing to estimate.

A final note concerns formal notation. To differentiate
between statistics and parameters, we designate sample
statistics by Latin letters but we denote population
parameters by Greek letters.

You have already seen a ready-made example for this
rule: recall our discussion on variance and standard
deviation. In Section 4.4 (https://pressbooks.bccampus.ca/
simplestats/chapter/4-4-standard-deviation/) I introduced
formulas for σ and σ2 and I mentioned (without much
explanation) that another “version” of these exist as s and
s2. In truth, when we calculated the variance and the
standard deviation with the hypothetical data in the
examples, we needed the population standard deviation
and variance (i.e., σ and σ2, respectively); but when we
use SPSS with a dataset (i.e., sample data), we need the
sample standard deviation and variance (i.e., s and s2,
respectively). Here they are again:

2. All datasets used in this book are nationally representative data collected by

Statistics Canada.
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I’ll take this opportunity to finally explain why we need
the difference in the formulas (i.e., to divide by N-1 in
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the sample formulas but by N in the population formulas).
Considering that the sample statistics estimate the
population parameters but are arguably different from the
exact parameters — i.e., some uncertainty exists, as
inference is not a perfect “guess” — to assume what we
obtain from a sample is exactly the same as the population
would be a biased estimation. Thus, the N-1 is meant to
correct that bias

3
(which it does for the variance, and does

to an extent for the standard deviation). What we have
then is that s and s2 are unbiased estimators of σ and σ2,
respectively.

Thus it should be clear why we use the s and s2 formulas
when working with datasets and SPSS — as the actual data
has been collected from respondents randomly selected
from a population of interest and comprising a
sample of specific size. On the other hand, when
we have data about everyone/everything we’re
interested in (like in the small-scale examples with
made-up data), we have a de facto population on
our hands — hence the σ and σ2 formulas are
appropriate. In the former case, the findings can
be extrapolated to the population (acknowledging
that we are dealing with inferred estimates); in the
latter case, there is nothing further to extrapolate
as we are calculating the parameters directly.

Another important parameter to note (as we will be using
it a lot from now) on is the population mean designated
by the small-case Greek letter for m (from mean) — μ,
which I introduced in Section 5.1.2

3. This is called Bessel's correction, by the name of Friedrich Bessel who

introduced it.

Simple Stats Tools 291



(https://pressbooks.bccampus.ca/simplestats/chapter/
5-1-2-the-z-value/) without giving you a reason why.
Unlike the correspondence between s and σ, however, we
don’t usually denote the sample mean with an m; as you
know, we use instead (so that we know which variable’s
mean we have in mind).

Finally, when a parameter is being estimated by an
estimator, it is designated by a “hat” on top: for example, if
we have a sample statistic called a estimating a population
parameter α

4
, the estimated α will be , pronounced

“alpha-hat”. By analogy, if a statistic b estimates a
parameter β

5
, the estimated β will be , pronounced “beta-

hat”.

Thus, the logic of inference tells us that while a =
and b = (i.e., the statistics are estimators for the
parameters), a = and b = . That is, the
statistics (a.k.a. estimators) are not the same as the
parameters. More on this, next.

4. This is the small-case Greek letter a: α, pronounced "AL-pha".

5. This is the small-case Greek letter b: β, pronounced "BAY-ta".
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6.5 The Sampling Distribution

With this section we reach a point where you will have
to make a good use of your imagination and abstract
thinking. Unlike our presentation and discussion of
variables early on, giving real-life examples for this
material becomes impossible as the sampling distribution
lies firmly in the realms of abstract mathematical concepts.
Yet we need it because it’s the sampling distribution which
makes inference possible and bridges the gap between a
sample and the population from which it was taken.

Thus, as promised in my introduction to keep everything
to its most necessary minimum to be understandable,
below I offer as non-technical and non-mathematical
explanation of what the sampling distribution is and how
we use it as possible. However, this course of action has
its obvious inevitable downsides: since we are skipping
the actual mathematical proofs and going directly for the
results of these, you will have to accept the presentation at
my word. This is a hard thing to ask of anyone (“it is what
it is because I tell you so”). My justification for doing it
is because the vast majority of my students so far seem to
find the alternative (“it is what it is because of all this very
long presentation of complex mathematical concepts and
complicated procedures”) even more unpalatable, without
any gains in comprehensibility — and, as such, ultimately
mostly useless. (Of course, if interested, you can always
check other, more comprehensive books and online
sources.)
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Despite the dire warning about upcoming doom in the
form of abstract concepts, I still begin with an example.

Example 6.2 Age of Classmates

Imagine you are enrolled in a class along with 49 other
students, so the total class size is 50. Let’s say as a class
assignment (perhaps in a research methods class) you are
tasked with taking a sample of your class and administering
a survey to your sample. In this sense, your class is your
population of interest. For simplicity’s sake, we focus on
one possible question, say, age of respondent. You want to
know the average age of the study population but, instead of
asking all 50 of your classmates, you draw a random sample
of them for the purposes of estimating the class’s average
age

1
.

Now despite that I still haven’t said anything about
sample size (but we’re getting there), I’ll assume that a
sample size of 10 (i.e., 20 percent of the population) would
sound reasonable enough to you. The random draw (with
replacement) yields the following ten classmate’s ages:

1. Of course, with a population of only 50 in real life you can just collect the information

from everyone. I'm using a small-size example for teaching purposes only and to

make calculations manageable. The principle of sampling applies equally not only

to a population of 50 but of any size -- and when your study population's size is in

the millions, you wouldn't attempt to survey all of them (barring the already

discussed case for censuses).
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19, 19, 20, 20, 20, 21, 21, 22, 23, 28

Based on these values, the average age of the sample, ,
is

I.e., your sample’s average age is 21.3 years. Considering
that these ten people were randomly drawn, and that they
are, well, only ten, can we assume that the average age of
your entire class of 50 is 21.3 years?

While this is a good — educated even — guess and a
good starting point, it is unlikely that, had you polled
everyone in the class, your calculation would have
produced exactly 21.3. After all, polling 10 people is not the
same as polling 50; in the latter case your calculation would
include a lot more information than in the former. Thus, it’s
also reasonable to expect that there will be some difference
between the mean based on the sample, , and
the true population mean, μ.

Then how about if you decided to draw another random
sample of ten people out of your class? Would you expect to
have the exact same mean of 21.3 years?

Unless you somehow end up with the exact same ten
people who were in the first sample (and after Chapter 5 on
probability you should know how minuscule that probability
is), it is again unlikely you’d get the same mean.

Simple Stats Tools 295



We could imagine that the new, second sample’s ages
might look like this:

18, 19, 19, 19, 20, 20, 22, 22, 24, 25

Based on these ten new values, the average age of the
second sample (let’s call it ) is:

I.e., your second sample’s average age is 20.8 years,
despite it being drawn from the same population. Your two
samples (of the same size) yielded two close — but still
different — numbers.

As well, following the same logic, it’s just as unlikely
that the population mean μ (your class’s average age) is 20.8
years as it was unlikely that it’s 21.3 years (the sample is still
only 10 people).

What then? How can we trust a sample statistic to
estimate a population parameter? It appears we need more
information. Before we get to that, however, let’s finally
address the elephant in the room – the issue of sample size
I have been neglecting so far.
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One reason you might think the sample estimates in
the Example 6.2 above differ (both from each other and
from the true population mean) could be the sample size:
isn’t N=10 just too small? The answer is of the yes-but-
no variety: No, a sample size that’s 20 percent of the
population size is actually quite big for a research study of
a typical, relatively large size. Yes, a sample of 10 out of
population of 50 is way too small. And, in general, yes, the
larger the sample the better. But let’s unpack– and qualify
— all of these three contradicting pieces of information
properly.

Inferential statistics — at least the typical kind discussed
in this textbook — is about estimating relatively large
populations; luckily, quantitative social science research
most commonly deals with such populations

2

The recommended sample size depends on
the size of the population it will be used to
estimate but at diminishing returns: the larger
the population, the larger the sample’s absolute
size should generally be — but at the same time

2. There is no magic number as to what constitutes a relatively large population,

and therefore an adequate minimum requirement for a sample size. For the

latter, I could offer 100; some suggest 30, others 50 but in truth all these are

more or less arbitrary. It is a fact that having a larger sample (both in

absolute and proportionate sense) puts you in a safer ground in terms of

statistical inference (this has to do with probability theory, the law of large

numbers, the sampling distribution, the normal curve, and the Central Limit

Theorem discussed below for which to work, say, a minimum N=30 is a

frequently cited number). What you can take out of this is that it's better to

avoid dealing with N<30 (or even N<100 if possible),
as the tools and methods discussed in this
textbook are better suited for larger sample (and
population) size..
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the gains of the larger sample size diminish (to
zero), the larger the population is. In other
words, smaller populations need samples of
bigger proportion to represent them correctly,
while larger populations need samples of
smaller (and smaller, and smaller) proportions
to do so. (This also means that even if you have
larger and larger populations, there will be no
gains in increasing the sample size beyond a
certain point.)

In reality, no one would try estimating the parameters of
a population as small as 50, as in most cases they can be
easily obtained — not to mention that to have a meaningful
estimate of a population that small, one would indeed need
almost the entire sample. Sample size calculators are
abundant and free online

3
but to give you an idea of the

diminishing returns to increasing sample size, I’ll just list
a few. To estimate a population of 200, you’ll typically
need a sample of about 180

4
; to estimate a population

of 500, you’ll typically need a sample of about 380; to
estimate a population of 1,000, a sample of 600 would be
adequate; for a population of 2,000, a sample of about 870
would work; for a population of 5,000, a sample of 1,200
would be enough; for a population of 10,000, a sample of
about 1,300 would be enough… then for a population of
50,000, a sample of about only 1,500 would suffice, and a

3. You can find one example at SurveyMoneky.com

(https://www.surveymonkey.com/mp/sample-size-

calculator/?ut_source=help_center).

4. Here and on "typically" refers to a frequently used margin of error of ±2.5%;

more on what this actually means in Section 6.6 below.
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population of 100,000 would do just as well with the same
number of 1,500

5
.

What it comes down to is that, to the surprise of many,
actually a sample size of “just” 1,500 respondents can
safely and accurately estimate any population 25,000+.
This also means that a random sample of 1,500 people can
statistically represent, for example, both the population of
Toronto (2.7+ mln. people) and the population of Canada
(36.7 mln. people) — however, it cannot be the same
sample (the former needs to be drawn of Torontonians only,
the latter of all Canadians

6
.

Watch Out!! #11… for (Mis)Judging a Study On Its Sample Size

The point against judging a study on its sample size alone
should be clear already but it bears repeating. When people
unfamiliar with statistics encounter social-scientific reports
based on studies of what they consider a “too small” sample
size, they tend to dismiss the findings. They tend to consider
the “only 500 respondents” or “only 1000 cases” too few
to accurately represent the population from which they were

5. You can also find a table summarizing sample size like this one useful:

https://www.research-advisors.com/tools/SampleSize.htm.

6. In truth, researchers do want larger samples to represent Canada (or other

countries' populations) but that's only to increase the power (defined later)

of their statistical findings, not their generalizability. This desire for larger

N is, of course, constrained by limited resources (time, money, etc.).
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drawn, especially if the population is, in their view,
disproportionately large.

As you should have learned by now, the generalizability
of a study is more a matter of how the sample is drawn, not
of its size (beyond a certain point). As long as the chosen
sampling method is a type of random sampling, and the
sample size is adequate for the population size

7
, the results

of the study will be generalizable to the population. The
actual sample size doesn’t matter for that, even if it may look
“too small” to some.

In any event, even if it’s from a certain point on
unnecessary as demonstrated above, as a logical
inevitability, the closer the sample is in size to the
population from which it is drawn, the smaller the
difference between statistics and parameters should be.
Even in the Example 6.2 above with its imagined,
only-for-illustration-purposes population of 50,
getting information from 40 of your classmates
instead of the 10 we used in the example should
get us an average age that is closer to the true
population age (of all 50 students).

However, as a corollary, unless we obtain
information from truly everyone (i.e., we do a
census), in random sampling a difference
between the sample statistic and the population
parameter will always exist8. This difference

7. At the desired -- and reported -- margin of error.

8. Well, almost always: it is possible (though very unlikely) that a
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between the estimate (the statistic) and what
is being estimated (the parameter) is called
random error. Random error is inevitable — no
matter what we do, a sample will always only
produce an estimate, never the “real thing”, as it
were.

Going back to Example 6.2 above, we can extrapolate
that when randomly drawing a sample after sample after
sample (of the same size) an infinite number of times,
and calculating a mean after a mean after a mean, we’ll
get a long (well, infinite) number of means which will all
be somewhat close to, but not exactly equal to, the true
population mean. If you could possibly imagine this very
long (infinite

9
) list of means as similar to a variable with a

large number of observations, please do so, it helps.

This variable you imagined (made of the very large
number of means that would be produced by the very large
number of samples if we took them) will have a frequency
distribution just like any real variable we have discussed
so far. The distribution of the variable made of the
means is called the sampling distribution of the mean

10
.

However, since all this is theoretical (we do not take more
than one sample), this distribution is not really about actual

sample will just so happen to produce the true population

parameter. This will also be a result of random chance, as

unlikely as it may be.
9. For ease of imagination, I'll stick to "very long/large" from now on, but at the

far back of your mind, remember it's actually infinite.

10. I provide this definition only to make understanding the sampling distribution

easier. It's in no way the technical definition of the sampling distribution.

As well, keep in mind that this "variable" made of the means is a perfectly

imaginary heuristic device.
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frequencies but rather about expected/relative frequencies,
i.e. probabilities. As such, the sampling distribution is
a probability distribution — it lists a mean’s
probability of occurring11.

In a more precise phrasing, all statistics based on
samples (e.g., means, medians, deviations, etc. plus many
others we haven’t yet encountered) have a sampling
distribution, which refers to their theoretical

12
variability

over repeated (to infinity) random samples of specific (and
equal) size. What we know about the sampling distribution
of sample statistics is summarized in the Central Limit
Theorem, next.

11. Compare this to flipping a coin, or throwing a die: as we saw, in

both cases the distribution of the possible outcomes (over

infinite number of flips/throws) is a calculated and known

probability distribution. After all, that's why we know that the

probability of getting tails or heads is 0.5 in theory, just like it's

0.167 for throwing any of the die's six numbers in theory (even

if calculating actual flipped/thrown frequencies in real life

yields different results).
12. It is theoretical because we do not actually take multiple, much less infinite,

number of samples as there is no need: courtesy of probability theory and

the Central Limit Theorem, we just know what would happen if we did.
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6.6 The Central Limit Theorem

Despite it’s scary-sounding name, the Central Limit
Theorem (CLT) simply describes the sampling distribution
— and simultaneously explains why, and how, we can use
sample statistics (like the mean of a variable, , obtained
through sample data) to estimate population parameters
(like the true population mean of that variable, μ).

Recall what we use to describe a variable’s frequency
distribution: 1) a graph to visually display the distribution’s
shape; 2) measures of central tendency; and 3) measures
of dispersion. In the previous section I also asked you
to imagine the (entirely theoretical, i.e., probability)
distribution of the mean (again, in theory, over
infinitely repeated samples). What the CLT does then
is provide information about all three of these elements
(shape, central tendency, dispersion) but about the
distribution of mean. In short, the CLT describes the
sampling distribution of the mean.

The sample size plays an important role: the CLT applies
to “large N”, and is stated for “as the sample size grows”,
bringing us back to the point that the larger the N, the better
for inference it is.

Specifically, the CLT states that with random sampling,
as N increases (i.e., for large N), the shape, central
tendency, and the dispersion (of the sampling distribution)
of the mean, , will be the following:
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1. The distribution of will approach normal
distribution in shape. (That is, the sampling
distribution is a bell-shaped curve.)

2. The mean of the sampling distribution
1

(denoted
as ) will become the population mean, .
(That is, .)

3. The standard deviation of the sampling
distribution (denoted as ) is called the
standard error, and is related to the population
standard deviation, σ, by the formula .

This may seem like a lot to take in (what with all the
jargon, notation, and all) but it really is simply a
description of a distribution. The next paragraph clarifies
each of the CLT’s points in turn.

As brief as it is, the CLT is conveniently packed with
all sorts of useful information: The sampling distribution
is normal in shape — so we can apply all we know about
the normal distribution to it (for example, that it’s bisected
by its mean). Hence, the sampling distribution is centered
on the population mean. Finally, according to the formula
for the sampling distribution’s standard deviation (a.k.a the
standard error), as the sample size N grows, the standard
error becomes smaller

2
— so the distribution will be less

variable/spread out, and thus the estimates will be closer to
the parameters

3

1. You can think of it as "the mean of the means", or the mean of the

hypothetical variable mean.

2. After all, N is in the denominator.

3. On the flip side, the larger the original variables's dispersion, the larger the
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To summarize, the sampling distribution provides us
with a bridge between sample statistics (i.e., estimators)
and population parameters (i.e., the estimated). The CLT
provides a description of the sampling distribution: by
giving us information about an estimator (in
hypothetical repeated sampling), it decreases the
uncertainty of the estimation since now we can
calculate how close the statistic is to the parameter.

I say estimator and statistic, not mean, because CLT (or
a version thereof) applies to all statistical estimators,
as they all have a normal distribution with increasing
sample size. The latter is noteworthy because it’s true
regardless of the shape of the original variable’s
distribution (in the population): a variable might not be
normally distributed but its mean (and other statistics)
always is.

4

If you are wondering about the connection between
random sampling and the normal distribution, the
following video might help:

standard error and the smaller the original variable's dispersion, the smaller

the standard error (as σ is in the numerator)..
4. Many variables tend to be approximately normally distributed in the

population. The point I'm emphasizing here is that even when they are not,

the statistics of these variables based on random sample data are normally

distributed. This relates to our discussion of how large N should be: if the

original variable's distribution in the population is close to normal to start

with, a smaller N will be fine. On the other hand, if a variable is not

normally distributed in the population (or is too widely dispersed/has a lot

of outliers, as reflected in σ), a relatively large N will be needed to ensure

the normality of the sampling distribution.
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A YouTube element has been excluded from this version
of the text. You can view it online here:
https://pressbooks.bccampus.ca/simplestats/?p=99

The video above uses a Galton board to demonstrate
the connection between randomness and normal curves
by showing that balls falling randomly end up distributed
approximately into a bell-shaped curve — with the
majority in the centre, fewer to the sides, and fewer yet
in the “tails”. You can think of a sample mean as one of
these balls (all other balls are the means of other samples
of the same size). Thus, what we see is that the majority
of means would fall in the centre, fewer to the sides, and
fewer still in the tail ends. However, since we do not have
many means at all but only one, produced by one sample,
we are dealing with a probability distribution. In turn, this
tells us that the highest probability is the mean to
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fall in the centre region, with smaller probability
to be to the sides but still close to the centre,
and a further decreasing probability the farther it
gets from the centre, just like with any probability
normal curve5.

If you still find all this hopelessly abstract (as I’m sure
most do), you can see exactly how we use the CLT for
inference in the example below. (Unfortunately, your relief
to be back to examples will be premature at this point: we
have more necessary theory to cover ahead. On the bright
side, we are more than half-way in the chapter so cheer up,
the end is near.)

As a heads-up, here’s the rationale of what we’ll do:
In order to explain inference about populations based on
samples, we’ll reverse-engineer it. That is, we’ll start with
“knowledge” about the population and, based on the CLT,
we’ll “infer” the sample statistic. At the end we’ll see that
following the same logic (but in reverse) we can easily
do the opposite — to estimate the population parameter
through a sample statistic — which is exactly what we
want to do in the first place.

Example 6.3 Price of Statistics Textbooks

5. Of course, in the video you see an approximation of a normal

curve; after all, this is a finite, not infinite, number of balls. That

is why the perfectly normal distribution is only a theortical

concept.
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Let’s say that university students on average spend $250
for a statistics textbook, with a standard deviation of $100
— i.e., we assume to know the population parameters:

μ = 250 and σ = 100

We draw a random sample of N=1,600 students. We want
to know the probability for that sample to have a specific
mean price paid for statistics textbooks.

To get that probability, we first need the standard error,
:

Next, we can draw the sampling distribution: bell-shaped,
centered on μ, and with a (standard deviation called)
standard error of $2.5. Applying what we know about the
normal distribution in terms of the probability under the
curve, we get the following Fig. 6.1.

Figure 6.1 The Sampling Distribution of the Mean Price
of Statistics Textbooks
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That is, we see that 68% of the sample mean prices of
statistics textbooks (in hypothetical repeated sampling)
would fall between $247.5 and $252.5

6
(i.e., within 1

standard error away from the mean, denoted with green
in Fig. 6.1) and 95% of the sample means will fall
approximately between $245 and $255

7
(i.e., within about 2

standard errors away from the mean, denoted with blue in
the graph).

Since this is just a heuristic way to imagine the sampling
distribution, we can restate our finding more correctly: a
single, one-off sample mean will fall between $247.5 and
$252.5 68 percent of the time, and between approximately
$245 and $255 95 percent of the time.

Or, even more precisely, we have a 68 percent probability
that the average paid price for statistics books obtained from
a random sample of 1,600 students will be between $247.5
and $252.5, and a 95 percent probability that it will be
approximately between $245 and $255. This means that we

6. That is, 250-2.5=247.5 and 250+2.5=252.5.

7. That is, 250-2(2.5)=250-5=245 and 250+2(2.5)=250+5=255.
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have a 95 percent chance that the sample mean, , will fall
within $10 (i.e., ±$5) of the population mean, μ.

Quite good as far as predictions go, eh?

Of course, we rarely would have the population mean
to go by, and we would never need to estimate a statistics
— usually, it’s the other way around. But the sampling
distribution is the same, as we still go by the CLT: With
large N, it is still a normal curve. With large N, the sample
mean, , is still approaching the true population
mean, μ. And, with large N, the formula for the standard
error is still the same, . For statistical inference,

we need only follow the logic presented in
Example 6.3 above (albeit in reverse).

However, there is one thing we normally do not have
in order to proceed: the population standard deviation, σ.
We typically use the sample standard deviation, s, as a
substitute, even if this does increase the uncertainty of the
estimates

8

Then, finally, here is how inference works, in one
paragraph: we use sample statistics to estimate
population parameters — i.e., the statistics we calculate
based on random sample data act as statistical estimators

8. We have a way to account for that, however, as
we will see in Section 6.6 on the t-
distribution below and the concept of degrees of
freedom..
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for what we truly want to know, the unknown population
parameters. We do that by the postulates of the Central
Limit Theorem which describe the sampling distribution,
the bridge between the statistics and the parameters. By
the CLT, we have the sampling distribution as normal.
Again, by the CLT, we can center the sampling
distribution on the sample mean, and calculate the
sampling distribution’s standard error using the
sample standard deviation. By applying the properties
of the normal probability distribution to the sampling
distribution, we then produce population
estimates. Ta-da!

I will end this section with an example to illustrate the
full process from the beginning to the end.

Example 6.4 Average Annual Income

Imagine you are interested in the average annual income
in a medium-size city. You randomly select N=1,600 people
living in that city and ask them about their annual income.
You then calculate the mean of the resulting variable as
$50,000, and the standard deviation as $12,000. I.e.,

and s = 12,000

As a first guess, you could say that the average annual
income in the city is $50,000. However, since we know this
is an estimate, and random error exists, you can do better:
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you can also provide information about how certain you are
about your estimate along with some margins for error.

To do that, you need to draw the sampling distribution
of the mean. Following the CLT, you draw the sampling
distribution as a normal curve centered on $50,000. At this
point, you also need information about the sampling
distribution’s dispersion, i.e., its standard error. You
substitute the s you do know for the σ you don’t

9
:

Fig. 6.2 shows the resulting sampling distribution.

Figure 6.2 Average Annual Income

Based on the figure above (and following the same logic
as in the previous Example 6.3), we find that the average
annual income of the city’s population will be between

9. Recall that a "hat" over a symbol indicates it being estimated.
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$49,400 and $50,600 with 95 percent probability
10

. That
is, we can be 95 percent confident that the city’s average
annual income will be within $1,200 of the sample average
of $50,000, or, that the city’s average annual income is
$50,000 ±$600, with 95 percent certainty. (Don’t worry, all
this talk of confidence and certainty will be explained in the
next section.)

You should be able to appreciate that this “average
annual income of $50,000 ±$600” is a much more qualified
and precise statement than simply assuming the population
average is the same as the sample average (which it is
likely not). Now you know how much potential
variability the population mean has, with a specific (and
quite high!) level of certainty.

This is no way trivial, and the best “guess” you can offer
as an estimate of the population mean. No other research
method using sample data is able to produce a closer level
of generalizability of the sample findings to the level of
population, much less with the mathematical, probability-
theory-backed evidence offered by random sampling. This
is what statistical inference does, and now you even know
how and why it works! In the next section, you can try it
for yourself.

We are almost but not quite done with this abstract
monster of a chapter. There is a light at the end of the
tunnel — what is left is tying some loose ends, formally
introducing a concept we’re already using (psst, that’s the

10. We get these bounds (i.e., within about 2 standard errors away from the mean) through

50,000-2(300)=50,000-600=47,400 and 50,000+2(300)=50,000+600=50,600.
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confidence I mentioned above), and providing some final
details on inference in the next section — and then we are
good to go: we can start on some real research and working
with variables again in Chapter 7!
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6.7 Confidence Intervals

In our discussion on statistical inference so far, I have
used not one type of estimators but two, without bringing
your attention to it. Probability theory and the Central
Limit Theorem describing the sampling distribution of
statistics provide us with two types of estimators, called
point estimators and interval estimators.

A single sample statistic which estimates a population
parameter — and which offers a “best guess” for that
parameter — is a point estimator. We have worked with
several point estimates by now: the sample mean is a
point estimate of the population mean μ while the sample
standard deviation s is a point estimate (which we can note
as ) of the population standard deviation σ.

Similarly, I’ll add another useful point estimate, of the
sample proportion. Imagine we are interested in studying
unemployment. We take a random sample which reveals
that, say, 10 percent of the sample respondents report being
unemployed. Thus, we have the sample proportion p as
0.1 and we can use that proportion as a point estimate
of the proportion of the population which is unemployed.
We denote population proportions by the small-case Greek
letter for p which is π

1
. In other words, the sample

1. Pronounced PAI, as you probably already know from the mathematical

constant π=3.14. While we use the letter π for both population proportions

and the mathematical constant, context provides enough clues to

differentiate them.
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proportion p serves as a point estimate of the population
proportion π.

You’ll be happy to know that you are also already
familiar with the other, interval, type of statistical
estimators. As their name suggests, interval estimators,
called confidence intervals, provide not just one number
as a best guess but a whole set of plausible values for the
population parameter.

If you recall Examples 6.3 and 6.4 from the previous
section, you’ll recognize that we already calculated
confidence intervals. In Example 6.4 on the average annual
salary, we found a range of values within which the
average annual salary of the city population was estimated
to fall. Specifically, the average annual salary of the
random sample was $50,000 and we were able to
estimate with 95% certainty that the average annual
salary of the city population would fall between
$49,400 and $50,600. This range of values
between $49,400 and $50,600 is in effect a
confidence interval (a 95% confidence interval, to
be precise). The actual numbers “bracketing” the
interval are called error bounds; the interval itself
is between, and including, the lower error bound
and the upper error bound.

Up until now, we calculated the confidence interval in
a fast and easy way as I wanted to get the point of the
logic underlying statistical inference across. At this time,
however, we need to get more technical and precise about
it.

First, let’s revisit how we did it in the previous section to
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refresh your memory; then I’ll show you the more correct
way to do it. (Before you panic, know that what we did
before was not incorrect; we just used rounded numbers to
make calculations easier/faster.)

This is the information about the sample mean and
standard deviation we had from Example 6.4 Average
Annual Income (without the dollar signs for clarity of
presentation):

Our starting point is the sample mean (which, according
to the CLT approximates the population mean, with large
N). In order to calculate a confidence interval around the
sample mean , we first need to get the standard error ,
given by the CLT-based formula:

We don’t know the population standard deviation but
we estimate it with its point estimator s, so we get:

Substituting s and N in the formula gives us the
following:

Now, by the CLT, we have everything we need for the
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sampling distribution: its mean (as estimated by the sample
mean , its standard deviation (i.e., the standard error
), and its shape as a normal curve. From Section 5.2.4
(https://pressbooks.bccampus.ca/simplestats/chapter/
5-2-4-the-real-normal-distribution/), we know the
probabilities under the normal curve, and that 68 percent of
cases

2
fall within 1 standard deviation from the mean while

95 percent of cases fall within about 2 standard deviations
from the mean.

The resulting graph was presented in Fig. 6.2 in the
previous section. Here it is again, this time with the 68
percent demarcations included.

Figure 6.3 Average Annual Income (in thousands of
dollars), Revisited

2. Here you can imagine the cases as the hypothetical means over infinite

sampling.
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However, to calculate a confidence interval we don’t
need to draw the sampling distribution every time; we
just need to keep in mind what it represents in terms of
probabilities.

From our discussion of Example 6.4 in the previous
section and now, we can easily deduce the basic formula
for calculating a confidence interval:

• for a 68% confidence interval around the mean,
we would have

◦

• for a 95% confidence interval around the mean,
we would have

◦

We could even add the 99% confidence interval,
encompassing values within about 3 standard deviations
away from the mean:

• for a 99% confidence interval, we would have

◦

Using the data from Example 6.4 for illustration, we then
have the following confidence intervals (CI):

• 68% CI:

• 95% CI:
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• 99% CI:

Fig. 6.4 illustrates these confidence intervals.

Figure 6.4 Confidence Intervals for Average Annual
Income

That is, we find that the average annual income for the
city population is between $49,700 and $50,300 with 68%
certainty; it is between $49,400 and $50,600 with 95%
certainty; and it’s between $49,100 and $50,900 with 99%
certainty. Alternatively, we could report that the average
annual income of the city population is $50,000 ±$300
with 68% confidence; $50,000 ±$600 with 95%
confidence; and $50,000 ±$900 with 99% confidence.

The (i.e., the plus and minus the estimated standard
error) represents the margin of error for the specific
confidence interval.

Now that you understand the principle of calculating
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confidence intervals, let’s start doing it with greater
precision, as we normally would in real-life research.

Even if I used “1, 2, 3 standard deviations/errors away
from the mean” in the calculations so far, this is a quick-
and-easy rounding only approximating the real formula for
confidence interval. From Section 5.2.5
(https://pressbooks.bccampus.ca/simplestats/
chapter/5-2-5-the-real-use-of-z-values/), we know
that the probabilities under the normal curve are
associated with specific z-values.

If you check the z-values (standard normal
distribution) table3, you’ll actually see that the
precise z-values associated with 95% probability

4
and 99%

probability
5

are 1.96 (almost but not quite 2) and 2.58
(almost but not quite 3), respectively.

Now you know that even if the z-value associated with
68% probability

6
is indeed 1, the other two confidence

intervals we have used so far need to be recalculated
properly:

• 68% CI:

3. Like the one here https://www.mathsisfun.com/data/standard-

normal-distribution-table.html.
4. Since the distribution is symmetric, recall that the table only gives you half

the probability (i.e., between the mean and the z-score). Thus for 95% (i.e.,

the two sides together), you need to check (95/2=) 47.5%.

5. By analogy, for 99% (i.e., the two sides together), you need to check (99/2=)

49.5%.

6. By analogy, for 68% (i.e., the two sides together), you need to check (68/2=)

34%.
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• 95% CI:

• 99% CI:

To interpret, we find that we can be 95% certain that
the average annual income of the population is between
$49,412 and $50,588. As well, we find that we can be 99%
certain that the average annual income is between $49,226
and $50,774.

Furthermore, although going by “1, 2, 3 standard
deviations/errors” makes intuitive sense, in reality would
you be happy to learn anything “with 68% certainty”?
Sixty-eight percent certainty is hardly certain at all! (As
such, it is pretty much never used outside of teaching.)

On the other hand, while the 95% and 99% confidence
intervals are the most widely used and useful ones, there is
no need to restrain yourself, should you choose to calculate
any confidence interval you wish.

The general formula for a confidence interval is thus:

• Any % CI:

To calculate this, you need to choose the level of
certainty you want; once you have the probability, (divide
it by two and) check its corresponding z-value, then
multiply it by the standard error to get the margins of error
with the desired probability level of certainty.
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For example, I might want the 90% CI (not as popular
as the other two but still a relevant confidence interval that
has its uses).

I check for the z-value associated with 90% probability
7

in a z-distribution table and I find that it’s 1.65. Then, for
the example used above, I would get:

• 90% CI:

Or, I can be 90% certain that the average annual income
of the population of that city is between $49,505 and
$50,495.

By analogy, you can thus produce any confidence
interval with any level of certainty you want.

A bit more on confidence intervals in the next section.

7. By analogy, for 90% (i.e., the two sides together), you need to check (90/2=)

45%.
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6.7.1 Additional Confidence Intervals

Considerations

Precision vs. certainty. One thing you you might have
noticed from the calculations in the examples in the
previous section is that the more certainty you get, the
larger your confidence interval becomes (or vice versa:
the smaller the interval, the less precise your estimate):

Based on the annual income details from Example 6.4,
we had

• between $49,700 and $50,300 with 68%
confidence;

• between $49,505 and $50,495 with 90%
confidence;

• between $49,412 and $50,588 with 95%
confidence; and

• between $49,226 and $50,774 with 99%
confidence.

Of course, who wouldn’t want both more precise and
more certain estimates? Unfortunately there simply is no
way to have our cake and eat it too: As you can see above,
the more confident in our estimate we get, the more the
error bounds of the confidence intervals spread out wider.
There is a trade-off between precision and confidence. The
more precise our estimate, the less certain we are of
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it; the more confident we are in our estimate, the less
precise our “guess” is.

Logically, this makes a lot of sense: imagine the
population parameter as a target and estimation as throwing
a dart at it. The smaller the target, the more precise you’ll
have to be but also the less confident of hitting it. At the
same time, increasing the target size will accommodate
less precise “shots” while simultaneously increasing the
certainty of the target being hit.

And why can’t we have a 100% CI? The non-technical
answer is simply because a statistical estimator is based on
a sample drawn from a population of interest: as long as
you don’t have data from your entire population, there will
always be a possibility for random error (and uncertainty).

The more technical answer lies in the characteristics
of the normal probability distribution. Specifically, the
normal curve approaches but never reaches the horizontal
axis; the probability in its “tails” is not bound — i.e., a
probability for any z-value exists, no matter how small or
large, and it never reaches 0. Thus, a 100% confidence
interval would result in -∞ to +∞ , i.e., it would be virtually
infinitely large, to accommodate the perfect certainty.
Logically, no bound, finite interval can provide 100%
certainty by the nature of statistical inference itself. (Since,
at 100%, it would stop being inference altogether: we will
have no need to estimate, as we would know.)

The effect of sample size on confidence intervals.
Let’s also consider the effect of sample size on the
precision and level of certainty of confidence intervals. In
Section 6.5 (https://pressbooks.bccampus.ca/simplestats/
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chapter/6-5-the-sampling-distribution/) I attempted to
convince you that increasing the sample size beyond a
specific (large) number becomes not only unfeasible in a
world of limited resources but also statistically pointless.
Let’s see if I could further support my claim by the effect
of sample size on the standard error.

To recall, we find the standard error in the following
way:

where we estimate σ (the standard deviation of the
population) with s (the standard deviation of the sample) to
get

We already established that a larger N would result in a
smaller standard error (as N is in the denominator). Given
the formula for calculating confidence intervals, a smaller
standard error should in turn lead to smaller intervals (i.e.,
to more precise estimates) at a fixed level of certainty. The
question is — how much smaller?

Example 6.5 The Effect of Sample Size on Confidence Intervals

Going back to our Average Annual Income (Example 6.4)
specifications, we had that
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We had also already calculated its 95% CI:

• 95% CI:

.

What would happen if we increased the sample size to,
say, N=10,000?

As usual, we start with calculating the standard error:

Then, the new 95% CI would be

• 95% CI:

.

To be sure, the larger-N confidence interval is smaller;
we did gain precision. But consider these numbers for what
they actually are, in actual dollar terms, had this been a
real-life research instead of a hypothetical example. With
a sample of N=1,600 we found that, with 95% certainty,
the average annual income for the population is between
$49,412 and $50,588. We now find that had we a sample
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of N=10,000, the average annual income of the population
would be between $49,765 and $50,235.

The precision “gain” between the two sample sizes is
$353 on each error bound; i.e., our estimate of average
annual income of the population becomes ±$353 more
precise (a total “gain” of $706). At the same time, consider
that surveying a sample size of N=10,000 would cost more
than six times more than surveying one of N=1,600 (as
10,000 is 6.25 times more than 1,600). Would this be worth
it, to only be able to improve your estimate by $350, give
or take, on both sides, when the actual sums we are dealing
with are in the tens of thousands dollars magnitude?

Most people would agree that $49,412 to $50,588 is
precise enough, and that there’s no need to waste six times
more resources on such a relatively insignificant gain in
precision when it comes to average annual income

1
.

Bear in mind, however, that had we been discussing
effectiveness of a life-saving medical treatment instead of
average annual income, our preferences regarding the
trade-off between precision and cost would most likely
be different. Thus, the actual value of increasing sample
size cannot be judged solely on statistics grounds: what

1. To demonstrate the effect of sample size only, this example keeps the other

conditions (i.e., the sample mean and standard deviation) the same.

Arguably, however, a larger N would have a mean and a standard deviation

"truer" to the population. To the extent that a larger sample ends up with a

smaller standard deviation, the standard error would be further reduced, and

the confidence interval would be even narrower, thus gaining more

precision. Still, the point of the effect of sample size per se remains.
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is considered a small/insignificant change in precision for
one thing may very well be a large and worthy change
in another context. Still, in social science research there’s
rarely a need for such increasing precision of inference
no matter the costs, even if larger samples are generally
preferred

2

2. Large sample sizes are very useful for gaining
power in detecting associations between
variables, as you'll see in the remaining
chapters..
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6.7.2 Confidence Intervals for

Proportions

Just like we may like to know the population mean of
something (like the average annual income above), we
might want to know the population proportion of
something else (like, say, the proportion of Canadians
working part time). Population proportions are, like
population means, parameters that can be estimated.

The principle of estimating a population proportion
through a confidence interval is the same as estimating
the mean — we need a standard error for creating error
bounds around the sample statistic (in this case, the
proportion).

The question, however, is how to calculate the standard
error of a proportion. After all, the CI formula requires
the use of a standard deviation; a standard deviation that
proportions do not have (as the dispersion measures we
studied are only applicable to interval/ratio data, if you
recall from Section 4.4 (https://pressbooks.bccampus.ca/
simplestats/chapter/4-4-standard-deviation/). Thus,
calculating the mean and the standard deviation of an
interval/ratio variable is all well and good but what do
we do with proportions, considering that they relate to
categories, not numerical values?

In fact, there is a way to measure dispersion in a binary
distribution (i.e., where there are only two categories/
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outcomes, e.g., employed vs. unemployed, women vs.
men, undergraduate vs. graduate students, heads vs. tails,
approval vs. disapproval, yes vs. no, success vs. failure,
etc.). Unlike interval/ratio variables (which usually have
an approximately normal — and continuous –distribution),
such a binary distribution is a discrete distribution.

Since the standard deviation is off the table, here is
an example to demonstrate the logic underlying the
measurement of variability of proportions.

Example 6.6 Variability Through Clothing

Imagine you have a friend who is partial to the colour
black so much so that they always wear a monochromatic,
all-black outfit. Then one day you notice your friend is
wearing a single article of a different colour, say, dark
purple. Arguably, that’s more variability than wearing all-
black, but the outfit will still be predominantly black. Then
on the next day, there are two pieces of purple amid all the
black, then three, then four, and so on. At what point would
your friend’s outfit stop being “predominantly black” and
would become “predominantly purple”? And what would
happen eventually, if the exchanging-black-for-purple trend
continues?

The answer to the latter question is obvious: the end
point of such a trend would be for the outfit to become
monochromatic again, this time all-purple. Now think about
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variability. At what point was there the greatest and at what
point was there the least amount of variability in your
imaginary friend’s outfit?

To make it easier, let’s add a numerical aspect to what we
have imagined, and say that your friend’s outfit consisted of
10 articles of clothing (and accessories) to start with, and
then your friend swapped a black article for a purple article
on each successive day, for ten days straight after that. Table
6.1 illustrates.

Table 6.1 Black and Purple Articles of Clothing

Simple Stats Tools 333



Black
Articles

Purple
Articles

Initial
state 10 0

Day 1 9 1

Day 2 8 2

Day 3 7 3

Day 4 6 4

Day 5 5 5

Day 6 4 6

Day 7 3 7

Day 8 2 8

Day 9 1 9

Day
10 0 10

Again, on what day(s) would your friend’s outfit be the
least and the most variable in terms of colour? Looking at
Table 6.1, it’s not difficult to spot that the least variable
were your friend’s initial (all-black) outfit and what they
wore on Day 10 (all-purple), both consisting of a single
colour. There is a slight variability on Days 1 and 9 (when
there was a single article of different colour); then more
variability on Days 2 and 8 (when there were two articles
of different colour); then even more variability on Days 3
and 7 (when your friend had three different-coloured
articles); and yet even more variability on Days 4 and
6 (when there were four articles of different colour).
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The outfit was most variable on Day 5, when it was
half-black and half-purple, neither colour
predominating.

Going by “half-black and half-purple”, let’s restate the
information in Table 6.1 in terms of proportions, as this will
help us generalize the logic without the constraint of an
actual count (of 10 articles of clothing, or anything else).

Table 6.2 (A) Black and Purple Articles of Clothing:
Proportions

Black
Articles

Purple
Articles

Initial
state 1 0

Day 1 0.9 0.1

Day 2 0.8 0.2

Day 3 0.7 0.3

Day 4 0.6 0.4

Day 5 0.5 0.5

Day 6 0.4 0.6

Day 7 0.3 0.7

Day 8 0.2 0.8

Day 9 0.1 0.9

Day
10 0 1
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One convenient way to quantify what we found in terms
of the least and the largest variability is through multiplying
the proportions in the two columns, like so:

Table 6.2 (B) Black and Purple Articles of Clothing:
Variability

Black
Articles

Purple
Articles Variability

Initial
state 1 0 1(0)=0

Day 1 0.9 0.1 0.9(0.1)=0.09

Day 2 0.8 0.2 0.8(0.2)=0.16

Day 3 0.7 0.3 0.7(0.3)=0.21

Day 4 0.6 0.4 0.6(0.4)=0.24

Day 5 0.5 0.5 0.5(0.5)=0.25

Day 6 0.4 0.6 0.4(0.6)=0.24

Day 7 0.3 0.7 0.3(0.7)=0.21

Day 8 0.2 0.8 0.2(0.8)=0.16

Day 9 0.1 0.9 0.1(0.9)=0.09

Day
10 0 1 0(1)=0

That is, starting from zero, variability is the highest at
precisely the half-and-half point, when neither outcome/
category (in our example, neither colour) predominates.

Now we are ready for the formula to measure the
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dispersion of a proportion. I demonstrate it by restating
Table 6.2 (B), by designating black as 1 and purple as 0, and
taking black as the colour of interest (i.e., all proportion will
be expressed in terms of black).

Table 6,2 (C) Black and Purple Articles of Clothing:
Generalized

Black
Articles

Non-black
Articles Variability

Initial
state 1 0 1(0)=0

Day 1 0.9 (1-09) 0.9(1-0.9)=0.09

Day 2 0.8 (1-0.8) 0.8(1-0.8)=0.16

Day 3 0.7 (1-0.7) 0.7(1-0.7)=0.21

Day 4 0.6 (1-0.6) 0.6(1-0.6)=0.24

Day 5 0.5 (1-0.5) 0.5(1-0.5)=0.25

Day 6 0.4 (1-0.4) 0.4(1-0.4)=0.24

Day 7 0.3 (1-0.3) 0.3(1-0.3)=0.21

Day 8 0.2 (1-0.2) 0.2(1-0.2)=0.16

Day 9 0.1 (1-0.1) 0.1(1-0.1)=0.09

Day
10 0 (1-0) 0(1-0)=0

And there you have it in the Table 6.2 (C) above, the
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formula for calculating variability for a proportion (i.e.,
for a discrete binary variable). Since we denote sample
proportions with p and population proportions with π, the
variability of a proportion is given by multiplying the
proportion of the outcome we’re interested in by 1
minus the proportion (i.e., on the other outcome’s
proportion) — that is, we have p(1-p) for samples
and π(1-π) for populations.

Technically speaking, this variability is the proportion’s
variance:

As usual, to get the proportion’s standard deviation, we
need a square root of the variance:

With this, we are finally ready to get back to calculating
a confidence interval for a proportion, as we now have
everything we need to calculate its standard error. If you
recall, the formula for the standard error was:

Substituting the standard deviation of the proportion, we
get:
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Of course, when we don’t have the population standard
deviation, we estimate it with the sample standard
deviation — i.e., we need to substitute p for π:

Following our true and tested formula for confidence
intervals (i.e., the sample statistic ± z the standard error),
we ultimately get the confidence interval for a
proportion:

• Any % CI:

As with the mean, we can calculate a confidence interval
with any preferred level of certainty by substituting with
the z-value associated with that probability. For example,
the 95% confidence interval for the proportion would be:

• 95% CI:

If you find all this too technical and abstract, the
following example should help.

Example 6.7 Part-Time Workers in Canada, Age 25-54
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Let’s say we want to know what proportion of Canadian
workers work part-time, and that we are especially
interested in what Statistics Canada calls “the core ages”
25 to 54 (REFERENCE Statistics Canada,
2017 [https://www150.statcan.gc.ca/n1/pub/71-222-x/
71-222-x2018002-eng.htm]).

We conduct a survey of N=1,600 Canadian individuals
aged 25-54 and find that 12 percent of our respondents work
part-time. As usual, we want to estimate the proportion of
all Canadians aged 25-54 who work part time.

We start with calculating the standard error:

Then, a 95% confidence interval for the proportion would
be:

• 95% CI:

Thus we estimate with 95% certainty that (i.e, 95% of the
time such a study is undertaken it will find that) between
10.4% and 13.6% of the Canadian workers aged 25-54 work
part-time. Alternatively, we can say with 95% certainty that
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12% ±1.6 percentages points of Canadian workers aged
25-54 work part time.

As there is a lot to take in here, a second example is in
order.

Example 6.8 Women in Managerial Positions

Let’s say a large, nationally-representative study of
N=10,000 finds that women in Canada occupy 36 percent
of managerial positions. [REFERENCE
https://www.expertmarket.com/female-managers] What
would be the estimate for Canada as a whole?

The estimated standard error of the proportion would be:

As in the previous examples, the 95% confidence interval
for the proportion would be:
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• 95% CI:

That is, we can estimate with 95% certainty (or, 95%
of the time such a study is undertaken it will find) that
between 35% and 37% of managerial positions in Canada
are occupied by women. Alternatively, we can say with 95%
certainty that women occupy 36% ±0.01 percentage points
of managerial positions in Canada

1
.

If you find this a bit too precise to believe, note the
quite large sample size of N=10,000. As established above,
confidence intervals based on large N and around
proportions indicating not very strong variability (after all,
the sample statistics indicated that managerial positions are
predominantly occupied by men) tend to have small
standard errors (due to the relatively small numerator (the
variability) and the large denominator (the sample size)).

1. In this chapter I have presented the most commonly used interpretation of confidence

intervals, and the one most frequently taught to introductory statistics students. I

should point out, however, that this is one of those instances (of which I spoke in the

introduction to this book) where the reality is a bit different than what is being

taught. The interpretation presented here is easier to understand and follows a logic

that is more intuitive to students than what confidence intervals really tell us.

Briefly, the range of plausible values we find are just that -- values that the

population could have, as we haven't ruled them out yet, and 95% (or 99%) of the

time such studies will not be able to rule these plausible values out (REFERENCE

van der Zee, 2017 [How (Not) To Interpret Confidence Intervals, in the hyperlink]).

This, technically speaking, is somewhat different than the "95% (or 99%) certainty

that the population mean/proportion will be between the calculated error bounds"

version we usually work with. If you'd like to go down that particular rabbit hole, go

here: http://www.timvanderzee.com/not-interpret-confidence-intervals/. For

everyone else, the interpretation of confidence intervals presented so far in this

chapter should be enough.
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Now finally it’s your turn to try, first with means…

Do It! 6.1 Average Height of NHL Players, In Inches This Time

Let’s say that a random sample of N=900 past and present
players in the National Hockey League finds that the
average height of players is 73 inches, with a standard
deviation of 3 inches. What can you say about the average
height of NHL players as a whole? Construct a 95% and
a 99% confidence intervals for the average height of NHL
players.

Answer: (72.8; 73.2) and (72.7; 73.3), respectively.

… And now with proportions.

Do Itt! 6.2 Paying Off Student Debt Within Three Years After
Graduation

Let’s say that a sample of N=1,600 finds that only 34
percent of Canadians with a bachelor’s degree have paid off
their student loans within three years after graduation. Can
you estimate the rate for all Canadians with a bachelor’s
degree? Construct both a 95% and a 99% confidence
interval for that rate.
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Answer: (31.7; 36.3) and (31; 37), respectively.

To summarize, confidence intervals allow us to estimate
population parameters with a specific level of precision
and certainty. We construct them based on the idea of the
(normally distributed) sampling distribution of the mean
(or the proportion) using CLT’s postulates: centering the
interval on the sample man (or proportion) and taking that
many times the standard error below and above the mean
(or proportion). The “how many times the standard error”
(i.e., the z-score) determines the interval’s confidence (i.e.,
certainty in terms of probability) level.

Before we move on to variable associations (along with
further uses of confidence intervals in statistics inference;
you didn’t think it was just this, did you?), let’s finally
address the glaring omission in my presentation so far:
How come we can simply use the sample standard
deviation s instead of the population standard deviation σ
in calculating the standard error? I left that explanation for
last, in the next section.
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6.8 The t-Distribution

If, having reached this chapter’s final section, after all we
had been through, random sampling, sampling distribution,
CLT, parameters, estimates, statistics, confidence intervals,
you are now groaning in dismay — why is there even
more to this topic??1always more. Much, much
more; it's not a matter if but of how
much something is left out. — take heart, this is
a short explanation I kept for last, through a brief
introduction of new concept.

If you recall, when we needed to calculate the standard
error of the mean (or proportion) in the previous few
sections, I simply replaced the unknown population
standard deviation σ with the known sample standard
deviation s in the formula. This is what I did:

Substituting in s for σ we had:

Similarly, for the proportion we had

1. As a general principle, in introductory texts such as this there is
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and substituting the known sample proportion p
for the unknown population proportion π in
calculating the proportion’s variability, we ended up
with:

But why can we do that?

The more observant of you might have noticed that I
swept the explanation for this change under the carpet and
simply moved on — but why should the variability of the
population be the same as the sample?

In truth, they are not — or rather, they might be; there’s
just no way to know. That is, by using the sample statistics
to estimate the variability of the population, we introduce
more uncertainty in the calculation. When we do that, we
actually move away from using the normal distribution and
its associated z-values. What we end up using is something
similar, called the t-distribution

2
: an entire set of bell-

shaped curves, accounting for each and every sample size
N. Figure 6.5 illustrates.

Figure 6.5 The Normal vs. the t-Distribution

2. Also called the Student's t-distribution, after the pseudonym of William

Gosset who introduced it to statistics (along with many other concepts).

Due to contractual obligations, William Gosset used to publish under the

name of "Student" (Pagels, 2018). Here you can find more about his

curious case: https://medium.com/value-stream-design/the-curious-tale-of-

william-sealy-gosset-b3178a9f6ac8.
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The t-distribution provides a separate bell-shaped
curve for each possible sample size, thus helping us
“ground”, as it were, the estimation in the reality of an
actual sample of a specific size.

The accommodation of the sample size is done
through the concept of degrees of freedom (commonly
abbreviated to df). The degrees of freedom represent
the number of values in a statistical calculation that are
free to vary. In the case of the t-distribution, the degrees
of freedom are N-1 as one degree of freedom is reserved
for estimating the mean, and N-1 degrees remain for
estimating the variability. Unlike with z-values, where
each z-value represents a specific probability under the
normal curve, the probabilities associates by t-values are
calculated based on its degrees of freedom.

Still, none of this explains why I was able to shamelessly
switch from using the z-distribution to the t-distribution,
without any change to the standard error and confidence
interval calculations in the examples in the previous
sections. If z-values and t-values (and their associated
probabilities) are different, shouldn’t the calculations differ
too?
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Before I reassure you that all is well (and it is), let’s
revisit what z-values actually represent. From Chapter 5
you know that the z-value is the distance between a case
and the mean, expressed in terms standard deviations (i.e.,
standardized):

The reason we were able to use z=1, z=1.96, and z=2.58
in the calculations of the 68%, 95%, and 99% confidence
intervals, respectively, was because the sampling
distribution is a normal distribution (per the Central
Limit Theorem). That is, the z-value in this case is
the distance between the sample mean (the “case”
in the sampling distribution) and the population
mean (“the mean of means”, the mean of the
sampling distribution), expressed in standard
errors (the “standard deviation” of the sampling
distribution):

3

Now what about t? By substituting the sample standard
deviation for the population standard deviation, we end
up with the estimated standard error. In turn, substituting
the estimated standard error for the standard error in the
formula for the z-value above, we get the t-value, the

3. where .
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distance between the sample mean and the population
mean, expressed in estimated standard errors:

4

Compare the two formulas for the z-value and the
t-value above. As similar as they look, the t-value is more
“uncertain” than the z-value, and comes with the
aforementioned specification of degrees of freedom. Given
specific degrees of freedom, the shape of the t-distribution
curve changes, and thus the probabilities associated with
each t-value change too.

Finally, for the drum roll: The reason I was able to
work with t-values instead of z-values in the calculations
of confidence intervals in the previous section without
acknowledging it is due to the sample sizes I chose for
my examples. See, the biggest difference between the z
and the t happens with small N (especially N<30). The
larger the N, the closer and closer the t-distribution
approaches the z-distribution.

You can see this in Figure 6.5 above: as the
degrees of freedom increase, the shape of the
distribution becomes more and more normal, so
much so that the t-distribution at df=30 is already
rendered invisible in the figure, its light blue
colour overridden by the normal distribution’s
black. And from N=100 on, the t converges so

4. Where .
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fast to z, the t-distribution curve becomes our
old, familiar, beloved normal curve! (Okay,
maybe “beloved” applies just to me.)

Given that in the confidence interval examples
in the few preceding sections I used only large
N‘s (=900 and above), the probabilities associated
with the t-value at N-1 degrees of freedom (=899
and above) were the same as those associated with
the z-values: 68% for t=z=1, 95% for t=z=1.96,
99% for t=z=2.58. (Hence I left them out of the
discussion at that time to properly explain here.)

Hmm, much ado about nothing, I can imagine you
saying at this point. If the t-distribution and the
z-distribution are no different at larger N, why even bother
with the t (beyond any small-N uses)? And as unsatisfying
the answer “I’ll explain later” is, I’m afraid I have no
choice but to resort to it, again. Briefly, it has to do with
something called a t–test for significance which we will
be using soon enough for hypothesis testing in Chapter 7,
next.

For now, what you should take away from this section is
that the t-distribution exists, and it is what we actually
use for estimation (and not z!), given a specific sample
size. As well, remember that for N=100 and above, t
converges to z so you can readily apply any
probabilities you associate with z to t with N-1
df. (Regarding the latter, do not forget to always specify
the degrees of freedom for whatever t you might have.
A t-value always comes with df attached as it’s
meaningless/undefined without them.)
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6.10 Summary [EMPTY]
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Chapter 7 Variables

Associations

Statistical inference is hardly only a matter of estimating
single variable means and proportions, and of constructing
confidence intervals around them. Rather, quantitative
sociologists (and other social scientists), like all scientists
trying to explain the world around them, study associations
between variables. Does class attendance affect students
marks? Are male professors praised more highly in student
evaluations than female professors? Are children of more
educated parents more likely to earn post-secondary
degrees? Does abstinence-only sex education lead to
higher teen pregnancy (and abortion) rates? Are rich people
more likely to vote? Are religious people more likely to
espouse more socially conservative values? Does playing
violent video-games increase incidence of real-life
violence and crime? Does race/ethnicity affect one’s
educational attainment and/or income?

All of these questions reflect variable associations.
Every time we hypothesize that two characteristics are
related, or think that something causes change in another,
every time we ask why something is the way it is and what
makes it to be that way, we already speak the language
of variable associations, even without acknowledging it as
such.
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While we can use various research methods to
provide answers to these questions,
quantitative analysis can shed a unique light on
them due to its grounding in probability theory and
the generalizability that stems from it. Of course,
like any research method, using statistics for
inference particularly in the social sciences has
its problems and limitations. Thus, we have to be
very careful in not overstating conclusions and to
always qualify our findings based on the specific
way we have operationalized our variables (i.e.,
exactly how we have measured a concept), as well
as depending on our sample size, the statistical
assumptions we’ve made, the uncertainty we’re
dealing with, etc., etc.

While most real-life research involves many variables
at the same time, examining multivariate associations like
that are beyond the scope of this book. Instead, in the
remainder of this textbook I focus on bivariate associations
— associations between two variables. Still, keep in mind
that while this is a necessary first step when just entering
the world of variable associations, this hardly ever (rather
never) reflects reality in any way: the social world is too
complex for there to only be one and only one cause to
something we observe and that we’re trying to explain. I’ll
remind you of this fact frequently as one of the biggest
mistakes you could probably make with inference is to
assume that the variable on which you have chosen to focus
is the only one associated with (or worse, affecting) another
variable of interest.

In short, from now on we work with two variables in
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order to understand how associations work in principle, not
because inference based on two variables reflects reality
(neither in general, nor in real-life research).

The chapter starts with introducing what we mean by
associations between variables, and with distinguishing
between statistical and causal associations. In a brief return
to descriptive statistics, you’ll then learn how to describe
bi-variate associations. At the end, I’ll bring you back to
the theory (and practice) of statistical inference,
specifically to hypotheses and hypotheses testing, as this is
again what allows us to move from sample descriptions to
generalizable conclusions about the population of interest.
Finally, I provide a brief discussion of the inevitability of
uncertainty through introducing you to the two types of
errors of inference.
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7.1 Types of Bivariate Associations

To start with, what does it mean for two variables to
be associated? Even without prior knowledge of statistics
and statistics terminology, you likely have considered or
at least noticed variables associations both during your
studies and in general. For example, you probably know
that fertility rates are higher in some countries and lower
in others, and you might also know that the level of
socioeconomic development also tends to differ between
the two groups. You might also have noticed that, say, early
childhood educators and hospital nurses tend to be women,
while auto-mechanics or refrigerator repair technicians
tend to be men. You certainly know that (for
now) prime-ministers in Canada and presidents of
the USA have tended to be white (and male, and
Christian).

These of course are all examples of associations between
variables. Every time it can be noted that specific
attributes of one variable tend to go or appear more
often with certain attributes of another variable, you’re
looking at an association. That is, we’re looking for a
pattern between the sets of attributes of two variables;
a pattern where some attribute combinations are seen
more frequently while other attribute combinations are
observed less often.

Recall that we defined variables as characteristics that
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vary across cases. Variables can vary independently of one
another, or they can vary together — in tandem, as it were
— in such a way that when some attributes of one variable
are present, you’d expect to see some specific attributes of
the other variable present too. Like so: Countries defined as
developed tend to have lower fertility rates than countries
defined as developing, so we have the variables level of
socioeconomic development on the one hand, and fertility
rate on the other. The association pits high levels of the
former variable with low levels of the latter variable and
vice versa — low levels of the former variable with high
levels of the latter. These two combinations (high
development/low fertility and low development/high
fertility) are more likely to be observed than a no-pattern
situation, where all sorts of combinations of development
and fertility levels would be equally likely.

Similarly, research has repeatedly shown that some
occupations tend to be male-dominated while others
female-dominated. If there were no association (i.e., no
pattern between the two sets of attributes), we would
expect to observe approximately equal numbers of women
and men in all occupations — but from what we have seen,
that’s not the case. That is, it seems there is an association
between the variables gender and (choice of) occupation.
Furthermore, participation in Canadian and US politics
(and voters’ preferences), especially at the highest levels of
power, appears also to be gendered — as well as associated
with other variables like race/ethnicity and religious
affiliation.
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Do It! 7.1 Bivariate Associations

Try to think of some other bivariate associations on your
own. Start with something simple, like asking yourself if
you commonly encounter some characteristic alongside a
specific other characteristic; e.g., are dark-haired people
more likely to have brown eyes while at the same time
are blonde people more likely to have blue eyes? (Or,
are the combinations dark hair/brown eyes and blond
hair/blue eyes more common than dark hair/blue eyes
and blond hair/brown eyes? Is hair colour related to —
associated with — eye colour?) Etc.

Now that you are more familiar with the associations
vocabulary, let’s clarify the typology of variable
associations. There are two substantively different types
of variable associations: statistical associations and
causal associations. Claiming a causal association
between variables is stronger than the claim for statistical
association. Further, having a statistical association
between two variables is a prerequisite for claiming a
causal association between them — a prerequisite that
is a necessary but not sufficient condition, at that.

Statistical inference provides tests for establishing
statistical association, to some basics of which I’ll
introduce you in the remaining chapters. Establishing
causality, however, takes statistical associations as only but
a starting point, as you will see in later on. Statistical
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associations are for the most part a technical matter
— causality, on the other hand, is based on logic. It
involves one’s ability to consider (and account for)
multiple variables’ associations at the same time.

When two variables vary together, we simply can say
they are associated; however, when we claim causality, we
call one variable the cause (or predictor) and the other the
effect (or outcome).

In summary, finding if two variables are statistically
associated (i.e., that some attributes of one of the variables
tends to go with specific attributes of the other) is relatively
easy. Claiming that one variable affects another (i.e., that
changes in one variable produce/cause changes in the other
variable), on the other hand, is not easy at all — rather, in
the social world, it is quite difficult. But we’ll get to that
later.

For now, let’s start with statistical associations and how
to “find” them. To get there, first we need to take a brief
trip to the (almost everyone’s favourite) land of
descriptive statistics in order to learn to even
recognize potential statistical associations. We do
that through bivariate description, i.e., by
describing two variables together, considering
them and their potential association at the same
time.
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7.2 Describing and Examining Bivariate

Associations

Before we can get to establishing statistical associations
between two variables, we need to know what we are
looking for (or at), as it were. Social research, especially
deductive reasoning, usually starts with an idea — a
research question if you will — which is frequently
grounded in an empirical observation of two variables’
possible association (e.g., “Hey, it seems like all
vegetarians/vegans I know tend to be well off. I wonder if
income and vegetarianism/veganism are related…”) Then,
if one is quantitatively inclined, a random sample can be
used to “check” for such an association.

Most people conceive of that “check” as a one-step
process but it actually involves two steps frequently
undertaken in quick succession, so much so that to appear
singular. As this is your introduction to the topic, we will
take the steps slowly, one after the other.

The first step is the descriptive part: given our
sample data, does it look like there is an association
between the two variables of interest? This step concerns
the data obtained through our sample, i.e., it describes our
sample, and only our sample.

The second step is the inferential part: assuming that
it looks like there is an association between the two
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variables of interest in the sample, is this association
generalizable to the population? That is, is this a “real”
association reflecting the population or is it something we
have observed in our sample due to the vagaries of random
chance? This is the part where we formulate and test
hypotheses in or order to be able to make generalizable
conclusions. We will focus on that starting with this chapter
until the end of the book.

We hereby start with the first step, describing
bivariate associations (again, based on sample data).
What you need for this step is a recollection of the types of
variables, and of the fact that we generally use both visual
(graphical) and numerical descriptions.

From Chapter 3 (a long while back), recall that we
univariately described a variable by 1) graphing its
distribution (we used pie charts, bar graphs, and
histograms, depending on level of measurement), and 2)
providing numerical measures of central tendency and
dispersion where applicable; this is how we used to “get a
sense” of the variable and what it looked like. Similarly, we
can also use graphical and numerical bivariate descriptives,
this time depending on the combination of continuous-or-
discrete variable type, to “get a sense” of the potential
association between two variables and what it might look
like.

Recall as well (from Section 1.5
(https://pressbooks.bccampus.ca/simplestats/chapter/
1-5-discrete-and-continuous-variables/)), that we can
classify variables as discrete and continuous

1
(I know,

1. Briefly, nominal and ordinal variables tend to be (but, especially the latter, are

not always) treated as discrete, and interval/ratio variables tend to be (but
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I know – it too has been awhile, but I did warn you
eventually we’d get back to that).

From this chapter on, we’ll proceed by considering
all three possible bivariate combinations of these: 1)
associations between a discrete and a continuous
variable

2
, 2) associations between two discrete

variables
3
, and, finally, 3) associations between two

continuous variables
4
.

I discuss describing each of the three types of
associations in the following subsections.

are not always) treated as continuous. Note, again, that social science data

tends to be discrete -- we just treat some variables (with relatively large

number of categories/values) as continuous. For the remainder of the text I

will be referring to variables as discrete and continuous and you should

take this to mean that that's how they are treated (and not as an indication

of their "true nature").

2. We will soon learn to test this type of associations in one of the following

sections and in Chapter 8.

3. We will learn to test this type of associations in Chapter 9.

4. We will learn to test this type of associations in Chapter 10
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7.2.1 Between A Discrete and A

Continuous Variable

We can “get a sense” if a discrete and a continuous
variable seem associated visually through a chart called
a boxplot (discussed further below) and numerically
through examining the difference of means (or medians,
if one so prefers).

What type of an association do we get when we consider
a discrete and a continuous variable? The easiest way to
represent this type of association is when we consider a
binary (two-category) discrete variable and check if a
continuous variable’s statistics (like the mean, or the
median) vary between the discrete variable’s categories.
This sounds far more complicated than it is. A couple of
examples will show you that you have probably considered
questions about “comparisons of means” even in your
everyday life. The first one will explain it conceptually, the
second with actual data.

Example 7.1 Sex Differences in Upper Body Strength, American
College Students

Research has shown that, despite similar lower body
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strength, women have less upper body strength than men,
on average. [LIST CITATIONS FROM HERE
https://health.howstuffworks.com/wellness/diet-fitness/
personal-training/men-vs-women-upper-body-strength.htm
AND THE FOLLOWING] One such study examined
differences in upper body strength in a sample of Caucasian
and East-Asian college students engaged in weight-lifting
classes in American colleges (Chen, Liu and Yu, 2012)
[https://content.sciendo.com/view/journals/ssr/21/3-4/
article-p153.xml, pdf here https://www.degruyter.com/
downloadpdf/j/ssr.2012.xxi.issue-3-4/v10237-012-0015-5/
v10237-012-0015-5.pdf].

While the study examined numerous aspects of the
difference in strength, I will take only one of the researchers’
findings to illustrate my point: triceps strength in arm
extension. The reported means were 46.2 pounds for women
versus 87.4 pounds for men in the Caucasian sample, and
39.6 pounds for women versus 82.1 pounds for men in the
East-Asian sample (Chen, Liu and Yu, 2012, p.156).

Consider what we are discussing here: We have two
variables of interest

1
, gender and upper-body strength.

Gender is a nominal discrete (and, in this study, binary)
variable while upper-body strength (through various
measurements in pounds) is a ratio continuous variable. The
hypothesized association between the two posits that some
categories of the discrete variable (e.g., men) tend to go
with specific values of the continuous variable (e.g., higher
values on upper body-strength). That is, if both men and

1. You could argue that race/ethnicity is also there. As reported in the study, however,

race/ethnicity was a secondary variable bringing more detail to the study, through

which the authors were able to demonstrate that upper-body strength differences

based on sex exist in both race/ethnic groups considered.
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women had the same means for, in this case, triceps strength
in arm extension, gender and upper-body strength would
be unrelated, as one’s sex wouldn’t be predictive of one’s
upper-body strength at all.

In effect, we are comparing the mean values (of a
continuous variable) across groups (i.e., the categories of a
discrete variable). Now, as far as a numerical description of
that comparison goes, we have the two means (of men and of
women) and we can thus calculate the difference of means:

(Caucasian sub-sample)

(East-
Asian sub-sample)

Thus, what we observe in this sample is a 41.2 pounds
difference in the upper-body strength (as measured by
triceps strength in arm extension) between Caucasian men
and women and a difference in upper-body strength of 42.5
pounds between East-Asian men and women. Again, note
that the fact that we see these differences in the sample
does not mean they exist in the population — they may,
or they might not. We wouldn’t know this unless we test
if the differences are generalizable to the population

2
. We

will get to testing later, for now we are only interested in the
differences descriptively, i.e., that they exist in the sample.

2. If you are interested, the authors of the study did test these differences (with a t-test,

discussed later) and found them generalizable to the population indeed (Chen, Liu

and Yo, 2012).
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Example 7.1 above shows that every time we compare
averages of two (or indeed, more than two) groups and
calculate the differences in the means, we are effectively
describing associations between variables. I could have
easily presented other examples like gender or race/ethnic
differences in annual income, years of education,
occupational prestige, test scores

3
, etc., etc. The reason I

chose an example about a sex-based rather than gender-
based difference (that is, a kinesiological rather than a
sociological study) was so that I can warn you in passing
about a common mistake, called the ecological fallacy.

Watch Out!! #12 . . . for The Ecological Fallacy

Consider the findings from the study in Example 7.1
above: men’s average upper-body strength is higher than
women’s. Assuming we can generalize the findings to the
general population

4
, the evidence suggests than when it

comes to upper-body strength men are stronger than women
on average. Many people take this to mean that a randomly
selected man would be always stronger than a randomly

3. For an example of a brief study on the association between race/ethnicity (a

five-category discrete variable) and SAT scores of Harvard University

applicants, see here: https://www.thecrimson.com/article/2018/10/22/asian-

american-admit-sat-scores/.
4. As mentioned above, many studies support this as a real, physiological sex difference;

the reason I chose this example instead of more controversial/debated issues like

gender differences in IQ, or the gender pay gap, etc.
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selected woman . . . which does not follow at all from the
difference in mean strength.

Statistically speaking, it is a matter of the dispersion
around the means of the two groups, and of how big the
difference in means is. It is quite possible for a lot of women
to have more upper-body strength than the men’s average,
as well as that a lot of men to have less upper-body strength
than the women’s average.

Ultimately, the takeaway from this caveat is to not over-
interpret differences in averages to mean more than what
they actually are: differences in averaged values, not of
the specific values of individuals belonging to the different
groups that are compared. (You can find an excellent
account of how common this ecological-fallacy mistake is
here: https://www.americanscientist.org/article/what-
everyone-should-know-about-statistical-correlation.)

With that warning out of the way, let’s take another (this
time, sociologically motivated) example for examining
differences of means, along with a proper visual
description — boxplots.

Example 7.2 Gender Differences in Total Income, NHS 2011
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Statistics Canada’s National Household Survey 2011
(NHS 2011) was designed to replace the until-that-time
mandatory long form of the Census

5
. For this example, I

use a random sample of about 3 percent of the NHS 2011
individual data (aka a Public Use Microdata File, or
PUMF), resulting in N=22,123. I am interested in whether
men and women’s income for the year preceding the survey
differed, i.e., whether the variables gender (called sex in the
dataset) and total income (i.e., income from all possible
sources) appear associated.

With the help of SPSS, I plot the data. The resulting
boxplots graph is given in Figure 7.1 below.

Figure 7.1 Gender Differences in Total Income, NHS 2011

5. For the problematic nature of the (Harper) Government's decision in 2010 to make the

survey voluntary and its related implications, see for example here:

https://ocul.on.ca/node/3400. The mandatory long-form census was restored in 2016

by the Liberal Government. My usage of the data here is strictly for demonstration

purposes and as such shouldn't be taken as an endorsement of the NHS 2011.
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Boxplots are charts visually incorporating a lot of
statistical information in one neat little package; I encourage
you to make use of them when exploring your data as they
can be quite useful. What do we see in Figure 7.1 in our
case? Obviously, we have two groups to compare (as per the
two categories in the nominal variable gender), women and
men, and therefore the graph presents two boxplots. (Had we
multiple categories in our discrete variable, we’d have had
multiple boxplots.)

How to read a boxplot. Each boxplot consists of the
eponymous “box” and two so-called “whiskers” protruding
from it. The “box” (in green above) represents the middle
50 percent of the data (i.e., the two middle quartiles, or
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the IQR); the lower “whisker” represents the first/bottom
quartile of the data, and the upper “whisker” represents the
last/top quartile of the data. The dark line bisecting the box
indicates the median. The two ends of the “whiskers” are
the lowest and the highest values. Note, however, that the
quartiles (as represented by the “whiskers”) exclude outliers
as to not visually distort the “regular” spread of the
data. As such, the chart plots run-of-the-mill outlier
cases as small circles (above they are in red) outside of
the “whiskers”; extreme outliers are indicated by stars
(in black above)6.

Now that you know how to read them, compare the two
boxplots above. First, we see that the median for men is
higher than the median for women (again, these are the
dark lines within the boxes); as well, total income
appears to be more spread out for men than for women
(the “whiskers” in the men’s boxplot reach further,
indicating larger range and IQR. Further, while both
men and women appear to have outliers, the men’s
group seems to include more extreme outliers and
at higher values than those observed in the women’s
group7.

6. Also note that to make the boxplot readable in an appropriate size, in Figure

7.1 I cut some extremely extreme outliers off at the top of the men's

boxplot.

7. You might have noticed that the first quartile (i.e., the bottom "whisker")

includes negative values. Statstics Canada uses several income variables for

which this is the case. Negative income exists as an accounting possibility:

when one's annual expenses end up larger than one's annual income (e.g.,

like for a self-employed individual whose business hasn't been as

successful, etc.). In many real-life research, negative income values are

frequently dropped/removed if that course of action is justified by the

study's design, research question, and purposes. In the case of this example
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All this points to the conclusion that men in the
sample had higher (median, and quite likely average)
total income for 2010 than women did, despite that the
individuals with the lowest incomes also appear to be
men.

As useful the general information we gleaned from the
boxplots, we should look at the precise numbers too. SPSS
calculates the mean total income as $32,465 for women and
$48,866 for men — that is, there is $16,401 difference in
mean total income in favour of men. In this sample of 22,123
people, men’s average total income is $16,401 more than
women’s.

We could also compare the medians (especially useful
when dealing with income variables): SPSS gives the
median total income of women in the sample as $23,000,
while the median total income for men is $35,000 — a
difference of medians of $12,000, again in favour of men.

To summarize, you can explore a potential association
between a discrete and a continuous variables of
interest in two ways: 1) visually — by plotting and
comparing boxplots, and 2) numerically, by inspecting
the means (or medians) for the groups (i.e., the
categories in the discrete variable being compared) and
reporting their difference.

I have no reason to do that, hence I left the negative income values in the

data.
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Keep in mind that we are not estimating anything at this
point and are not claiming anything about the population:
we are simply describing data based on a specific, actual
sample.

Figure 7.2 below shows a quick reference for
interpreting boxplots.

Figure 7.2 How to Interpret a Boxplot

[Source: https://commons.wikimedia.org/wiki/
File:Box_plot_description.jpg]
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SPSS Tip 7.1 Bivariate Descriptions of Discrete and Continuous
Variables: Boxplots and Comparisons of Means

This is how you can get boxplots like the ones in Figure 7.1
above:

• From the Main Menu, select Graphs, then from
the pull-down menu Legacy Dialogues, and
finally Boxplot;

• In the resulting Boxplot window select Simple
and, keeping Summaries of groups of cases
checked, click Define;

• Select your continuous variable of interest from
the list on the left and, using the appropriate
arrow, move it into the Variable empty space on
the right (at the top);

• Select your discrete variable of interest from the
list on the left and, using the appropriate arrow,
move it into the Category Axis empty space on
the right (below the Variable), then click OK;

• Your boxplots will appear in the Output
window. (Note that the graph will appear in its
default SPSS colours and specifications.
Double-clicking the chart will make a Chart
Editor window appear. In the Chart Editor you
can change, edit, and modify the appearance of
your boxplots to your heart’s content.)

This is how you can get means, medians (or any
descriptive statistic really) for different groups:

• From the Main Menu, select Data and then
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from the pull-down menu, select Split File;

• In the new window, select Compare groups,
then find your discrete variable of interest from
the left-hand side, and using the arrow, move it
into the Groups Based on empty space; click
OK.

• You would have just placed a filter on your
data. From this point on (until you switch the
filter off), everything you do in SPSS will be
done for each separate group (this is indicated
by a message “SORT CASES BY [your discrete
variable name]. SPLIT FILE LAYERED BY
[your discrete variable name].” appearing in the
Output window.

• Then, from the Main Menu, select Analyze, and
then Frequencies, etc. to request any descriptive
statistics you may like, e.g., the mean, the
median, the standard deviation, etc. as
discussed in the SPSS Tips in Chapter 3.

• Your output in the Output window will list the
requested descriptives by the different groups
(categories of the discrete variable).

• Once you are done with the comparisons, do
not forget to switch the filter off (or your data
file will remain split by groups): go again to
Data in the Main Menu, select Split File and
click Analyze all cases, do not create groups on
the right-hand side; click OK.

• Your Output window will give a message of
“SPLIT FILE OFF.” to indicate that the data is
no longer split by group and it’s in its original
condition.
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Now let’s see how to “spot” and describe potential
associations between two discrete variables.
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7.2.2 Between Two Discrete Variables

Examining a potential statistical association between two
discrete variables amounts to comparing groups (as per
the categories of one of the variables) on the number (and
proportion) of their respective members that fall in the
categories of the other variable

1
. Again, this sounds far

worse than it actually is, as you will see in the examples
that follow.

The potential association between discrete variables can
be examined both visually and numerically via a special
table called cross-tabulation table (“cross-table” or
“crosstab” for short) or contingency table. While a
contingency table can have any number of rows and
columns, too large a number of either/or both can easily
make the table unreadable as it would contain too much
data to contemplate at once. (This is also the reason why
we chose to treat some variables as continuous — when
they have too many categories — as then we can use
another tool to visualize and examine them, as we will
see later.) Thus, below I introduce the simplest form of
a contingency table, a 2×2 crosstab (i.e., 2 rows and 2
columns).

In the general sense a KxJ cross-table would be a table

1. Since both variables are discrete, for clarity's sake I refer to the attributes of

one variable as groups and to the attributes of the other variable as

categories. (I have used them interchangeably until now but here it helps to

distinguish the two variables by using two different words for their

attributes.)
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containing K rows and J columns, where the categories of
one variable go into the rows (a K number of them) and
the categories of the second variable (a J number of them)
go into the columns of the table (therefore crossing in the
interior cells of the table).

Thus, a 2×2 contingency table would mean we have
two binary variables, each with two categories. Before I
show you an actual data exploration, Table 7.1 presents an
“empty shell” of one such table which I use to introduce
some needed vocabulary.

Table 7.1 A Generic Cross-tabulation Table

Variable 1
Group 1

Variable 1
Group 2 Total

Variable 2
Category 1 Number A Number B Category 1 Total

(A+B)

Variable 2
Category 2 Number C Number D Category 2 Total

(C+D)

Total Group 1
Total (A+C)

Group 2
Total (B+D)

Total All
(A+B+C+D)

The first thing you should notice is that the KxJ, or
the 2x2 in our case, refers to the groups/categories of the
variables in questions, not to the actual number of rows and
columns in the contingency table. Technically speaking,
Table 7.1 contains four rows and four columns — but the
ones that count are only the ones in green: two “green”
rows and two “green” columns, indicating the number of
groups and categories of the variables. The last row and
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the last column (in blue above) are called margins and are
reserved for reporting totals

2
. The first column and the first

row (in bold above) are simply titles.

The central cells of the table are the most important ones.
In the example above, Number A indicates the number
of cases (observations/individuals/etc.) that belong
simultaneously to Group 1 (of the first variable) and
Category 1 (of the second variable). By analogy, Number B
indicates the number of cases that belong simultaneously to
Group 2 and Category 1; Number C stands for the number
of cases that belong to both Group 1 and Category 2; and
finally, Number D is the number of cases that belong to
both Group 2 and Category 2.

The margins contain the totals by row and by column,
and the last cell (last row, last column) is reserved for the
total N.

So what is so special about this table? I’ve seen such
tables all my life! you might be saying right about now.
Bear with me, we’ll eventually get to the special — and
somewhat complicated — part (and likely you’ll be sorry
for it). First though, let’s look at a contingency table with
some actual numbers.

Example 7.3 Do You Like The Campus Cafeteria?

2. The more observant of you may notice that the horizontal margin (the last

row) shows the frequency distribution of Variable 1 (i.e., the number of

cases per group), while the vertical margin (the last column) shows the

frequency distribution of Variable 2 (the number of cases per category).
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Imagine you are frustrated within the food options
available in your campus cafeteria and you wonder if others
share your thoughts on the matter (perhaps in order to gauge
support for changes you’d like to see enacted, or similar
type of activism). Before you devote time to do an actual
random sample study (now that you know), you do a quick
exploratory poll of your classmates in one of your classes.
You ask 35 people whether they like the campus cafeteria,
and in the process, you get the inkling that second-year
students seem to have different opinion about the food
options than the first-year students in the class. You plot
your results:

Table 7.1(A) Do You Like The Campus Cafeteria?

First
Year

Students

Second
Year

Students
Total

YES 7 5 12

NO 8 15 23

Total 15 20 35

I am certain you know how to read this: 7 first-year and
5 second-year students like the cafeteria, while 8 first-year
and 15 second-year students do not. There is a total of 12

3

students who like the cafeteria and 23
4

students who do not.

3. As 7+5=12.

4. As 8+15=23.
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You talked to 15
5

first-year and 20
6

second-year students, a
total of 35 students.

Can you compare the relevant numbers as they are
presented in the table? And, for that matter, what are the
relevant numbers?

Let’s answer both questions in turn.

Recall from Chapter 2: No, you cannot compare the
numbers as stated since the two groups you have to compare
are of different size. The relevant comparison is between the
different year students who like the cafeteria — first-years
vs. second-years — as this is what you want to know.

It’s true that 2 more first-years like the food in the
cafeteria than the second year students (7>5) but at the
same time you had 5 more second-year students in your
sample (20>15). To take into account the differing group
size, you need to compare proportions (or percentages): the
proportion of first-year students who like the cafeteria
against the proportion of second-year students who like the
cafeteria. You therefore calculate the respective proportions,
turning them into percentages at the end:

• , or 46.7% of first-years like the

cafeteria

• , or 25% of second-years like the

5. As 7+8=15.

6. As 5+15=20.
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cafeteria

• , or 53.3% of first years do NOT

like the cafeteria

• , or 75% of the second-years do
NOT like the cafeteria

• , or 34.2% of ALL students like
the cafeteria

• , or 71.8% of ALL students do
NOT like the cafeteria

To summarize the information neatly, we modify our table
to this:

Table 7.1(B) Do You Like The Campus Cafeteria?
(Column Percentages)

First
Year

Students

Second
Year

Students
Total

YES 46.7% 25% 34.3%

NO 53.3% 75% 71.8%

Total 100% 100% 100%

So far so good? From Table 7.2(B) now we clearly see
that your initial hunch was right: there does seem to be
a difference in the opinions of your classmates based on
which year they are in their studies. That is, while you do
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have support for anti-cafeteria activism (only 34.3% of your
classmates like the campus cafeteria, while 71.8% dislike it)
first-year students seem to like the cafeteria a lot (almost
twice) more than second-year students do: 46.7% of first-
years like the food options in the cafeteria compared to only
25% of the second-years, a difference of 21.7 percentage
points.

The example above shows what you need to examine
the possible association between two discrete variables:
a cross-tabulation (listing percentages, not absolute
numbers!), visually, and a difference in proportions (or
percentages), numerically.

Again, a reminder that this is sample-only exploration.
We make no predictions or inferences about a population,
we just explore what the data we have at hand shows.

So far, I purposefully show you how the logic of the
descriptive analysis of contingency table goes, the right
way. Here comes the complication, however: why did I
calculate the proportions in the example the way I did?
Consider the alternative:

• , or 58.3% of the students who like
the cafeteria are first-years

• , or 41.7% of the students who like
the cafeteria are second-years

• , or 34.8% of students who do NOT

Simple Stats Tools 385



like the cafeteria are first-years

• , or 65.2% of students who do NOT
like the cafeteria are second-years

• , or 42.9% of ALL students are
first-years

• , or 57.1% of ALL students are
second-years

Table 7.1(C) below demonstrates this alternative.

Table 7.1(C) Do You Like The Campus Cafeteria? (Row
Percentages)

First
Year

Students

Second
Year

Students
Total

YES 58.3% 41.7% 100%

NO 34.8% 65.2% 100%

Total 42.9% 57.1% 100%

Table 7.1(B) and Table 7.1(C) contain two different sets of
percentages. The percentages in Table 7.1(B) are called
column percentages, while the percentages in Table 7.1(C)
are called row percentages. Column percentages are
calculated “down the columns” (i.e., the proportions
are based on the numbers on the horizontal margin/
last row, which in turns lists “100%” in each column).
Row percentages are calculated “right/across the
rows” (i.e., proportions are based on the vertical
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margin/last column, which in turn lists “100%”).
Why didn’t we use Table 7.1(C) in the example above?
The answer is in the warning box below.

Watch Out!! #13. . . for Choosing The Wrong Percentages in
Contingency Tables

The complication regarding choosing the “right”
percentage arises due to the fact that what is considered
the “right” or the “wrong” percentage depends on what you
actually want to know, as in, what your research question/
question of interest is. The percentages in Table 7.1(C) are
“wrong” only because they are not helpful to answer the
question whether there is a difference in the two groups of
students we compare, first-years and second-years. Had we
been comparing the YES group and the NO group on how
many first-year students they each contained, we’d have
used Table 7.1(C). However, this doesn’t seem like the most
relevant question we could ask in this hypothetical study.

Unfortunately, that’s not all. If you thought OK, then,
I’ll just always use column percentages and be done with
it, you’d have been too hasty. You see, the “correctness”
of the percentages you need depends on where your
compared-groups variable is placed. In Table 7.1(B) I
placed the groups-to-be-compared (first-years vs. second-
years) in the columns, and therefore I calculated the column
percentages. If I had put the groups-to-be-compared in the
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rows, I would have calculated the row percentages (which
would have resulted in a transposed Table 7.1(B))

7

YES NO Total

First
Year

Students
46.7% 53.3 100%

Second
Year

Students
25% 75% 100%

Total 34.3% 71.8% 100%

.

Many students faced with contingency tables have trouble
deciding whether they need column or row percentages. My
advice is (which you can take as a rule of thumb) to be
clear what groups you compare based on your question:
if you compare the groups in the columns, you need
column percentages; if you compare the groups in the
rows, you need row percentages. (This is also the reason
why I labeled Variable 2’s attributes as categories early
in this section, not to confuse them with the Variable 1’s
groups.)

Another rule of thumb you might find useful: try to
always put your groups-to-be-compared in the columns (as
most people find comparing a left column to a right column,
horizontally, easier), then you’ll always need column
percentages. That said, do not assume that everyone follows
this last advice: sometimes you might find a table where the
relevant comparison is top row to bottom row, vertically.

7. Table 7.1(D) Do You Like The Campus Cafeteria? (Transposed -- and still correct)
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To orient yourself in the organization of the table, look for
which margin contains the “100%”s — if it’s the horizontal
margin (bottom row), you’re dealing with column
percentages, if it’s the vertical margin (last column), you’re
dealing with row percentages.

Finally, never try to “compare” the percentages that
add to 100% (be they in the rows or in the columns) as this
would not constitute a comparison at all — instead, it would
be a breakdown of the groups in terms of composition (that’s
why they’d add up to 100%, like the 25% of second-years
who liked the cafeteria and the 75% who did not in Table
7.1(B) above). Again, what you need to compare is always
the fraction of cases from one group falling in a category
of interest to the fraction of cases from the other group
in the same category of interest.

All of this is arguably complicated at first blush. The
light at the end of the tunnel is that the more you work with
contingency tables, the easier you will find constructing
them and/or interpreting them correctly.

To that effect, let’s take an example with real existing
data.

Example 7.4 Gender Differences in the Speaking Aboriginal
Language Ability among Indigenous Canadians , APS 2012
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Statistics Canada’s Aboriginal People Survey (APS) 2012
is a nationally representative survey of First Nations peoples
(living off reserve), Métis and Inuit, 6 years of age and
older (Statistics Canada, 2019)

8
. Language is a key element

in retaining, preserving, and transmitting culture; as such,
the ability of Indigenous peoples to speak their ancestral
languages is of special interest given the recommendations
of the Truth and Reconciliation Commission’s (TRC) final
report (2015) [REFERENCE].

For the purposes of this example, I am interested in if
there are gender differences in the ability to speak an
Aboriginal Language among the collected sample. Table 7.2
shows the cross-tabulation of gender (called sex in the APS
2012) and speaking Aboriginal language variables. (Both
variables are binary in the survey.)

Table 7.2(A) Speaking Aboriginal Language Ability by
Gender, APS 2012

8. One could perhaps see the APS 2012 as an effort by Statistics Canada to address some

of the voluntary NHS 2011's issues with coverage/non-response of the listed

population groups.
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As you can see, working with real, large N data makes
proportions even more indispensable for making sense of
the table. We need to compare the fraction of women who
speak an Aboriginal language (or languages) to the fraction
of men who are able to do that.

To make things easier, I followed the rules of thumb
I listed in the Watch Out!! 13 above: the groups-to-be-
compared are in the columns, and we need to compare them
horizontally

9
. Therefore, I need column percentages. Table

7.2(B) does just that.

Table 7.2(B) Speaking Aboriginal Language Ability by
Gender, APS 2012 (Column Percentages)

9. A point to be made here is that when working with binary data, it's enough to focus on

one of the categories on which you compare the groups, as the other category would

be a complement of the first as we are working with proportions. That is, here we

need consider only the YES category (as the NO category is it's exact opposite, i.e.,

"1- YES") due to the fact that we're interested in those who can speak the language,

not those who don't.
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SPSS provides both the original cell count (i.e.,
frequency) and the respective percentage below it

10
.

We can thus easily see that while only 41.4% of men
in the sample can speak an Aboriginal language, 45% of
women in the sample can do that; i.e., there is a gender
difference of 3.6 percentage points in favour of women

11
.

So far, we discussed only 2×2 contingency tables, i.e.,
binary variables. Of course, discrete variables can have
more than two categories each. In the case of a 2×3 table
(and assuming our groups to-be-compared are in the
columns), we’d simply have three groups/proportions to
compare. In the case of 2xJ, where J>3, we’d have J
groups/proportions to compare. The proportions can be
compared in two ways: one against the remaining ones
together (through one difference of proportions), or each
compared to each of the remaining ones (through several
difference of proportions).

Matters become more complicated when we let go of
binary variables altogether and have KxJ table where both
K>2 and J>2 instead. This type of table can be visually
complicated, the larger the K and J. However, the

10. Yet another useful rule of thumb: make sure that SPSS lists "% within [groups-to-be-

compared]" as this indicates that the correct percentages appear in the table. In this

case, SPSS tells us that it has listed "% within Sex of respondent", i.e., the ones we

need in order to compare the two gender groups.

11. You might think it a small difference, but the magnitude of the difference is not the

most important thing when establishing statistical associations. More on the topic in

below.
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comparison can still be done between groups on a category
of interest in the manner described above. For a brief
illustration, see Table 7.3 below.

Table 7.3 Marital Status Differences in Perceived
Health, CCHS 2016

Table 7.3 is a 5×4 table and it presents data from
Statistics Canada’s Canadian Community Health Survey
(CCHS) 2015-2016, crosstabulating marital status (in 4
groups) and perceived health (in 5 categories). Considering
that the latter is an ordinal variable, a way to mentally
simplify the presented information is to focus on the
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extremes — the proportions of people in the different
marital status groups who reported excellent or poor health.

A quick examination of the relevant percentages reveals
that fewer widowed/divorced/separated respondents appear
to report their health as excellent than any of the other
groups (15.9% vs. 22.2%, 23.8%, and 25.1% of married,
common-law, and single respondents, respectively) — a
difference of 6.3 percentage points at the minimum in
favour of the other groups. Correspondingly, widowed/
separated/divorced respondents also report their health as
poor more often than the other marital status groups (6.4%
vs. 3.3.%, 2.3%, and 2.6% for married, common-law, and
single individuals, respectively) — a difference of 3.1
percentage points at the minimum in favour (or rather,
disfavour) of the widowed/married/separated group.

As such, it appears that while the other groups do not
seem to differ much on their self-reported health, the
widowed/separated/divorced group stands out by reporting
lower levels of health, an observation consistent through
all five health categories, an indication that the
variables marital status and perceived health could be
associated.

This concludes my presentation on how to analyze
contingency tables data for possible discrete variable
associations; the only thing left is to tell you how to
produce a table with SPSS.

SPSS Tip 7.2 How to Create Contingency Tables
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• From the Main Menu, select Analyze, and then
from the pull-down menu, Descriptive
Statistics and then Crosstabs;

• Select your pair of discrete variables of interest
from the list on the left-hand side, and, using
the appropriate arrows, move each to their
respective slot on the right: Row(s) or
Column(s);

• Click on the Cells button in the top right
corner

12
; in the resultant window select

Observed in Counts, and either Row or Column
in Percentages

13
, depending on where you put

your groups-to-be-compared, and click
Continue;

• Once back at the original window, click OK.

• The Output window will show the contingency
table of the variables you selected.

So far, we have seen how we examine potential bivariate
associations between a discrete and a continuous variable
(previous Section 7.2.1) and between two discrete variable

12. This is important as if you fail to click on Cells and just click OK at the bottom, SPSS

will produce a table with only the observed count (i.e., number of elements in each

cell) which will make comparison between the groups impossible. Clicking

Cells allows you to choose which percentages you want calculated and included in

the table.

13. Avoid selecting both, and even more so, avoid selecting all three options (Row,

Column, and Total). I guarantee you wouldn't want to interpret the resulting table

should you choose more than one set of percentages. Again, be careful to request the

percentages for the place, rows or columns, where you put your groups-to-be-

compared. If they are in the rows, select Row in Percentages; if they are in the

columns, select Column in Percentages.
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(presently). We now turn to the last bivariate combination,
between two continuous variables, next.
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7.2.3 Between Two Continuous

Variables

The distinctive feature of continuous variables is their
large number of values. As discussed previously, typically
we treat most interval/ratio variables as continuous.
However, sometimes ordinal variables too can have a
number of categories, large enough to justify their
treatment as continuous for the purposes of statistical
analysis. (Think back to the previous Section 7.2.2 and
imagine crosstabulating a variable with, say, 10+
categories on another; the resulting table will be too
unwieldy for meaningful examination.)

As well, continuous variables have values of different
magnitudes, which can be ordered from low to high. Thus,
what we will be looking for when examining two such
variables for a possible association is whether a pattern
exists between their values, or, alternatively, if their values
do not exhibit any predictable combination. While many
types of patterns can exists, for the purposes of this
introductory text we’ll focus on the two simplest ones:
a positive linear association and a negative linear
association. The way we describe and examine such
associations is visually through a graph called a scatterplot
and numerically through a special indicator called
Pearson’s correlation coefficient r (or Pearson’s r, or just
r). I explain both below.
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A positive linear association is a pattern in which
low values of one variable go with low values of the
other variable alongside with high values of the former
going with high values of the latter. That is, in a positive
linear association when the values of Variable 1 increase
or decrease, so do the values of Variable 2. As its name
suggests, a negative linear association is the exact
opposite: low values of one variable go with high values
of the other variable and vice versa. Then, as the values
of Variable 1 increase, the values of Variable 2 will tend to
decrease, or vice versa.

Both the positive and the negative version of this pattern
are called linear because plotting the values of the two
variables on a coordinate system shows the data points
“congregating” in an approximately “straight” fashion, as
if along an imaginary straight line with an upward (i.e.,
positive) or downward (i.e., negative) slope

1
.

Consider the following example two figures.

Figure 7.3(A) Positive Association: Test Scores by Class
Attendance (Simulated Data

2
)

1. Other than linear associations exists, e.g., curvilinear (imagine U-shaped or

inverted U-shaped curves in the data, instead of a straight line). Analyzing

these is more complicated and beyond the scope of this book. The

discussion hereafter will consider only bivariate linear associations

associations, regardless if I mention it explicitly or not.

2. The simulated data used here for illustration purposes only is provided by

DataBake (www.databake.io). [see terms of use 3.6, 3.7: (free) datasets can

be copied, modified, stored or otherwise used for your own personal,

academic, or internal business purposes"]

398



In the scatterplot in Figure 7.3(A) above, I have plotted
data from 35 imaginary students on their class attendance
and subsequent final test scores

3
. Both class attendance

and test scores are continuous variables. (Attendance is
a ratio variable measuring proportion of the class time
attended while test scores is an interval variable measured
in percentages.) Each point of the data represents
simultaneously a student’s attendance (on the horizontal
axis) and a student’s test score (on the vertical axis); e.g.,
the lowest/left-most data point stands for a student who
attended about 20% of class time and scored less than 20%
on the final exam. The data points look “scattered” all over
the graph, hence the name scatterplot.

You can easily see the pattern in the data in Figure

3. The data is called simulated as it's computer-generated for the purposes of the

exercise.
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7.3(A): lower attendance seems to go with lower test cores,
and higher attendance with higher scores. The bottom right
side (high attendance/low scores) and the top left side (low
attendance/high scores) of the graph are empty: there seem
to be no students who attended classes a lot but scored
low on the test, nor students who didn’t attend much but
scored high on the test. Had there been no pattern, the data
points would spread all over the graph, identifying no clear
“congregation” of values based on their magnitude.

Since class attendance and test scores seem to go
concordantly “together” (i.e., low/low and high/high), we
have indication of a positive association.

Figure 7.4(A) Negative Association: Test Scores by Time
Spent On Social Media (Simulated Data)

Again, both time on social media and test scores are
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continuous variables, with time on social media measured
in average hours per day.

The pattern in Figure 7.3(A) is the opposite of the one
we had before: lower number of hours spent on social
media seem to go with higher test cores, and higher social
media usage with lower scores. This time, the bottom left
side (low on social media/low scores) and the top right side
(high on social media/high scores) of the graph are empty:
there seem to be no students who spent very little time on
social media but scored low on the test nor students who
had high usage of social media but scored high on the test.

Since social media usage and test scores seem to go
discordantly “together” (i.e., low/high and high/low), here
we have an indication of a negative association.

Figure 7.3(B) and Figure 7.4(B) below make the point
about linearity clearer by adding something called a line
of best fit to the original graphs

4
. The slope of the line

indicates the nature of the supposed association:
upward/positive or downward/negative.

Figure 7.3(B) Positive Association: Test Scores by Class
Attendance With Line of Best Fit

4. We discuss the line of best fit (aka regression line) in Chapter 10 later.
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Figure 7.4(B) Negative Association: Test Scores by Time
Spent On Social Media With Line of Best Fit
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Compare the slopes of the lines in the figures above to
the one in Figure 7.5 below.

Figure 7.5 No Association: Test Scores By Student
Number in Class (Selected Scores)
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The graph in Figure 7.5 above plots the non-existent
association between a student’s number in in the class and
their final test score. Of course, this is a bogus
“association” which I’m showing here only as an example
of a flat line of best fit, an indication that the two
variable have nothing to do with each other. The line
in Figure 7.5 is not perfectly flat, however, so it helps to
have a numerical indication of association in addition to the
visual ones the scatterplots give us.

Before we get to that, a word of warning. The
presumption of linearity for this type of analysis is very
important and you should make sure to not impose
linearity where it doesn’t exist. The caveat below
explains.
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Watch Out!! #14 . . . For Non-Linear Associations

Data points without a pattern produce a flat (i.e., with
no linear slope) line of best fit, as shown in Figure 7.5
above. However, data points in a non-linear patter will
also result in a flat (i.e., with no linear slope) line of best
fit, if we insist on seeing the variables as linearly associated.
This can lead to dismissing a potential association only
because it’s non-linear, which would be a mistake. While
this textbook doesn’t go into non-linear associations, this
doesn’t mean they do not exist or they are not important:
on the contrary, but they do require you to use different
methods to investigate them.

My warning here is simple: When working with given
data, keep an eye on potential non-linearity. Otherwise
you may incorrectly assume no association when in fact a
non-linear association exists. Figure 7.6 below illustrates.

Figure 7.6 Curvilinear Association: Test Scores By
Student Number in Class (All Scores)
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Surprisingly enough, Figure 7.6 shows that students at
the beginning and at the end of the class list scored lower on
their final test than their peers for whatever reason, or simply
by chance (my bet would be on the latter).

Regardless of the reason or lack thereof, my goal here is
to show you that imposing linearity by drawing a linear line
of best fit will end up as a flat line, which one hastily may
take as an indication of no association (see the straight blue
line on the graph). A closer and more careful look, however,
reveals the inverted-U shape pattern of the data points in
the scatterplot: As the student numbers increase initially, so
do the test scores. Then, as the student numbers continue to
increase, the test scores start decreasing (see the curved red
line following the data points much more closely that the
blue flat one). This is clearly a pattern that should not be
ignored in any serious, real-life study.
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A visual summary of the data and any potential bivariate
associations like the scatterplot is thus very useful.
Scatterplots are in fact rather indispensable if one is to
base their analysis on the assumption of a linear association
between two continuous variables. Still, like in the
previous two cases of two discrete variables and a discrete
and a continuous variable, a numerical summary of the
potential association can be of great help.

For discrete variables we could examine and report
differences of proportions, while for a discrete and
continuous variables we use differences of means (or
medians). In both cases we could compare groups (on
proportions, or means). In the case of continuous variables,
we have neither groups, nor a convenient number to
compare them on. Instead, here we have a correlation
coefficient, Pearson’s r. The correlation coefficient takes
all data points simultaneously and summarizes to what
extent certain values of one of the variables go with certain
values of the other variable (i.e., if they form a pattern or
they vary independently of each other).

While we will examine the exact definition and
calculation of the Pearson’s r in Chapter 10 later, for now
we’ll focus on its interpretation.

The correlation coefficient r is a number between -1
and +1, indicating the strength of any possible (linear)
association between two continuous variables. However,
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there is a catch: the strength of the association is
calculated in absolute terms while the ± sign is there to
indicate whether the association is positive or negative.
Thus, both r=-1 and r=1 stand for the strongest possible
(i.e., perfect) correlation, the former perfect negative
association, the latter perfect positive association.
Between them is r=0, or no association.

While perfect correlations (r=±1) are very rare (if not
non-existent)

5
, most variables’s associations are

somewhere between 0 and ±1. The closer a correlation is
to 0, the weaker it is; the closer the correlation is to -1
or +1, the stronger it is. Typically, in the social sciences a
correlation of about r=±0.7 would be considered strong, a
correlation of about r=±0.5 would be considered moderate,
and a correlation about r=±0.3 would be considered weak.
Correlations around ±0.8 or ±0.9 would therefore be very
strong, while associations around ±0.2 and ±0.1 would be
quite weak.

Now that you are well-equipped with knowledge about
interpreting correlations, let’s see what the correlations of
the associations discussed above were.

First we looked at class attendance and test scores
(Figures 7.3(A) and 7.3(B)); the correlation between the
two variables was a very strong r=0.881. Then, we looked
at social media usage and test scores (Figures 7.4(A) and
7.4(B)), where the correlation was equally
strong r=-0.882

6
. Finally, we discussed the practically non-

5. The obvious exception here is the correlation of a variable on itself, which

will produce r=1.

6. If you're wondering why the correlations appear to be of the same strength,

the reason lies in the way I created the synthetic variable social media

408



existent linear association between student number and test
scores (of selected students, Figure 7.5) whose r=0.049,
while the improperly imposed linearity in Figure 7.6 from
the caveat had a similar so-weak-almost-zero linear
correlation of r=-0.051.

Tired of fake data? Ready to return to the real world of
sociological research? Then let’s take a real example with
existing data and see how it all works out.

Example 7.5 Intergenerational Reproduction of Privilege in
Education in the USA (GSS 2018)

For this example I usd data from the National Opinion
Research Center’s (NORC) at the University of Chicago
General Social Survey (GSS) 2018. I’m interested in
exploring whether father’s education and the education of
the respondent are potentially correlated. Both father’s
education and education of the respondent are measured in
years of schooling, ranging from 0 (no education) to 20
years. As such they are discrete ratio variables which we
can treat as continuous due to their number of values being
quite large (twenty-one to be precise). Figure 7.7 shows the
relevant scatterplot.

usage -- as an inversion of the simulated variable class attendance. I did

warn you the data is made up as a heuristic. (Do not take this to mean that

such associations -- between attendance and class performance and social

media usage and test scores -- do not exist in real life.)
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Figure 7.7 Respondent’s Years of Schooling by Father’s
Years of Schooling (GSS, 2018)

There are several thing to note in the graph above. One is
that the data points look less “scattered” and more orderly
arranged in neat rows and columns than would be the case,
had we variables with much larger number of values.
Furthermore, while N=1,687, there are much fewer data
points on the scatterplot: the reason, of course, is that there
are many observations “on top” of each other, i.e., most data
points represent more than one person’s combination of their
own years of education and their respective father’s years
of education. (After all, most such combination are unlikely
to be unique; we can arguably expect there to be more than
one respondent and their father both having, say, 12 years of
education in the dataset.)
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Substantively, however, what do we see in the scatterplot
above? To the extent that there are respondents with low
levels of education, they seem to have fathers with low
levels of education too. As well, while respondents with
higher levels of education seem to have fathers with all
levels of education, those with higher parental education
appear to be more than those with lower parental education.
(That is, both the left and the right side of the upper half of
the scatterplot have many observations, but the top right area
do seem to contain more observations than the top left area).
Finally, and most importantly, there seem to be almost no
respondents with low levels of education whose fathers had
high levels of education (note the empty bottom right area of
the graph).

All in all, it seems like more years of father’s education
“go” with more years of respondent’s education, and fewer
years of father’s education “go” with fewer years of
respondent’s education — though not completely so, or the
top left area of the graph (the less educated fathers with more
educated offspring) would be empty too. This is reflected in
the line of best fit whose slope, while positive, is not very
steep.

Ultimately, the scatterplot indicates that father’s
education and respondent’s education seem positively
associated in the dataset but also that this association
is not very strong. That is, there appears to be
intergenerational reproduction of privilege in education,
however, fortunately, one’s father’s lower levels of
education don’t seem to completely preclude one’s own
educational attainment.
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The correlation coefficient provides a numerical summary
of the potential association described above.

Table 7.4 Correlation between Father’s Years of
Schooling and Respondent’s Years of Schooling (GSS 2018)

SPSS’s output provides r as “Pearson Correlation”,
and here r=0.413. As suspected, this reflects positive a
moderate/moderately-weak association.

7

To summarize, you can describe and examine potential

7. Note that SPSS's bivariate correlation tables are 2x2 tables, with the information

repeated twice. Thus, while four coefficients are provided in the central cells of the

table, they are actually two pairs of the same two correlations. (That is, correlations

are symmetric: correlating Variable 1 on Variable 2 is the same as correlating

Variable 2 on Variable 1.) As well, one of these two pairs is always equal to 1, as a

variable correlated on itself is a perfect correlation. This is shown in the table as

corr(Highest year school completed, Highest years school completed,

father)=0.413=(Highest year school completed, father, Highest years school

completed) and corr(Highest year school completed, Highest year school

completed)=1=(Highest year school completed, father, Highest year school

completed, father).
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associations between continuous variables through
scatterplots with lines of best fit (looking for a concordant
or discordant pattern in the data points) and the coefficient
of correlation r (ranging from 0 to ±1 in strength, with 0
standing for no correlation and ±1 constituting a perfect
negative or a perfect positive correlation).
Before we move on, the tip below shows how to get the
visual and the numerical summary of continuous bivariate
associations in SPSS.

SPSS Tip 7.3 Scatterplot and Correlation Coefficient

For Scatterplots:

• From the Main Menu select Graphs and, from
the pull-down menu, Legacy Dialogues; click
on Scatter/Dot;

• Keep the pre-selected Simple Scatter option and
click Define;

• In the new window, select one by your variables of
interest from the list on the left and, using the arrow
buttons, move them to the X-Axis and Y-Axis

8
empty

spaces on the right; click OK.

• The Output window will show the resulting
scatterplot; double-clicking on it will open a Chart
Editor window from where you can change the text,
colours, size, etc. of the graph to suit your needs.

For the correlation coefficient (Pearson’s r):

8. At this point, it doesn't really matter which one you put in the X- or Y-Axis though I

would suggest placing the variable that precedes the other in time (like father'd

education generally precedes offspring's education) in the X-Axis. The reasons for

this will be explained in Chapter 10.
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• From the Main Menu, select Analyze;

• From the pull-down menu, select Correlate and then
Bivariate;

• In the resulting window, select one at a time your
two variables of interest from the list on the left and,
using the arrow button, move them to the Variables
space on the right (the order is not important); click
OK.

• The Output window will display a symmetric 2×2
table with your requested correlation coefficient.
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7.3 Summary [EMPTY]
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8 Hypotheses Testing

In Chapter 7 we learned how to look for associations
between two variables in random sample data. Just because
two variables’ observations exhibit a pattern that we can
see in the sample doesn’t mean that the variables are
necessarily truly related in the population. Recall the
purpose of sampling from Chapter 6: to infer something
about a population based on a sample, i.e., to use sample
statistics to estimate population parameters.

Given this, the questions you should be asking at this
point are: Is an association we observe in the sample data
something that exists in the population of interest? That
is, do we observe this association because it really exists
in the population and is reflected in the sample? Or is our
sample unusual enough so that the association is an artifact
of random chance, present only in this one sample? How
certain can we be in our conclusion either way?

To answer these questions, you need to learn how to
test potential associations for statistical significance. The
last section of this chapter and the next two chapters are
devoted to just that. First, however, there is some
preliminary work to do. To that effect, in this chapter I
introduce you to the concept of a hypothesis in social
science research and the logic of hypotheses testing, both
as a theory and in practical terms.

417



Before we delve into this (rather extensive) topic, I still
have to address the elephant in the room when it comes to
statistical associations: causality, next.
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8.1 Causality

From the start, I need to make one thing clear: regardless
if observed only in sample data or generalizable to
populations, so far we have only discussed statistical
associations.

Well, what kind of other associations could we discuss, I
can imagine you grumbling, it’s a statistics textbook — of
course the associations will be statistical!

You are correct, of course, but (you knew there will be
a “but”) — “statistical” here has a very narrow meaning,
something most people unfamiliar with statistics seem
unaware of and thus interpreting to mean a lot more than it
actually does.

You see, statistical association refers only to whether
there is a pattern in the data or not; whether certain
attributes of one variable tend to go with specific attributes
of another variable. In no way does this imply that one
variable is what it is because of another, or that a change in
one causes another variable to change, or that a variable is
dependent on another.

If we can state any of these, we make a much stronger
claim — one of causality — and the associations are then
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called causal
1
. When we have a causal association, we call

one variable independent and the other dependent
2
.

See if you can differentiate statistical and causal
associations. Smoking is associated with lung cancer:
people who smoke (or smoke more) have lung cancer at
higher rates than those who don’t. Smoking causes lung
cancer: smokers are more likely to get lung cancer because
of the fact that they smoke. Class attendance and test scores
are associated: students who attend more classes have
higher test scores. Test scores are dependent on class
attendance: coming to class more often is partly
responsible for higher test scores. Parental education and
offspring education are positively correlated: higher levels
of parental schooling are associated with higher levels of
schooling for the offspring. Individuals with higher levels
of schooling have more education because their parents
were better educated themselves.

The first sentence in any of the examples in the previous
paragraph was a statement of statistical association, the
second statement was one of causality. If they generally
sound the same to you, you should start paying more
explicit attention to phrasing, specifically how the claims
of association are put into words. As the one of most
often-quoted sayings in statistics goes, correlation is not

1. Please make sure you don't confuse causal ['KO-zal] and causality [ko-'ZA-

liti] with casual ['KEH-jwal] and casuality (which doesn't exist).

2. You can think of the independent variable (i.e., the cause) as free to vary on

its own; with or without the dependent variable, the independent is what it

is. On the other hand, the dependent variable (the effect) varies because of

the independent one, that's why it's called dependent. (Note that it's

dependent variable and not dependant. The latter applies to people who are

economically supported by others, like children are dependants of their

parents.)
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causation. Apart from urging caution in interpreting
results, it also brings attention to how careful researchers
must be when reporting results and conclusions in order to
not overstate their claims.

What is the main difference between statistical
association

3

Establishing a statistical association between two
variables is relatively straightforward and easy: there are
tests for that (as we shall shortly see)

4
. Establishing a

causal association between two variables (especially in the
social sciences), on the other hand, is notoriously hard.

Criteria for establishing causality. There are
three basic requirements for establishing causal
associations, and an additional, overarching one related to
the logic of research as a whole.

1. Does the variable we claim is the cause come
before the variable we claim as an effect in
time?

3. While many times the words association and
correlation are used interchangeably, I prefer to
use correlation only in relation to continuous
variables in the context of the correlation
coefficient. Referring to any statistical
association as correlation, however,
is technically not wrong; the usage is simply a
matter of preference. and causation? Briefly, the method of

establishing either; what is necessary for us to be able to claim one or the

other.

4. Of course, it's not as easy as I present it further in this text. As an introduction

to the topic, however, it will suffice. My point is that relative to establishing

causality, it is easier.
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This requirement is also known as temporal precedence
— that is, whether the potential cause happens before
the potential outcome. It is squarely based on logic: after
all, an outcome cannot logically precede its cause. You
can’t take a test on the first day of class, and claim that your
test score was due to your attending class or being absent
later in the semester: that’s not how time works. Similarly,
you cannot claim that the bachelor’s degree you will get
in the near future is somehow responsible for your parents
college degrees from twenty or so years ago.

While in these examples the temporal precedence is
crystal clear, keep in mind that this is not always the case.
There are plenty of situations in social research when it’s
difficult to adjudicate which one of a pair of variables
came first, as well as cases of mutual causality and reverse
causality. Without getting into too much detail take, for
example, the popular finding [citation: Waite] that married
people tend to be happier, on average. One can easily
conclude that marriage promotes happiness. But what if
happier people tend to have more successful relationships
leading to marriage and a related propensity to stay
married? Which one, marriage or happiness, is the cause
of the association and which one the outcome? Further
analysis and investigation of the variables’ association is
necessary in such a case (and even that might not lead to
definite conclusion).

2. Are the two variables statistically associated?
This provides further evidence that statistical association

is different from causation by listing the presence of a
statistical association as a necessary requirement for
establishing causality, among others. In short, the presence
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of a statistical association between two variables is a
necessary but not sufficient condition for claiming
causality.

Why it’s necessary should be obvious: we cannot claim
that we have a variable we think is a cause to a potential
outcome variable, if we have no evidence whatsoever that
they are statistically associated in the first place.
Otherwise, if there is no observable pattern between the
values/categories of the two variables, how can we claim
that changes in one variable cause changes in the other?
Again, logically, the cause and the effect must be related in
some way for which association we have enough evidence
with a specific desired level of certainty. (The remaining
chapters are devoted to finding just that type of evidence.)

3. Are there no alternative explanations of the
variables’s statistical association?

This condition is the most complicated one of the three,
as it requires the examination of other variables and not just
the two of initial interest. Again briefly, there are concerns
about causality due to the social world being vastly
complex and to the social science variables’ complicated
interplay in real life. Basically, in the social world there
rarely is a single cause of anything.

For example, is the statistical association in question
observed because the potential cause variable indeed
affects the potential outcome variable — or because both
variables are in fact effects of a third variable (sometimes
without any association between the original two
variables)? Can we differentiate between a genuine
relationship and a so-called spurious (i.e., fake, bogus)
one, like the one described? As well, perhaps we only
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observe a statistical association between two variables and
claim one as the cause because we haven’t considered
different potential causes. How can we be certain that it
is (solely) the “cause” we have identified, or that if we
considered alternative causes, the original so-called
“cause” will remain as one?

Regarding the latter, consider again the association
between class attendance and test scores. Would you
believe me if I told you that your statistics test scores
depended only on your class attendance? What about hours
of studying, potential after-class tutoring, doing exercises,
pre-existing math knowledge, searching for/reading
additional sources online or in the library, asking relevant
questions in class and/or office hours, etc., etc.?

There are numerous reasons why anyone would score
higher or lower on a test, and I just listed a few of the
study-related ones. We don’t need to limit ourselves to
these though. How about general health on the date of
the exam (maybe you have come to the test sick)? Or
romantic relationship or family problems one might be
going through? A sick relative at home? Episodes of
anxiety and/or depression? Being overworked, working a
night shift before the test, and/or not getting enough sleep
for another reason?

You certainly can add even more reasons for why
a particular test score ends up what it is, and that
class attendance is merely one such potential
cause. (Are we even certain that, if we somehow
accounted for all the other potential causes, we
would still observe an association between
attendance and scores?)
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As to spurious associations, consider that it’s possible
for two variables to seem associated (i.e., there is a pattern
between their values/categories; changes in one are
accompanied by changes in the other) only because a third
variable is causing the changes in both. Then if, instead
of focusing on the two genuine associations, we ignore
the third variable and focus on its two outcomes which
just happen to change at the same time, we would make a
wrong conclusion in attributing causality to an association
that essentially doesn’t exist.

Take for example life expectancy and internet: Since
1990s, as internet was becoming more and more
widespread in Canada, the Canadian life expectancy at
birth was also increasing. We can therefore conclude that
internet prolongs life. But there is a reason why you’ve
never before heard about this particular beneficial effect of
internet on one’s health and life — it’s extremely doubtful
it exists. After all, wouldn’t it make more sense to attribute
both to general technological progress (not only in
communications, IT, and infrastructure but also in
healthcare and medicine)?

Finally, this is where the additional, overarching general
condition for causality comes into play. Assuming the three
conditions listed above are met, claiming causality
essentially implies providing a logical explanation of the
observed association. In and of itself, causality is about
having a theory — an idea, if you will, why there is such an
association. Without such an idea, we are left simply with
two variables which may be or may not be statistically —
but definitely not causally — associated, and the statistical
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association doesn’t mean much, on its own
5
. And given

that the potential statistical association you may think
exists might not even be there once other alternative causes
are considered, you should realize by now that making a
causal claim is indeed not a walk in the park.

What is to be done then? Obviously, such a brief
presentation on the topic leaves a lot to be desired and
is not going to be enough to fully prepare you for the
task of comprehensively establishing causality in real-life
research. What you should be able to do even now,
however, is appreciate causality’s complexity, keep in mind
the necessary conditions for claiming causality (and apply
these when reading about research findings and
questioning conclusions), and always, always keep an eye
on alternative explanations in particular (by asking
yourself “what else could be causing this?”). These should
provide enough basis for you not to take statements about
statistical association between variables as more than they
are, and to not confuse them with claims about causality.

As well, I hope you would be careful in phrasing your
own conclusions when communicating statistical research
to others by not overstating the findings of any analyses

5. You most certainly need to check these associations

out: http://www.tylervigen.com/spurious-correlations. (At this point you

need any distraction you can get, and this time you can even say it's for a

good, pedagogically meaningful cause. Or so I can tell myself.) Among

them, you'll learn that the number of doctorates in Sociology awarded in

the USA is very strongly correlated over time with worldwide non-

commercial space launches, not to mention that the number of drownings

by people falling into a pool correlates moderately strongly with the

number of movies in which Nicholas Cage appeared for the ten years

between 1999 and 2009 (CITATION Spurious Media LLC/Tyler Vigen

http://www.tylervigen.com/spurious-correlations
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you might end up doing, especially if they involve only two
variables, as per our discussion. By now it should be clear
that real-life research considers many variables at the same
time. Such multivariate analysis lies beyond the scope of
this book so you should take any bivariate associations we
discuss to be of solely indicative (or exploratory) nature
— something that additional, multivariate analysis may
establish at a later point, but definitely not a finished
product. After all, you didn’t expect that you can establish
causality by considering only two variables, did you?

With this in mind, we proceed with the question of how
to establish statistical associations — and not just the ones
observable in sample data, but the associations in which we
are truly interested, i.e., those generalizable to populations.
You may not be able to make claims about causality at this
point but you can certainly learn how to test for evidence
of statistical associations between two variables. To that
purpose, the next section introduces the logic of using
hypotheses in research and how hypotheses get tested.
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8.2 Hypotheses

Now that we have come to terms with the fact that we
will not be making causal statements at this point, let’s
turn our attention to establishing statistical associations. As
I mentioned in the previous section, this is done through
testing. In order to test variables’ associations we need to
know how hypotheses are scientifically tested.

To have a hypothesis about something means to have
an idea about how to explain it. This idea, or proposed
explanation, might be based on any combination of logic,
previous related observations, experience, etc. In science,
hypotheses are formulated as relatively concise, testable
statements. If a statement cannot be tested, it doesn’t
qualify as a scientific hypothesis.

Most students unfamiliar with the scientific method of
testing hypothesis are surprised to learn that the testing is
done in a roundabout, method-of-exclusion kind of way:
we don’t set out to confirm our hypothesis but rather
to reject the opposite of what we claim. To baffle you
further, if we reject the opposite, we have found evidence
in support of our hypothesis but we have not proven that
it’s true. Similarly, if we do not reject the opposite, it
doesn’t mean that we’ve proven it as true or that we have
proven our hypothesis wrong. (Nothing is ever proven in
science as that would require 100 percent certainty and we
already established that is impossible.) Thus, interpreting
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a hypothesis test requires careful, qualified language as to
not overstate findings.

Confused? Not to worry. I am getting ahead of myself
here to give you a quick sketch of where we are headed in
this section, but of course I will go over and explain the
parts of the paragraph above in greater detail below. Also
a heads-up: after the brief respite, things are about to get
technical again (in the next section). But first things first.

To test a hypothesis of interest, we make two
contradictory statements: one about what we
hypothesize and another stating the exact opposite

1
.

The “opposite” hypothesis is called a null hypothesis
(frequently designated as H0) and is usually stated first;
the original hypothesis of interest is called an alternative
hypothesis (usually designated as Ha) and is stated second

2
.

When we apply all this to testing variables’ associations,
we end up with null hypotheses such as “the two variables
are not associated”, “there is no association between the

1. Why? Beyond what I already explained about proofs, also because scientists

need to be impartial about what a test will reveal. As a scientist, you want

to test a hypothesis with an open mind and to be equally prepared to accept

the result either way it goes -- so you cannot set out from the start to find

your hypothesis supported.

2. Do not get alarmed if you see different notation in published research. When

researchers test many hypotheses in the same study, they may designate

them as H1, H2, H3, etc. Even more importantly, experienced researchers

don't explicitly state the null hypotheses in their studies -- they are self-

understood as the opposite of whatever each alternative hypothesis states.

Further, some researchers never explicitly designate a hypothesis as it is

taken as evident that this is what they do. Beginner researchers like you,

however, should practice stating -- and clearly designating -- both null and

alternative hypotheses.
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two variables”, or “Variable 1 does not affect Variable 2”,
or “the two variables are independent of each other”, etc.
The alternative hypotheses then would be something like
“the two variables are associated”, “there is an association
between the two variables”, or “Variable 1 does affect
Variable 2”, etc. (However, recall that when interpreting
and reporting results it is always better to state the findings
not only in terms of variables but also in terms of people.)
See some examples in the box below.

Example 8.1 Stating Hypotheses

Hair colour and eye colour:

• H0: Hair colour and eye colour are not
associated; e.g., dark-haired individuals are
equally likely to have blue eyes as blond
individuals are.

• Ha: Hair colour and eye colour are associated;
e.g., dark-haired individuals’ and blond
individuals’ likelihood of having blue eyes is
different.

Smoking and lung disease:

• H0: Smoking and lung disease are not associated;
e.g., smokers and non-smokers have the same odds
of developing lung disease.

• Ha: Smoking and lung disease are associated; e.g.,
smokers and non-smokers have different odds of
developing lung disease.
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Gender and income:

• H0: Income is independent of gender; e.g., men and
women have the same average income.

• Ha: Income is dependent on gender; e.g., women and
men have different income on average.

Parental education and offspring education:

• H0: Parental education is unrelated to the education
of their offspring; e.g., the level of parental
education has no effect on children’s level of
education.

• Ha: Parental education and their offspring’s
education are related; e.g., the level of parental
education is associated with the children’s level of
education.

There are three things that you can learn from the
examples presented above. First, the hypotheses are
formulated as short statements that can be evaluated
in a simple yes-or-no kind of way: “Average income
is independent of gender”: YES, or “Average income is
independent of gender”: NO. Thus you really need only
one statement per hypothesis; if your proposed explanation
is complicated and involves more than two variables, this
means you are dealing with multiple hypotheses, each of
which needs to be tested separately.

Second, while there are many ways you can state
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essentially the same hypothesis, try to keep the null
hypothesis as the same statement the alternative
hypothesis has but in opposition, such as “…are not
related/associated” and “…are related/associated”, or
“…are independent” and “…are not independent”, etc.

Third, you may have noticed the slightly awkward way
in which some of the alternative hypotheses are listed
above. Couldn’t I have stated “women have lower income
than men on average”? Or, “blond individuals are more
likely to have blue eyes than dark-haired individuals”? I
could but then these would have been different alternative
hypotheses. The reason I did not imply who is more or less
likely to have blue eyes, or who has a higher income on
average but kept the statements as a generic “different
likelihood” and “different income” is because it affects
the kind of test that needs to be used. Briefly, there is
a general test for association/difference (aka two-tailed
test), and a more specific version (aka one-tailed
test) which implies “direction”; the former is
more “open-minded” as it doesn’t rely on or imply
prior knowledge and is therefore more
conservative. The latter indicates not only a
difference (i.e., association) but of what specific
type so its usage needs to be justified. More on that
in the next section but for now keep in mind that
as beginner researchers, it’s recommended you use
the general, two-tailed, version of the test.

Before we move to some actual hypothesis testing, see if
you can formulate some hypotheses on your own.
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Do It! 8.1 Stating Hypotheses

Formally state the null and alternative hypotheses about
each of the following pairs of variables: class attendance and
test scores, time spent on social media prior to a test and
test scores, race/ethnicity and years of schooling, gender and
belief in climate change, political affiliation and attitudes
toward gun control. In fact, just go ahead and practice
formulating hypotheses about anything you like.
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8.3 Hypothesis Testing

The first thing you should know about testing hypotheses
is their relationship to statistical inference: We formulate
hypotheses about the population of interest, and only
about the population of interest. We test them through
sample data.

Like so: imagine I have read enough on the topic of the
gender gap that I hypothesize that women and men receive
different income on average. I explore my sample data
and I do find that in the sample with which I’m working
men have a higher average income than women. It seems
like there is an association between gender an income;
however, I do not know if there is an association between
gender and income in the population in general. To that
effect, I want to estimate (with a given level of certainty)
whether such an association exists in the population. My
hypothesis is about the gender/income association in the
population. (After all, I can see the different average
income levels in the sample; there is no need to
hypothesize about the sample.)

You may be getting tired of my italicizing “the
population” but it really is that important: hypotheses are
stated about the population. This is key for testing, so keep
it in mind.

If the test provides us with evidence in support of our
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alternative hypothesis, we call the association being tested
statistically significant

1
.

Before we get to the nitty-gritty details of hypotheses
testing, here’s an overview to show you the underlying
logic of how it all works:

1. State the null and the alternative hypotheses;

2. Assuming the null hypothesis as “true”,
calculate the related score (e.g., z-value, t-value,
etc.);

3. Find the probability associated with that score
(essentially the probability that the null
hypothesis is indeed “true”, called p-value).

4. If that probability is low enough (i.e., below the
level of significance, explained below), reject
the null hypothesis; if the probability is too high
(above the level of significance), fail to reject
the null hypothesis.

5. If the null hypothesis has been rejected, you
have found support for the alternative
hypothesis: your bivariate association is
statistically significant, and therefore
generalizable to the population.

6. If the null hypothesis has not been rejected,
you have found no support for the alternative
hypothesis: your bivariate association is not
statistically significant, and is perhaps due to

1. Statistical significance has a very narrow, very specific meaning as you will

learn further in this section. On the difference between statistical

significance and significance in general, see warning in the Watch Out!!

#15 box in the next section.

436



expected sampling variability (i.e., to random
error) appearing in this one particular
sample.

Example 8.2 below illustrates the whole process in
detail. As with applying the Central Limit Theorem to
confidence intervals, it is easier to start with an example
where we assume we have the population parameters. Once
you grasp the underlying logic, we can move on to properly
testing bivariate associations. (The example below is for
heuristic purposes only.)

Example 8.2 (A) Employee Productivity (Finding Statistically
Significant Results, N=100)

Imagine a large company has created a productivity index
to measure its employees’ productivity. The (interval scale)
index is constructed to be normally distributed, with a mean
of 600 points and a standard deviation of 100 points.

Imagine further that a hundred of the company’s
employees were randomly selected to attend a new
specialized training course, after which their average
productivity score was measured as 650 points. (To simplify
things, we’ll also assume that their standard deviation is the
same as the general group of employees.) Can we conclude
that the training course had indeed increased productivity?
Or is the gain of 50 points something due to regular
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sampling variability? That is — is this 50-points gain
statistically significant?

Here’s what we have, formally stated:

What we want to know is the probability of a score of 650
if the training course didn’t contribute to the gain, i.e., the
probability of a score of 650 under the condition of the
null hypothesis.

• H0: The training course did not affect
productivity (the 650 score was due to random
chance); . The true/population mean of
the trained is the same as that of the untrained
employees.

• Ha: The training course affected productivity
(the 650 score was a true gain); .
The true/population mean of the trained is nor
the same as the population mean of the
untrained employees.

Recall from Chapter 5 and Chapter 6 that to obtain the
probability of a score we need to express it in terms of
standard deviations (i.e., here in standard errors, as we are
working with a sampling distribution).
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The standard error is:

Then the z-value of 650 is:

That is, the trained group’s mean of 650 is five standard
errors above the ‘general’ (not-trained employees’) mean
of 600. Considering that we know that 99 percent of the
time a sample mean will fall within 3 standard errors away
from the population mean, the probability for the trained
group’s mean in the sample to be 5 standard errors above
the mean of everyone else is extremely small (smaller than
0.5% to be exact, as explained below). Given the properties
of the normal curve, we know that 68 percent of all means
in infinite sampling will fall between ±1 standard error (i.e,
between 590 and 610), 95 percent will fall between ±1.96
standard errors (i.e., approximately between 580 and 620),
and 99 percent will fall between ±2.58 standard errors (i.e.,
approximately between 570 and 630). The score of 650
which is 5 standard errors above the mean indeed would fall
very, very far in the right tail.

In terms of probabilities, consider the following: if a
sample mean has a 99 percent probability of being
approximately between 570 and 630, and the remaining 1%
is distributed equally in the two tails, the probability beyond
630 is 0.5%. Assuming the null hypothesis were true (i.e.,
training had no effect and we see the 650 by chance instead
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of a real increase while the true/population mean of the
trained is 600), our calculations show that the 650 score
then appears with a probability of p<0.005

2
— a very small

probability, so small that a score of 650 seems highly
unusual.

And this is where the crux of the logic of hypotheses
testing lies: the chance of the 100 employees getting an
average productivity score of 650 after a training course
if the course had no effect (i.e., if their population mean
is indistinguishable from the general/untrained mean)
is so small, that it is highly unlikely to be the case. It is
much likelier that the course had an effect, so that the
trained employees’ population mean is not the same as the
untrained ones: (and in fact ). The null
hypothesis is thus not supported.

We therefore reject the null hypothesis and conclude
that the score of 650 does not appear to be just due to
random variability (otherwise it would be within 3 standard
errors away from the not-trained employees’ mean — while
it stands at 5, under the null hypothesis). Rather, it is
statistically significantly different from 600. In other
words, our evidence suggests that the training course may
have affected the productivity score of employees who took
it. (Again, causality aside, note that we have not proven
beyond a shadow of a doubt that it did, rather that given our
evidence at this point in time, we have a reason to believe it
did.)

2. The p here stands for "probability".
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In the example above we ended up rejecting the null
hypothesis. I will also show how it can turn out that we
cannot reject the null hypothesis but first I will use the
opportunity to 1) make a connection to a concept
with which you are already familiar — confidence
intervals, below; and 2) introduce two interrelated
important theoretical concepts, the level of
significance and the p-value, in the next section.

Believe it or not, hypothesis testing and confidence
intervals are complementary as both testing a hypothesis
and constructing a confidence interval allow us to arrive at
the same conclusion. To see this, we just need to construct
a, say, 95% confidence interval for from Example 8.2
(A) above:

• 95% CI:

That is, we can be 95% certain that the average score for
the population of employees who take the training course
would be between approximately 630 points and 670
points. The average general score of 600 points is not part
of the plausible values for , which is consistent with our
decision to reject the null hypothesis.
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8.4 Level of Significance and the

p-Value

The concept level of significance is used to adjudicate
whether the probability (of our results if the null hypothesis
is true) is too high to dismiss the null hypothesis or low
enough to allow us to reject the null hypothesis. In other
words, the level of significance is what we use to proclaim
results as statistically significant (when we reject the null
hypothesis) or not statistically significant (when we fail to
reject the null hypothesis).

Think about it this way: recall that with confidence
intervals we had selected 95% certainty and 99% certainty
as meaningful levels of confidence. What is left is 5% and
1% “uncertainty”, as it were, which we agree to tolerate.
These 5% or 1% are distributed equally between the two
tails of the normal distribution (2.5% on each side or 0.5%
on each side, respectively). They also correspond to z=1.96
and z=2.58. Following the logic of Example 8.2 (A) from
the preivious section, in order to reject a null hypothesis,
we want the probability to be lower that these 5% or 1%
(so that we can “feel confident enough”).

And this is exactly it: When we put it that way, saying
that we want the probability (of the null hypothesis being
true) — called a p-value — to be less than 5%, we have
essentially set the level of significance at 0.05. If we want
the probability to be less than 1%, we have set the level
of significance at 0.01. We can go even further: we might
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want to be extra cautious and to want a “confidence”
of 99.99%, so that we want the probability to be
less than 0.01% — then we have set the level of
significance at 0.001.

These three numbers — 0.05, 0.01, and 0.001 — are the
most commonly used levels of significance. The level of
significance is denoted by the small-case Greek letter a,
i.e., α, thus we usually choose one of the following:

You can think of the significance level as the
acceptable probability of being wrong — and what is
acceptable is left to the discretion of the researcher, subject
to the purposes of the particular study.

Following the logic presented in Example 8.2(A) then,
if the probability of the result under the null hypothesis
— the p-value — is smaller than a pre-selected
significance level α, the null hypothesis is rejected and
the result is considered statistically significant

1
. This is

denoted in one of the following ways:

p ≤ 0.05
p ≤ 0.01

1. Note the difference between α and the p-value. While α indicates what

probability of being wrong we are willing to tolerate, the actual p-value we

obtain is not the probability of being wrong. The p-value, again, is the

probability of our result if the null hypothesis were true; in other words, if

the null hypothesis is in fact true, and our p-value is, say, 0.03, we'd obtain

our results 3% of the time simply due to random sampling error.
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p ≤ 0.001
2

To summarize, when a hypothesis is tested, we end up
with an associated p-value (again, the probability of the
observed sample statistics if the null hypothesis is true).
We compare the p-value to the pre-selected significance
level α: if p ≤ α, the results are statistically significant
and therefore generalizable to the population.

So far so good? Good. However, unfortunately this isn’t
all (sorry!). What I have presented above is the most
conventional treatment of how to use and
interpret p-values. It is attractively straightforward — but
it’s also arbitrary, and its true interpretation is subject of an
ongoing debate. As an introduction to the topic, I will leave
it at that but you should be aware that there’s more to the
p-value, and that its usage has been (rightfully) questioned
and/or challenged in recent years.

3
p-value without context

2. In published research you will find results marked by one asterisk, two

asterisks, and three asterisks. These correspond to their significance based

on the level used: α=0.05, α=0.01, and α=0.001, respectively. The smaller

the level of significance, the more strongly statistically significant the result

is (i.e., most consider α=0.001 to indicate "highly statistically significant"

results). (If you happen upon a dagger (†), it indicates significance at α=0.1

level, or 10% probability of being wrong, which most researchers consider

too high, but some still use.

3. You can find plenty of information on the topic online; from journals banning

the use of p-values and hypothesis testing in favour of effect size (the

Journal of Applied and Social Psychology, see Trafimow & Marks, 2015

https://www.tandfonline.com/doi/full/10.1080/01973533.2015.1012991), to

calls to abandon statistical significance (e.g., McShane, Gal, Gelman,

Robert & Tackett, 2019 https://www.tandfonline.com/doi/abs/10.1080/

00031305.2018.1527253), to others calling for its and p-values' defense

(e.g., Kuffner & Walker, 2016 https://www.tandfonline.com/doi/full/

10.1080/00031305.2016.1277161?src=recsys; Greenland, 2019

https://www.tandfonline.com/doi/full/10.1080/

Simple Stats Tools 445



or other evidence provides limited information. For
example, a p-value near 0.05 taken by itself offers only
weak evidence against the null hypothesis. Likewise, a
relatively large p-value does not imply evidence in favor
of the null hypothesis; many other hypotheses may be
equally or more consistent with the observed data. For
these reasons, data analysis should not end with the
calculation of a p-value when other approaches are
appropriate and feasible" (Wasserstein & Lazar,
2016https://www.tandfonline.com/doi/full/10.1080/
00031305.2016.1154108?src=recsys). Finally, if you really
want to not to overstate what the p-value actually shows,
see Greenland et al. (2016) for a of common
misinterpretations and over-interpretations of the p-value,
of confidence intervals, and tests significance (here:
https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4877414/). Because of its enormity, the topic is still
conventionally taught as I presented it above (as it goes
way beyond the scope of this book), at least at introductory
level..

Going back to our example from the preivious section,
let’s see how the p-values can change due to particular
features of the study, like the sample size. Example 8.2(B)
illustrates.

00031305.2018.1529625?src=recsys). One thing is clear: p-values and

levels of significance have become increasingly controversial. Still, the

American Statistical Association's position is that although caution against

over-reliance on a single indicator is necessary, p-values can still be used,

alongside with other appropriate methods: "Researchers should recognize

that a
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Example 8.2(B) Employee Productivity (Finding Statistically Non-
significant Results, N=25)

Imagine that we had the same information as in Example
8.2(A), however, 25 employees took the training course
instead of 100 and their average score was 620. The we
have:

We still want to know the probability of a score of 620
if the training course didn’t contribute to the gain, i.e., the
probability of a score of 620 under the condition of the
null hypothesis.

• H0: The training course did not affect
productivity (the 620 score was due to random
chance); .

• Ha: The training course affected productivity
(the 620 score was a true gain); .

The new standard error is:
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Then the z-value of 620 is:

Given the properties of the normal curve, we know
that 68% of all means in infinite sampling will fall
between ±1 standard error (i.e, between 580 and 620),
95% will fall between ±1.96 standard errors (i.e.,
approximately between 560 and 640), and 99% will
fall between ±2.58 standard errors (i.e., approximately
between 540 and 660). The score of 620 has —
it falls quite close to the not-trained group’s mean of
600.

In terms of probabilities, consider the following: z=1 has
a p>0.30. Assuming the null hypothesis is true, our
calculations show that the 620 score will appear more
than 30% of the time due to random chance, which is a
lot more than the 5% (at α=0.05) that we are willing to
tolerate. As such, we cannot reject the null hypothesis:
we do not have enough evidence to conclude that the
gain in productivity of 20 points which the 25 employees
demonstrated is statistically significant. In other words,
we don’t have enough evidence that the training course
was effective. (This doesn’t mean that it didn’t beyond a
shadow of a doubt, just that at this point in this particular
study we don’t have enough evidence to say it did.)

We can also see the correspondence with confidence
intervals:
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• 95% CI:

That is, we can be 95% certain that the average score for
the population of employees who take the training course
would be between roughly 581 points and 659 points. The
average general score of 600 points is a plausible value
for , which is consistent with our decision to not reject
the null hypothesis.

Again, Example 8.2 is a heuristic device, used only to
explain the logic of hypotheses testing. Of course, normally
we wouldn’t have information about population parameters
and we will be using sample statistics (i.e., we would use
not only the sample mean but also the sample standard
deviation s, to calculate the estimated sampling distribution

). (Not to mention that we would have two different
standard deviations, one for the trained group and one
for the not-trained group of employees.) As you learned
in the previous chapter, this moves us from using the
z-distribution to the t-distribution with given degrees of
freedom. Recall that with a sample size of about 100 —
i.e., with df=100 — the two distributions converge.

Here then is a quick-and-dirty method you can use as
a preliminary indication of whether something will be
statistically significant. Since z=1.96 corresponds to 5%
probability (2.5% in each tail), and z=2.58 corresponds to
1% probability (0.5% in each tail), even without knowing
the exact p-value associated with a given z-value, you can
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guess that getting a z<1.96 will be non-significant while
a z>1.96 will be significant at α=0.05; similarly, getting
a z>2.58 will be statistically significant at α=0.01

4
. As

samples used in sociological research are commonly of
N>100, the same insight applies to the corresponding
t-values with df≥100. Understand, however, that this is not
an official way to test hypotheses or report findings: to
do that, you always need to report the exact p-value
associated with a z-value or a t-value with given df

5
.

One-tailed tests. Finally, a note on one-tailed tests.
While at the beginner researcher level, I advise you against
using them yourself, it is not a bad idea to know they
exist and what they are. Briefly, the idea is that if we have
a good reason to suspect not only a difference/effect but
a difference/effect with a specific direction (i.e., positive
or negative), we can specify the hypotheses accordingly.
To use Example 8.2(A) again, say, we think there is no
possibility that the training course decreased productivity
scores. Then we can state the hypotheses as:

• H0: The training course either did not affect
productivity or decreased it; ≤ .

• Ha: The training course increased productivity;
> .

This is a stronger claim (that’s why it needs to be well-
justified) — we test not a difference (that can be either
positive or negative) but an increase. Thus, we move the

4. Obviously, for negative z-values we'll have all these in reverse: -z>-1.96 will

be non-significant and -z<-1.96 will be significant, etc.

5. You can find a handy online p-value calculator of t-values here:

https://goodcalculators.com/student-t-value-calculator/.
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significance level to only one of the tails, as it were, the
positive (right) tail, so instead of 2.5% being there, 5% are.

This change in probability essentially “moves” the
z-value corresponding to significance closer to the mean;
now a smaller z-value will have the p-value necessary to
achieve statistical significance. To be precise, 5% (2.5% in
each tail) corresponded to z=1.96; all 5% in the right tail
corresponds to z=1.65

6
. This obviously “lowers the bar”

of achieving statistical significance without changing the
level of significance α itself, and makes rejecting the null
hypothesis easier, hence my description of the two-tailed
test as more conservative (and my insistence on using it
instead of a one-tailed test).

Before we move on to the last section of this theoretical
chapter, the promised warning about the meanings of the
term significance.

Watch out!! #15 … for Mistaking Statistical Significance for
Magnitude or Importance

If you have been paying attention, you have learned by
now that statistical significance has a very narrow meaning.
To have a statistically significant result simply means that
the probability of observing our sample statistics (or

6. You can check it here by selecting "up to Z": https://www.mathsisfun.com/

data/standard-normal-distribution-table.html.
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difference, or effect, etc.) as they are, given that the null
hypothesis is true, is small enough to be (highly) unusual,
to be so relatively rare as to indicate what we have is not
a result of random sampling variation but of untrue null
hypothesis.

None of this says anything about how big a difference/
effect is — in fact it can be quite small, and still statistically
significant, given large enough sample size and other study
specifications

7

Similarly, many people unfamiliar with statistics take
statistical significance to mean that the finding are of
significant importance. Again, nothing about statistical
significance confers great meaning to or implies importance
of statistically significant findings. One can study an
objectively trivial/unimportant issue and have statistically
significant findings of no relevance to anyone whatsoever.

To conclude, keep these distinctions in mind — between
the conventional usage of the word significant (meaning
either important, or big) and statistical significance — both
when interpreting and reporting results and when reading
and evaluating existing research.

7. This is actually one of the reasons some have called for
abandoning p-values, statistical significance, and
hypothesis testing whatsoever, because statistical
significance is not indicative of effect size and is
frequently over-stated to mean more than it does; at the
same time over-reliance on p-values decreases attention
to effect size, careful study design, context, etc..
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When testing hypotheses, I defined the significance level
as sort of probability of being wrong we are willing to
tolerate. This implies that a likelihood of making
an erroneous decision about the null hypothesis (to reject
it or not) exists. The next and final section deals with just
that.
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8.5 Errors of Inference

Making decisions about hypotheses is inference based
on evidence and logic. Inference, however, doesn’t come
with a guarantee of being right — in fact, it is guaranteed
that being right all the time is impossible. All the evidence
and logic in the world will not be enough to ensure 100
percent certainty of making the right decision simply by the
probabilistic nature of statistical inference. As long as we
work with samples to estimate populations, some amount
of uncertainty will be unavoidable — or it wouldn’t be
called inference but knowing.

Logically speaking, since we have two options given a
null hypothesis (to reject or not to reject), we can make two
types of mistakes. One is to be wrong about rejecting the
null hypothesis, the other to be wrong about not rejecting
it.

You might be rolling your eyes at this — well duh!
— but bear with me: these really are the two types of
statistical error, imaginatively called Type I and Type II.

If we reject a true null hypothesis, we commit a Type
I error. If we fail to reject a false null hypothesis, we
commit a Type II error. Before I even explain these
further, make a mental note that since we either reject or
fail to reject a null hypothesis — one or the other — at any
given time we can only make only one of the two types
of errors. If you rejected your null hypothesis, the only
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error you could have committed is Type I; if you did not
rejected your null hypothesis, the only error you could have
made is Type II.

The trick is that we never know if we have made an
error or not. (If we knew, we wouldn’t be making it in the
first place, right?) We only know that the possibility that
we have made an error exists. However, as with everything
about inference we have discussed so far, what we can do
is to quantify the uncertainty as best as we can.

Table 8.1 summarizes the errors of inference based on
the (unknown) real situation and the (uncertain) decision
we have made about it, through an analogy of a criminal
trial. The null hypothesis then stands for “innocent” (no
effect/difference/association, etc.) while the alternative
hypothesis stands for “guilty” (there is an effect/difference/
association, etc.).

Table 8.1 Errors of Statistical Inference

Reality:
Guilty

Reality:
Innocent

Reject H0: Innocent ?
Guilty Verdict

Correct
Decision (1-β)

Type I Error
(α)

Fail to Reject H0: Innocent
? Innocent Verdict

Type II Error
(β)

Correct
Decision

Recall that to reject the null hypothesis, we had to have
a test with a p-value lower than the pre-selected level of
significance α, i.e., p≤α. The level of significance
amounted essentially to how much probability of being
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wrong we were able to tolerate (so as long as the
probability of having the observations we did, given a true
null hypothesis — i.e., the p-value — was less than that,
we would be fine).

Now consider that I just defined Type I error as the
probability that we are wrong about rejecting a true null
hypothesis — and ta-dam! — Type I error is exactly
equal to α, the significance level! The great thing about
it is that it is not only precise, it is also utterly under
our control as we are the ones to decide how much error
(regarding “convicting an innocent”) we want to tolerate.
If we want a smaller such chance, we can just raise the
bar — so that only the smallest p-values can pass under
the lowest possible α

1
Make sure you don not confuse p

and α, especially in that p does not show the probability
of being wrong. Even the significance level is not the true
error rate (Selkke, Bayarri & Berger, 2001), as you can
see here if you're curious: https://blog.minitab.com/blog/
adventures-in-statistics-2/how-to-correctly-interpret-p-
values.[/footnote].

On the other hand, when we fail to reject a
false null hypothesis (i.e., when we "let a guilty
person go free as if innocent"), we make a Type
II error, called β. At the same time, as you can see in
Table 8.1, the probability to correctly reject a false null
hypothesis is a neat 1-β (after all, the decision has only
two options), known as the power of the test.

Unfortunately, there is no way for us to directly
control β; your best bet is to have a large sample
size, which increases the test's power (to detect an

1.
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effect/difference/"guilt") where it truly exists, and
thus indirectly decreasing β.

Well then, you might logically ask, why don't we just
decrease both Type I and Type II errors? I am afraid you
cannot do that: Type I and Type II errors are opposites,
and as such there is a trade-off between them. Think
about it: if you hate the thought of convicting an innocent,
and say you would never do it, you will end up deciding
"innocence" all the time, thus inevitably at some point
letting a criminal go. If you decide that you hate letting
criminals go, you can convict everyone, but then of course,
eventually you will inevitably end up convicting an
innocent.

In other words, the harder you make it to reject a null
hypothesis/"to convict" (by making α the lowest possible),
the higher the chances you will commit Type II error,
failing to reject a false null hypothesis (and you will let
a criminal slip free). The easier you make it to reject a
null hypothesis/"to convict" (by making α as high as you
want), of course the higher the odds of committing Type
I error, rejecting a true null hypothesis (and convicting an
innocent).

In summary, the errors of inference are unavoidable:
every time we make a decision about the null hypothesis
one way or the other, we run the risk of making one of
the statistical errors. With a careful selection of α and a
comfortably large sample size, making an error should not
worry you too much -- but do not forget that it is a distinct
possibility.

I end this chapter with a warning.
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Watch out!! #16 . . . for Mixing Up Your Error Concepts

The statistical errors presented in this chapter aside, you
might recall that we discussed two other error concepts, the
random error and the standard error. Make a note about all three:
1) the random error, 2) the standard error, and, 3) the Type
I error and Type II error of statistical inference. They are all
different concepts.

As a brief reminder, the random error is an inevitable
corollary of sampling and reflects the fact that a sample is
different from the population from which it was taken; the
standard error is simply a formula for the standard deviation
of the sampling distribution; and finally, the Type I and
Type II statistical errors apply to decisions about the null
hypothesis during testing.

Now that you know how hypothesis testing works in
principle, let's get us some variables' associations tested
with their appropriate tests, in Chapter 9 and Chapter 10.
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Chapter 9 Testing

Associations I: Difference of

Means, F-test, and χ2 Test

All the theory you had to suffer through in Chapter 8
(and all other theoretical chapters) was for the purposes
of what we will do in this chapter and the next. All your
efforts in introductory statistics will culminate in your
ability to test bivarate associations for statistical
significance — i.e., to make statistical inference about
populations based on random samples.

Recall that we ended Chapter 7 with the knowledge
that we describe/examine potential bivariate associations
1) between a discrete and a continuous variable through
boxplots and difference of means, 2) between two discrete
variables through contingency tables and difference of
proportions, and 3) between two continuous variables
through scatterplots and the correlation coefficient r, in a
given dataset.

In this chapter and the next you will learn how to test
these three types of bivariate associations for statistical
significance, i.e. to check whether they can be
generalizable to the population of interest. The current
chapter is devoted to the first two types of bivariate
associations. Chapter 10, the last chapter in this book,
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offers a preliminary first glimpse into a powerful technique
for multivariate inference (that can be used for variables at
any level of measurement), called statistical regression —
albeit we only cover the continuous two-variable case to
serve as introduction.

Now that you know how hypothesis testing works, most
of the associations testing will seem straightforward and
somewhat formulaic: pose hypotheses, test hypothesis,
make a decision regarding hypotheses, interpret findings
in a substantive manner. The only thing that differs is the
tests, as different type of associations generally require
different tests. Regression is the one procedure that adds
more, as it were, to this predictable pattern, but we will deal
with it when we get there.

And then you will be done. So what are you waiting for?
Gird up your loins for this last final push and let’s get it
over with!
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9.1 Between a Discrete and a

Continuous Variable: The t-test

For this part, you need to recall (from Section 7.2.1,
https://pressbooks.bccampus.ca/simplestats/chapter/
7-2-1-between-a-discrete-and-a-continuous-variable/) how
we described bivariate associations between two variables,
one of which is treated as discrete and one as continuous. In
this case we essentially compared the groups (categories
of the discrete variable) by their mean (or median) value
on the continuous variable. We examine the potential
association between such variables visually through
boxplots and numerically through a difference of means.

Now the question in front of us is: even if we do see a
difference in the means of the different groups in sample
data, how certain can we be that this association is real and
reflective of the population? As we learned in Chapter 8,
to answer this question, we need to test the difference for
statistical significance.

We start with a few theoretical notes, which we will
then apply to the example I used in Chapter 7 about the
potential gender difference in average income. In this way
we will be able to test whether the difference observed in
the NHS 2011 data ($16,401 in favour of men to be precise)
is statistically significant or not. In the latter half of this
section we will see what happens when there are more than
two groups’ means to compare.
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Testing the difference of two means. Recall from
Section 8.3 (https://pressbooks.bccampus.ca/simplestats/
chapter/8-3-hypothesis-testing/) that we tested whether the
employees who took a training course indeed had a higher
average productivity by simply calculating the z-value (or,
using the estimated standard error, the t-value with a given
df) for the mean and then finding its associated p-value. We
could then compare the p-value to the preselected α-level
and make a conclusion regarding the null hypothesis.

You will be happy to know that testing a difference of
means follows the same principle: obtain the z (or rather,
the t-value), get the associated p-value, compare to the α.
What is not the same is that now we are testing expressly a
difference of two means — so we need the t-value for the
difference. It turns out, we can calculate one as easily as
ever, as long as we had the standard error of the difference

1
.

The standard error of a difference of two means is a
combination of their separate standard errors:

= standard error of the

difference of two means

where the subscripts refer to the first and second group
being compared.

The z-value for a difference of two means follows the
ordinary z-value formula, but with the difference taking the
place of the single mean:

1. I hope you have not forgotten that , where the standard error

.
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However, under the null hypothesis we hypothesize
there is no difference in the population means, as such

, and thus . Accounting for that in
the formula, along with substituting the standard error with
its own formula from above, we get:

Finally, since we generally don’t know the population
parameters but work with sample data, we estimate the
standard error σ with the sample standard error s, thus
moving to the t-value through which we test the
difference for statistical significance:

= t-test for the difference of means
2

Note than unlike the single value case where the df=N-1,
when working with a difference of means of two groups
the df=N-2.

2. The more observant of you would notice that the squared standard deviations

of the two groups, i.e., the s1
2 and s2

2 here are of course the groups'

variances (which we need if we are to have them under the square root). In

this version of the formula, the groups are taken to have unequal variances,

which is a more conservative assumption than assuming the variances of

the two groups are equal. If we have a good reason to assume equal

variances, then s1
2 and s2

2 will just be the same (combined, or pooled)

variance s2, and the formula will look like this:
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Before you eyes glaze over (completely), rest assured
that SPSS calculates this for you; I only provide it here to
show you that the logic of hypothesis testing is the same,
only the formulas change to accommodate the testing of a
difference of means rather than a single mean.

From this point on, it’s easy: you only need to check the
p-value of the t-value you have obtained (given the specific
df)

3
, and compare it to the significance level, and voila —

you have yourself a significance test!

Let’s see how this all works out in an example. A few
sections back I promised you to test the gender differences
in average income, didn’t I?

Example 9.1 Testing Gender Differences in Average Income, NHS
2011

As in Example 7.2 in Section 7.2.1, I use a random sample
of about 3 percent of the entire NHS 2011 data, this time
resulting in N=21,902

4
.

3. You can do that through an online p-value calculator for the t-distribution like

this one here: https://www.socscistatistics.com/pvalues/tdistribution.aspx.
4. Since I use a new random sub-sample of the data, you can consider this an indirect

illustration of sampling variation. For comparison of sample statistics as well as

variable description, refer back to Example 7.2
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We are still interested in whether women and men on
average earn differently per year, i.e., whether gender affects
income:

• H0: The average annual income of women and
men is the same,

• Ha: The average annual income of women and
men is different,

There are 11,323 women (Nf=11,323) and 10,579 men
(Nm=10,579) in the sample. The men earn an average of
$48,113 ( ) and women earn an average of
$31,519 ( ). The respective standard
deviations are $68214 for men ( ) and
$34,760 for women ( ).

The difference of means is therefore:

The question is whether this $16,549 is due to sampling
variation (i.e., statistically not different than a population
difference of means of $0), or unusual enough so that a
population mean of $0 to be unlikely (i.e., so the difference
is statistically significant).

To test this, we need to calculate the standard error of
the difference. Once we have the standard error of the
difference, we can calculate the t-value.

The standard error of the difference is:
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=

The t-value is then:

Given the large N, even just looking at the t-value should
make it clear that the difference is statistically significant —
after all, in a two-tailed test, the t-value is significant at 1.96
and on (for α=0.05) and at 2.58 and on (for α=0.01).

Still, this is not the way to report a test — this is: With a
t=22.447, df=21,900, and p=0.000

5
, and p<0.001

6
, we have

enough evidence to reject the null hypothesis. Indeed,
we can conclude with 99.99% certainty that there is a
statistically significant difference between the average
annual income of men and women (i.e., that the
difference exists in the population).

We can check this with a confidence interval too, again
substituting the difference in place of a single value

7
:

5. You can check this with a p-value calculator; SPSS reports it too.

6. That is, the probability to observe a difference of $16,594 in the sample if there were

no difference in the population is smaller than 0.1%.

7. I hope you remember that 95% CI: .

468



95% CI: =

=

That is, we can say that the difference of average annual
incomes between men and women will be between
$15,145 and $18,043 with 95% certainty; or that 19 out
of 20 such studies will find a difference of $16,594
$1,448. (We also see the correspondence with hypothesis
testing: since the interval does not contain 0, 0 is not a
plausible value for the difference.)

Inference is not doing too badly, no?

Again, SPSS will provide all the calculations but I
advise you to still test your understanding of the procedure
with the following exercise.

Do It!! 9.1 Gender Differences in Age of Actors in Main Roles

Studies find that due to the gendered social construction
of aging (i.e., women are considered “older” and “mature”
at younger ages than men), male actors are frequently paired
with much younger female actors (Buchanan 2013; Follows
2015). For example, the Oscars average age of male and

Simple Stats Tools 469



female Academy Award nominees is telling: in the Best
Actor category, the average age of men is 43.4 years while
the average age of women is 37.2 years (Beckwith & Hester,
2018 [http://thedataface.com/2018/03/culture/oscar-
nominees-age]).

Let’s say that you want to investigate this phenomenon
yourself. You randomly select 100 male and 100
female academy award nominees, and calculate their
age at nomination for an Academy Award. You find
that men’s average age is 45 years and women’s is
36 years, with standard deviations of 15 years for
men and 20 years for women. Test the hypothesis that
the average age for women is different from that of
men for the population of all Best Actor/Actress Oscar
nominees. Create a 95% CI for the difference to see its
correspondence with the hypothesis test.

Now that you understand the principle of testing the
difference of two means, let’s see what we can do about
non-binary discrete variables, in the next section. The
SPSS guidelines for doing a t-test are below.

SPSS Tip 9.1 The t-test

• From the Main Menu, select Analyze, and from
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the pull-down menu, click on Compare Means
and Independent Samples T Test;

• Select your continuous variable from the list of
variables on the left and, using the top arrow,
move it to the Test Variable(s) empty space on
the right;

• Select your discrete variable from the list of
variables on the left and, using the bottom
arrow, move it to the Grouping Variable empty
space on the right;

• Click on Define Groups, and in the new
window, keep Use specified values selected; in
the empty spaces for Group 1 and Group 2,
enter the numeric values

8
corresponding to the

two categories of your discrete variable; click
Continue.

• In the Independent Samples T Test window
click Options…; you can request specific
confidence interval in the new window (the
default is 95%); click Continue;

• Click OK once back to the Independent
Samples T Test window.

• SPSS will produce two tables in the Output
window: a Group Statistics one (where you can
see sample size, the mean, standard deviation,
and standard error for each group (category in
the discrete variable), and an Independent
Samples Test one (where you can find the
t-value, df, p-value, mean difference, standard

8. That would be the "code" -- for example, gender may be coded as "1 female, 2 male",

or "0 male, 1 female", etc., depending on the dataset. You have to know this

beforehand; if unsure, go back to Variable View and check.
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error of the difference, and the requested
confidence interval)

9
.

9. The table provides two versions of the test: with and without equal variances assumed.

Which one you should use depends on the size of the two groups' variances. If the

variance of one groups is twice (or more) as big as the other group's variance (like in

Example 9.1 above, where the men's variance was much larger than the women's

one), use the test results in the bottom row, "equal variances not assumed". If the

two groups' variances are relatively similar, you can use the top row, "equal

variances assumed". You don't have to decide on your own, as SPSS provides a

convenient indication for which one is better to use, under Levene's Test/F for

comparing variances. If the F-test is significant (i.e., p≤0.05), the variances are too

different and using the bottom row is better; if the F-test is non-significant (i.e.,

p>0.05) you can assume the variances are equal and use the top row of results.
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9.2 Between a Discrete and a

Continuous Variable: The F-test

When the discrete variable of interest has more than
two categories, we can no longer use the simple t-test
presented in the previous section. While we can still use
a boxplot chart for visualizing the association between the
two variables — where instead of two boxplots, we will
have as many boxplots as there are groups (categories of
the discrete variable) — we no longer have only one
difference to test.

Testing multiple means for statistical significance is
done through a version of a test called an F-test. This F-test
tests whether the means of several groups

1
are all equal

(versus at least one of them not being the same as the rest)
through an analysis of variance (aka ANOVA).

At this point you might feel like a treatment of the topic
of the kind I offered about the t-test above would be a tad
too much, and you will be correct: providing the full-on
technical details and the formula of the F-test is beyond the
scope of this book.

Briefly, the ANOVA F-test calculates a ratio of variances
(between groups to within groups, in terms of sums of

1. Note that "several groups" includes the two-groups case as well: you could

test the significance of a difference between the means of two groups with

an F-test too (it will just provide less information).
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squares): the larger the ratio, the more evidence there is
against the null hypothesis, and vice versa. The F-test
statistic follows an F-distribution (not discussed here),
which provides the F-value with its p-value, which is then
compared to the α-level and interpreted in the usual way.
Example 9.2 illustrates.

Example 9.2 Education Differences in Average Income, NHS 2011

Presumably, college is worth it. You delay your full entry
into the labour force and instead invest in your education,
with the hope that you will then be able to have a better —
and better–paying job.

Let’s examine this questions then — do higher
educational degrees translate into higher average income?
— using about 3 percent random sample of the NHS 2011
data. The variable income is the same one I used in previous
occasions (i.e., total income in NHS 2011). The groups to
compare are the categories of a variable called (highest)
degree. The variable degree is a recoded version of the NHS
2011‘s highest certificate, diploma or degree. I recoded the
original variable’s thirteen categories in degree‘s six: 1) no
high school, 2) high school, 3) certificate or diploma below
Bachelor’s, 4) Bachelor’s, 5) Master’s

2

2. This category includes certificates above Bachelor's, and medical,
dentistry, and veterinary degrees., and 6) PhD.
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A brief descriptive investigation of the data reveals that
the average income reported by the six education groups
looks different: \$19,433 for respondents without a high
school degree, \$30,455 for respondents with a high school
degree, \$41,971 for respondents with more than a high
school but less than a Bachelor’s degree, \$60,360 for
respondents with a Bachelor’s degree, \$71,593 for
respondents with a Master’s degree, and \$93,924 for
respondents with a PhD. This potential positive association
(more education, more income) is also reflected in the
boxplots in Figure 9.1. While there are outliers with
extremely high average income in all groups (the most
extreme were even truncated at the top), the median and
the outlier-less maximum income increase from left to right
with the increase of highest degree.

Figure 9.1 Average Income by Highest Degree, NHS 2011
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Are these differences statistically significant? In other
words, are the differences observed in the sample a result of
regular sampling variation, or reflective of differences in the
population?

• H0: The average income of all six education
groups is the same.

• Ha: The average income of some of the
education groups is different from others.

SPSS reports a larger between-groups than within-groups
variance; F=413.535 with p<0.001. With the probability
of observing such differences between the groups in the
sample — had there been no difference in the population
(i.e., under the null hypothesis) — less than 1 in a
thousand, we reject the null hypothesis and conclude
that the differences in average income of groups with
different highest degrees are statistically significant.

Before we turn to testing associations between two
discrete variables, the SPSS Tip 9.1 below lists the steps of
the t-test and ANOVA F-test procedures.

SPSS Tip 9.2 The F-test

• From the Main Menu, select Analyze, and from
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the pull-down menu, click on Compare Means
and then One-Way ANOVA;

• Select your continuous variable from the list of
variables on the left and, using the top arrow,
move it to the Dependent List empty space on
the right;

• Select your discrete variable from the list of
variables on the left and, using the bottom
arrow, move it to the Factor empty space on the
right; click OK.

• The Output window will present a Oneway
ANOVA table, listing a breakdown of variances
(by sums of squares), and most importantly, the
resulting F-statistics and p-value.
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9.3 Between Two Discrete Variables:

The χ2, Part 1

As in the previous section, here you need to recall how
we examine potential association between two variables
both treated as discrete (Section 7.2.2,
https://pressbooks.bccampus.ca/simplestats/chapter/
7-2-2-between-two-discrete-variables/). We described such
associations through contingency tables, reporting
differences of proportions as appropriate.

We can start with the simplest, binary case: when the
discrete variables have two groups each. Then we compare
the groups of interest (categories of one variable) on one
of the categories of the other variable. (The example in
Chapter 7 we used was to compare the percentage of first-
year students who like the campus cafeteria to the
percentage of second-year students who do.)

The t-test for testing difference of two proportions.
When we have only two proportions (or percentages) to
compare, we can actually use the same t-test we used for
testing differences of means, again treating the difference
as a single, normally distributed statistic. Since we have
categorical variables, however, and no standard deviations/
variances, we resort to measuring population variability
by π(1-π) and sample variability by p(1-p)

1
. (See Section

6.7.2, https://pressbooks.bccampus.ca/simplestats/chapter/

1. Do not forget that p here stands for proportion, not probability/p-value.

479



6-7-2-confidence-intervals-for-proportions/.) We can thus
simply substitute that into the formula for z:

where, of course, under the null hypothesis
. Then, using the sample proportions

leaves us with t:

Again, under the null hypothesis the two groups’
proportions are assumed to be the same so effectively we
have:

Let’s revisit the cafeteria-preferences example from
Section 7.2.2 to see how the t-test for testing difference of
proportions works.

Example 9.3 Do You Like the Campus Cafeteria? (A t-Test)

In Chapter 7 we imagined that you asked 35 students in
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your class
2

whether they liked the campus cafeteria: 12 of
your classmates said yes (i.e., 34.3 percent), 7 (out of 15)
first-years and 5 (out of 20) second-years (46.7 percent of all
first-years and 25 percent of all second-years, respectively).

We want to know whether the observed in the sample
difference in proportions (0.467-0.25=0.217) is statistically
significant: can it be generlized to a larger student
population, or is it due to a regular sampling variability?

• H0: The proportion of first year students who
like the cafeteria is the same as the proportion
of second year students who do; .

• Ha: The proportion of first year students who
like the cafeteria is different than the proportion
of second year students who do; .

Substituting these numbers in the formula we have:

With a t=1.34, df=34, and p=0.189 (i.e., p>0.05) we fail
to reject the null hypothesis: at this point we do not
have enough evidence to conclude there is a difference
between the proportions of first and second year
students who like the campus cafeteria. The 21.7
percentage points difference is not statistically

2. Note that this of course is not a random sample; we are using it here only for

illustrating how hypothesis testing works so we are effectively pretending it is

random. In a real-life study, you should not use non-probability samples for

statistical inference.
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significant, and has a high enough probability of being
due to random chance.

We can check this with a confidence interval too:

• 95% CI:

In other words, the difference between the proportion
of first years and the proportion of second years who like
the cafeteria could be anywhere between -9.9 percentage
points and 53.3 percentage points with 95% confidence
(or 19 out of 20 such samples will have a difference
within this pretty large interval). The difference can be in
favour of second years or in favour of the first years (notice
the negative lower bound); it can even be 0. Thus, since a
difference of 0 (i.e., no difference) is a plausible value, we
cannot reject the null hypothesis. We conclude that we do
not have enough evidence of an association between year
of study and opinion on the campus cafeteria.

Admittedly, the formulas look scary but if you have
followed through the example above, you have seen by
now the actual calculation is quite simple. You can try it
out and see for yourself.

Do It! 9.2 Vegetarianism/Veganism among Canadian and
International Students

482



Imagine you are interested in exploring whether there is
a difference between Canadian and international students in
your university when it comes to dietary preferences like
vegetarianism and veganism. With your institution’s
registrar’s assistance, you take a random sample of 100
students and poll them on 1) whether they are a Canadian or
an international student, and 2) whether they are vegetarian/
vegan or not.

You find that you have 70 Canadian and 30 international
students in your sample. Out of the Canadian students, 15
(or 21.4 percent) are vegetarian or vegan; out of the
international students 5 (or 16.7 percent) have such dietary
restrictions.

Check if the observed in the sample difference in
proportions is generalizable to the larger student population
by testing the hypothesis whether dietary preferences are
associated with country of origin. Create a 95% confidence
interval for that difference, and substantively interpret what
you have found with both the t-test and the confidence
interval.

Useful hint 1: Among the 100, there are 20 vegan/vegetarian students in

total.

Useful hint 2: You can find the p-value of your t-statistic here:

https://www.socscistatistics.com/pvalues/tdistribution.aspx.

Of course, discrete variables do not have to be binary:
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they can have more than two categories each. Just like
in the case of a continuous and a discrete variables’
association discussed in the previous section where non-
binary variables required the use of an F-test, there is a
different test for testing the association between any two
discrete variables, regardless of their respective number of
categories (i.e., not just binary ones).

The χ2-test for testing associations between discrete
variables. The χ2-test

3
(or Pearson’s χ2-test) is based on a

comparison between the observed and the expected cell
values in a contingency table.

The observed values are the cell counts you see in a
contingency table given a specific dataset. The expected
values, on the other hand, are the counts we would expect
to see if there were no pattern/association in the data.
In other words, the test effectively compares the sample
to a null-hypothesis-like hypothetical distribution of the
observations across the cells. Thus, logically, if there is a
relatively large difference between the observed and the
expected values, we can take that as evidence against
the null hypothesis and reject it. If, however, the
difference between observed and expected values is
relatively small, the evidence against the null hypothesis
will be insufficient and we would fail to reject it.

The actual way the χ2 is calculated is this:

3. This is the small-case Greek letter h, χ. It is pronounced [KHAI], but since it

is transliterated as chi, many people incorrectly pronounce it as [CHAI] or

even [CHEE]. The test itself is called chi-squared test (again, pronounced

as [KHAI- squared] not [CHAI- or CHEE-squared]).
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where fo is the observed frequency (count) and fe is the
expected frequency count of a given cell.

The formula looks more complicated than it is (don’t
they always?) — it only asks us to calculate the difference
between the observed and the expected count for each cell,
square it and divide it by the expected count. Once we
have done this for all cells, we need only add the resulting
numbers together to get the χ2 .

Considering that the χ2 is then a sum of as many
numbers as there are cells, the larger the table (i.e., the
more rows and columns there are), the bigger the
resulting χ2 will be. To account for that, the χ2 too has
degrees of freedom, where the df=(rows-1)(columns-1).
The χ2 follows a χ2–distribution, which too provides a
p-value given specific df.

The hypothesis testing then follows the same steps as
the t-test and the F-test: obtain χ2-value with specific
df, find its associated p-value, and finally compare the
p-value to the pre-selected significance level. If p<α,
reject the null hypothesis.

To demonstrate, we will first do a one-
way χ2 calculation, i.e., based on the frequency distribution
of just one variable. (Of course, if tabulated, this would not
be considered a contingency table but a frequency table.)
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Example 9.4 Do You Like The Campus Cafeteria? (Univariate
χ2-Test)

To use the imaginary data from before, we had 12 people
who admitted liking the campus cafeteria food out of the 35
polled. (Since we are interested only in one of the variables,
here we ignore whether the students who like the cafeteria
are first- or second-years.) As such, we have the following
table:

Table 9.1 Approval of the Campus Cafeteria, Observed
Count (Univariate)

Yes 12

No 23

Total 35

If you did not know anything about the campus cafeteria
and had no observations about it whatsoever — i.e., had
you been an impartial observer, as it were — wouldn’t you
expect to see an approximately 50/50 split of the 35 students
into the two categories? After all, there are only two groups,
and an unbiased (random) distribution would be exactly like
everyone flipping a coin as a manner of deciding in which
group they end up. Thus, the expected count here is simply
N divided by the number of groups/categories (denoted
by k):
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Table 9.2 adds the expected count in brackets next to the
observed count.

Table 9.2 Approval of the Campus Cafeteria, Observed
and Expected Count (Univariate)

Yes 12 (17.5)

No 23 (17.5)

Total 35

Then, according to the formula, this is what we have for
each of the two groups:

• Yes-group:

• No-group:

Finally, to get the χ2 we only need to add these two
numbers together:

Simple Stats Tools 487



The degrees of freedom in a one-way χ2-test is k-1, where
k is the number of categories/groups. In this case we have
k=2, so df=1.

With a χ2 =3.45, df=1, and a p=0.06
4

(i.e., p>0.05), we
fail to reject the null hypothesis. At this time, we do
not have enough evidence to conclude that the observed
distribution of the students is unusual enough to suggest
a pattern which is different than a random variation of
a 50/50 split. As such, this distribution is not statistically
significant — we cannot conclude that the students lean
one way or the other in their opinion about the campus
cafeteria.

Calculating a two-way χ2 — by far the more often used
one as it tests associations between two variables — is
just as easy, even if it involves calculating more numbers
(since in the bivariate case we have more cells; four at the
minimum, given a 2×2 cross-tabulation). The next section
is devoted to that.

4. You can check the significance of any χ2 with a convenient online calculator, like this

one here: https://www.socscistatistics.com/pvalues/chidistribution.aspx.
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9.4 Between Two Discrete Variables:

the χ2, Part 2

Calculating a two-way χ2 is only marginally more
complicated than the one-way case we examined in the
previous section, as Example 9.5 demonstrates.

Example 9.5 Do You Like The Campus Cafeteria? (Bivariate
χ2-Test)

While we already know that year of study and opinion
on the campus cafeteria are not statistically associated from
the t-test in Example 9.3, I will further use the imaginary
data in the original contingency table from Example 7.3 to
demonstrate a two-way χ2-test. This was the table we had is
Section 7.7.2.

Table 9.2 (A) Do You Like The Campus Cafeteria?
(Revisited)

489



First
Year

Students

Second
Year

Students
Total

YES 7 5 12

NO 8 15 23

Total 15 20 35

Our hypotheses are:

• H0: Liking the cafeteria or not is not associated
with one’s year of study; first- and second-year
students are equally likely to lie the cafeteria,
or π1=π2.

• Ha: Liking the cafeteria is associated with one’s
year of study; first-year students and second-
year students differ in their liking of the
cafeteria, or π1≠π2.

To compute the χ2, we need the expected count for each
cell. Unlike the one-way χ2 case, however, determining the
expected count in a contingency table is a bit more
complicated than dividing the N on the number of groups
and expecting the same (expected) number in each cell.
Instead, we multiply the respective group/category sizes
(i.e., the row total and the column total at the margins) and
divide the product by N (the full total)

1

1. We do that to account for the different group/category
sizes.:

490



where j is the size of the respective group and k is the size
of the respective category

2
.

Thus we have the following:

• First-years who said Yes:

• Second-years who said Yes:

• First-years who said No:

• Second-years who said No:

Table 9.2 (B) adds the expected count in brackets next to
the observed count.

Table 9.2 (B) Do You Like The Campus Cafeteria?
(Observed and Expected Frequencies)

2. Recall that to differentiate between the groups/categories of the two variables, we refer

to one variable having groups and the other having categories: so that we can say we

compare the groups of one variable on the categories of the other.
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First
Year

Students

Second
Year

Students
Total

YES 7 (5.14) 5 (6.86) 12

NO 8 (9.86) 15
(13.14) 23

Total 15 20 35

Now we only need calculate the four elements of the χ2
and add them altogether at the end.

• First-years who said Yes:

• Second-years who said Yes:

• First-years who said No:

• Second-years who said No:

Finally,

The degrees of freedom are,

492



again, df=(rows-1)(columns-1), so
here df=(2-1)(2-1)=1(1)=1.

That is, with χ2=1.78, df=1, and p=1.18 (i.e., p>0.05), we
do not have enough evidence to reject the null hypothesis.
At this time, we cannot claim there is an association
between year of study and opinion on the cafeteria, i.e.,
the 0.217 difference in proportions we observe in the
sample (7/15 versus 5/20, or 0.467 versus 0.25) is not
statistically significant.

Of course, we already knew this from the t-test in
Example 9.3

3
, so no surprises here.

The imaginary example above serves well as a work-
through for calculating χ2, but we can do better — an
example using real, random-sample data and a large N is in
order.

If you recall, in Section 7.7.2 we also explored gender
differences in the ability to speak an Aboriginal language
using APS 2012 (Statistics Canada, 2019) data. Armed
with knowledge about the χ2, now we can finish that
investigation.

3. You may find it curious to know that the correspondence of results between the t and

the χ2 goes even further: in the binary variables' case, squaring the t-value will give

you exactly χ2: t2=χ2. In our examples, t=1.34, and 1.342=1.79 which, if it was not

for rounding, would be the same as χ2. Even their respective degrees of freedom are

the same, 1.8. This of course is not the case when at least one of the discrete

variables has more than two categories.
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Example 9.6 Testing Gender Differences in the Speaking
Aboriginal Language Ability among Indigenous Canadians , APS
2012

Our exploration in Section 7.2.2 left us with the following
table.

Table 9.3 Speaking Aboriginal Language Ability by
Gender, APS 2012 (Revisited)

Our hypotheses are:

• H0: Gender and the ability to speak an
Aboriginal language are not associated; women
and men are equally likely to speak an
Aboriginal language, or πf=πm.

• Ha: Gender and the ability to speak an
Aboriginal language are associated; women and
men are not equally likely to speak an
Aboriginal language, or πf≠πm.
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SPSS calculates χ2 as 31.78. With χ2 =31.78, df=1, and
p<0.001, we have enough evidence to reject the null
hypothesis and conclude that Indigenous women and
men tend to differ in their ability to speak an Aboriginal
language. The 3.6 percentage points difference (i.e., 45
percent minus 41.4 percent) in favour of women being
more likely to speak an Aboriginal language is
statistically significant and therefore generalizable to the
larger Indigenous population.

I “cheated” out of presenting the actual calculations in
the example above to give you the opportunity to do it
on your own. Use it as an exercise in practicing your
understating of the χ2 and t statistical significance tests.

Do It! 9.3 Testing Gender Differences in the Speaking Aboriginal
Language Ability among Indigenous Canadians, APS 2012

Using the information presented in Table 9.3 above, 1)
calculate the expected frequencies for each cell and compute
the χ2; and 2) do a t-test on the difference of proportions
and create a 95% confidence interval for the difference, to
observe the correspondence between the different tests.
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Finally, lest I leave you with the impression that there
is no difference between using a t-test and a χ2-test, let’s
consider a case where both variables have more than two
categories, next.
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9.5 Between Two Discrete Variables:

the χ2, Part 3

We definitely need to use the χ2 for testing contingency
tables whee at least one of the variables has more than two
categories, as we no longer have only two proportions to
consider.

Example 9.7 Citizenship and Education, NHS 2011

A lot has been written about Canada’s selective
immigration practices: the Canadian government is
committed to getting “the best and the brightest” immigrants
through a point system which awards more points the more
education the prospective immigrant has. [CITATIONS] Be
that as it may, how does the rest of the Canadian population
(the one born in Canada) compare to the supposedly highly-
educated foreign-born? With the help of NHS 2011
(Statistics Canada, 2019), we can find out. (Note that once
again, I will use about 3 percent random sub-sample of the
data, for an N=21,577.)

For this example I use the variable citizenship which has
three categories: “born in Canada”, “naturalized Canadian”,
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and “not a Canadian citizen”. For education, I use the same
recoded variable I used in Example 9.2 in Section 9.2 earlier,
namely degree. Degree has six categories, ranging from (1)
“no high school degree” to (6) “PhD” (for full category
listing, see Example 9.2).

Table 9.4 cross-tabulates citizenship and degree in a busy-
looking 3×6 table (that’s 18 cells!).

Table 9.4 Degree by Canadian Citizenship Status (NHS
2012)

What do we see? Let’s carefully examine the evidence
1
.

1. Do not forget to focus on the percentages, not the number count in each cell! Recall

that you can only compare relative frequencies (relative to group size, that is).
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While all citizenship groups follow a similar vertical
“spread” (i.e., relatively few people without degrees, most
people with high/secondary school and some post-secondary
school certificates and some sort of Bachelor’s degrees, then
decreasing proportions in the higher education categories),
this is not what we are interested in. Recall that we are
looking for a pattern between the two variables’ categories/
groups — we are comparing groups on their levels of
education.

As such, we see that fewer naturalized Canadians (18.6
percent) and fewer still non-Canadian citizens (15.8 percent)
have no degrees compared to Canadian citizens (20.4
percent). Furthermore, in the three highest education
categories (Bachelors, Master’s, and PhD), both naturalized
Canadians and non-Canadian citizens outperform those born
in Canada (while the non-Canadian citizens even outperform
naturalized Canadians in turn): 16.7 percent of naturalized
Canadians and 20.5 percent of non-Canadian citizens have
Bachelor’s degrees compared to only 12.3 percent of
Canadians born in the country; 11.2 percent of naturalized
Canadians and 13.5 percent of non-Canadian citizens have
Master’s degrees compared to only 5.5 percent of the ones
born in Canada; and, finally, 1 percent of naturalized
Canadians and 1.4 percent of non-Canadian citizens have
PhD’s compared to 0.4 percent of those born in Canada.

Thus, the table suggests a pattern — Canadians born
elsewhere and non-Canadian citizens seem to have more
education than the Canadian-born. Whether this pattern
showing difference in proportions in the education degrees
among the different citizenship status groups is statistically
significant (i.e., generalizable to the Canadian population)
remains to be checked — through a χ2–test.
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These are our hypotheses:

• H0: Citizenship status and educational degree
are not associated; Canadian-born, naturalized
citizens, and non-Canadian citizens are on
average similarly educated, and are equally
likely to be highly educated.

• Ha: Citizenship status and educational degree
are associated; Canadian-born, naturalized
citizens, and non-Canadian citizens have
different levels of education on average, and are
not equally likely to be highly educated.

I would guess you would rather not calculate the expected
frequencies and their differences from the observed
frequencies for all 18 cells (but if you want to do it, who am
I to stop you), so I’ll report the SPSS output instead.

With χ2=449.543, df=10
2
, and p<0.001, we have enough

evidence to reject the null hypothesis and conclude that
citizenship status and educational degree are statistically
significantly associated: people born in Canada,
naturalized Canadians, and non-Canadian citizens differ
in their levels of education. It seems indeed that Canadians
born in the country are on average less educated than both
naturalized Canadians and non-Canadian citizens, perhaps
as a result of the selective criteria for Canadian immigration.

Important conditions for using the χ2-test. For
the χ2-test to work properly, two conditions must be met:
1) the expected count should not be less than 1 for any of

2. Df=(rows-1)(columns-1)=(6-1)(3-1)=5(2)=10.
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the contingency table cells; and 2) no more than 20 percent
of the cells should have an expected count less than 5.
SPSS warns you about violations of these conditions in the
output; if you are not using SPSS you should make sure the
conditions are met before proceeding with analysis. Either
way, if these conditions are not met, you should not use
the χ2-test and consider a different type of testing instead
(not discussed here).

Finally, a brief word of warning.

Watch Out!! #17 . . . for Identifying The Wrong Pattern

Once again, the warning is about how to read a
contingency table in light of an association between two
variables. The pattern (association) in which we are
interested and the one we test is a comparison between
the groups of one variable on the categories of the other
variable. Thus, looking at how the observations are divided
within each group is only marginally relevant to the research
question, and does not contribute to analyzing the
association in question.

In Example 9.7 above, all immigration status groups were
divided relatively similarly across the educational categories
but, as interesting as you may find this “pattern”, that is
not an indication of an association — comparing the
percentages/proportions of the different groups in the same
category is. In other words, in that example we were
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interested in whether there was a difference in percentages/
proportions among the Canadian-born, naturalized
Canadians, and non-Canadians citizens with no education,
or with high school degree only, or with some college
degree or certificate only, or with Bachelor’s degree, etc.
We were not interested in what percentage of Canadian-born
(or naturalized, or non-Canadian citizens) have no degree,
and what percentage have high school degree, and what
percentage have some college degree or certificate, etc. (if
you recall, the latter add up to a 100 percent, and can be
referred to as how the observations are spread across
categories within each group).

As in Section 7.2.2, what it comes down to is knowing
which way to read the table, according to the research
question you have

3

We finish the chapter with the tips on using SPSS
for χ2-testing.

3. I remind you again of the rule of thumb: if the groups you
are comparing are in the columns, and the percentages
down the columns add to 100 percent, then look at and
compare the percentages/proportions on the same row. If
the groups you are comparing are in the rows, and the
rows add up to 100 percent, then compare the
percentages down the same column.. To use the language of

causality, to the extent that you can identify an independent and a dependent

variable, to examine an association between the variables you will be looking to

compare the groups of the independent variable on the categories
of the dependent variable.
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SPSS Tip 9.3 The χ2-test

• From the Main Menu, select Analyze, and from
the pull-down menu, click on Descriptive
Statistics and then Crosstabs;

• From the variable list on the left, select your
variable (the independent variable, with groups
to be compared) and, using the bottom arrow,
move it to the Column(s) empty space on the
right;

• From the variable list on the left, select your
variable (the dependent variable, on whose
categories you will compare the groups) and,
using the bottom arrow, move it to the Row(s)
empty space on the right

4
;

• Click on Statistics and select Chi-square at the
top of the new window, click Continue;

• Once back in the Crosstabs window, click
Cells; in the new window keep Observed

5
in

Counts selected, and further select Column in
Percentages; click Continue;

• Once back to the Crosstabs window, click OK.

4. Again, the convention is to put the independent variable in the columns and the

dependent variable in the rows. This is not a hard-set rule, however, and it is

perfectly acceptable to do it the opposite way. The only thing that is not a matter of

preference is for which percentages you should ask, columns or rows. If your

independent variable is in the columns, you need column percentages to compare, if

your independent variable is in the rows, you need row percentages to compare. In

this latter case, this is a hard-set rule, and if you violate it, you will not be able to

properly identify -- and test -- the association you might be investigating.

5. Note that from here you can also request Expected counts if you would like to check

them at any point.
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• SPSS will provide the requested output in the
Output window: a contingency table followed
by a χ2-test table, containing the χ2-value, df,
and p-value

6
.

With this, we turn to our last remaining topic: the testing
and investigation of the association between two
continuous variables in Chapter 10, next.

6. Note that the table contains more than just the χ2-test; discussing the rest of the tests is

beyond the intended scope of this book.
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Chapter 10 Testing

Associations II: Correlation

and Regression

This is it: you are finally here, reading the last chapter.
(And after nine chapters, what’s just one more?) This is
not a heavy chapter as some of the others but regression is
sufficiently different form the type of testing about which
you learned in Chapter 8 to deserve a heads-up — so if you
find yourself despairing at some point, just remind yourself
that this is it; once you’ve learned this, you will have a
passing knowledge about how, what for, and why statistics
is used in sociological research, and you will also be able
to do some basic analysis on your own! — and you’ll be
done in no time.

Pep talk aside, for this chapter you should review/recall
Chapter 7, and specifically Section 7.2.3
(https://pressbooks.bccampus.ca/simplestats/chapter/
7-2-3-between-two-continuous-variables/) on examining
bivariate associations between two variables, treated as
continuous for the purposes of statistical analysis. We did
that visually through a scatterplot (with a line of best fit)
and numerically through the coefficient of correlation
called Pearson’s r.

In this chapter, you will learn what r actually is, and that
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it has its own t-test and a p-value to test its significance.
In addition, I will present a relatively brief and basic
introduction into the topic of regression, a powerful and
versatile technique with truly impressive number of
applications which readily allows for doing multivariate
analysis.

After all, recall that when we do bivariate analysis, we
ignore the complexity of the real world where variables
are/may be tangled in a veritable web of almost endless
interrelationships. With bivariate analysis we ignore all
that to focus on how just two variables are statistically
associated. But because of that, we cannot say anything
about causality as we cannot account for additional
variables that could serve as alternative explanations to
what we observe. And while multivariate regression cannot
completely do that either (in the social sciences establishing
causality is a pretty tall order), with careful assumptions
and the right specifications, it can help bring us more than
a few steps further in that direction.

Of course, even if I haven’t already told you, you would
have been able to tell by now that multivariate regression
analysis falls beyond the scope of what we do here. What
follows is a necessary stepping stone, however; once you
have the right idea about how regression works with two
continuous variables, everything else regression follows
the same basic principle and thus can be built on top of the
foundation you will have by the end of this chapter (and
book!).

So, ready? Let’s go then! The end is just several sections
away!
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10.1. Correlation

You will recall from Section 7.2.3 that we use the
coefficient of correlation (Pearson’s) r to examine
associations between two continuous variables. The
correlation coefficient r varies between -1 and 1. The closer
it is to either, the stronger the correlation, and the closer it
is to 0, the weaker the correlation

1
.

Where does r come from though? What does it actually
measure? I doubt you have lost sleep wondering about
these questions which I left unanswered in Chapter 7, but
here is your chance to learn this anyway (think of it as
closure of sorts).

The correlation coefficient is, essentially, a ratio of
the variabilities of the two variables2

1. The sign of r is there only to indicate the direction of the association: positive

or negative, nothing else. Thus this is a reminder not to use r's sign as a

measure of magnitude or strength of the association. Thus, for example,

-0.9 is a stronger association than 0.2 because -0.9 is closer to -1 than 0.2 is

to 1. (In fact, 0.2 is much closer to 0, or no association.) That is, a strong

negative correlation is stronger than a weak positive one, despite that

-0.9<0.2.

2. To be precise, the ratio is between the covariance of x and y (i.e.,

their joint variability, sxy) and the product of their separate

variances sx and sy:
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or

if we apply it to a population instead of a sample. (Here ρ
is the small-case Greek letter r, pronounced [ROH].)

.
The easiest way to calculate r between a

variable x and a variable y is through the
distances of the observations from the means
of the two variables, or more accurately, the
sums of squares3before adding to turn them all
positive, otherwise they'd cancel each other upon
summation. See Section 4.3
(https://pressbooks.bccampus.ca/simplestats/
chapter/4-3-variance/) for details.) :

From Section 4.3, we know that is the sum
of squares of the variable x (so, SSx); by analogy,

will be the sum of squares of the
variable y (so, SSy). When the distances between
an observation and the two means are “cross-
multiplied” before summing (like in the

3. Recall that the sum of squares was the numerator in the formulas

for the variance and the standard deviation. We take the

distances of the observations from the mean, square them, and

them add them altogether. (We square them
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numerator), they are called the sum of products
(SPxy).

Thus we can restate the formula above in the following
simplified (and easier to remember) way

4 r exist. All of
them calculate the same r, but are just restated in
different term. The two "versions" presented in the
text above are the simplest. For example, one of
the most common ways to express r you may find
elsewhere (but which is rather hard on the eyes and
for purposes of calculation by hand) is this:

:

Example 10.1(A) provides an empirical application of
r‘s calculation.

Example 10.1(A) Education and Parental Education, GSS 2018

4. Note that other "versions" of the formula for

Simple Stats Tools 509



Table 10.1 lists the years of schooling (our variable y) of
seven respondents in the GSS 2018 (NORC, 2019) and the
years of schooling of their respective fathers (our variable
x)

5
. While inference with N=7 is not a serious proposition,

the small observation count allows for a quick calculation
for demonstration purposes only. (After all, we already
know the correlation coefficient of these exact same two
variables from Section 7.2.3; there the SPSS-calculated r
was equal to 0.413.)

The rest of the columns in Table 10.1 list the necessary
computations (obtaining distances from the mean, squaring
distances, summing distances, etc.) to produce SSx, SSy, and
SPxy.

Table 10.1 Calculating Pearson’s r

5. Here parental education is the independent variable and respondent's education is the

dependent variable, so they are denoted as x and y, respectively, according to

convention.
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12 8 (12-12.4)
= -0.4 -0.42 = 0.2

(8-13.6)
= 5.6 5.62 = 31.4 (-0.4)(5.6)=2.2

6 12 (6-12.4) =
-6.4 -6.42 = 41

(12-13.6)
= -1.6 -1.62 = 2.6 (-6.4)(1.6)=10.2

12 19 (12-12.4)
= -0.4 -0.42 = 0.2

(19-13.6)
= 5.4 5.42 = 29.2 (-0.4)(5.4)=-2.2

16 16 (16-12.4)
= 3.6 3.62 = 13

(16-13.6)
= 2.4 2.42 = 5.8 (3.6)(2.4)=8.6

15 12 (15-12.4)
= 2.6 2.62 = 6.8

(12-13.6)
= -1.6 -1.62 = 2.6 (2.6)(-1.6)=-4.2

12 12 (12-12.4)
= -0.4 -0.42 = 0.2

(12-13.6)
= -1.6 -1.62 = 2.6 (-0.4)(-1.6)=0.6

14 16 (14-12.4)
= 1.6 1.62 = 2.6

(16-13.6)
= 2.4 2.42 = 5.8 (1.6)(2.4)=3.8

12.4 13.6 SSx=63.7 SSy=79.7 SPxy=19.3

Then, according to the formula for r we have:

Obviously, this r=0.271 is not the same as the SPSS-
produced r=0.413 we had from Section 7.2.3; in fact, it
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would be very surprising if they were the same, considering
the former is based on N=7 while the latter is based on
N=1,687. The exact value of r in the above calculation
(r=0.271) doesn’t matter, and doesn’t serve any purpose and
shouldn’t be interpreted as it exists only as the end result of
our demonstration.

Fancy trying it out on your own?

Do It! 10.1 Calculating Pearson’s r

Here are 7 more cases from the same GSS 2018 dataset.
Fill out the table fully and produce r.
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12 12

12 14

13 13

13 16

14 20

20 16

21 18

= = SSx= SSy= SPxy=

Even if we dismiss the value of the N=7 coefficients
and go back to r=0.413 based on N=1,687, we still want
to know if this correlation as observed in the sample is
statistically significant (i.e., generalizable to the
population). Thus, we need to test r, and we do that through
a t-test.

The t-test for Pearson’s r is given by the following
formula:
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with df=N-2.

Example 10.1(B) Testing the Education and Parental Education
Correlation, GSS 2018

As usual, it helps to know what we are testing exactly:

• H0: There is no correlation between parental
and offspring education; ρ=0.

• Ha: There is a correlation between parental and
offspring education; ρ≠0.

Then, for N=1,687 and r=0.413, we have:

With t=18.633, df=1,685, and p=0.00001 (i.e.,
p=0.00001<0.5), we can reject the null hypothesis that
parental and offspring education are not correlated. At
this time, we have enough evidence to conclude that there
is a moderately weak (r=0.413), statistically significant
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correlation between parental education and offspring
education in the US population

6

In this case, we could interpret the results like this: "With
t=1.407, df=5, and p=0.218 (i.e., p=0.218>0.5), we cannot
reject the null hypothesis that parental and offspring
education are not correlated. At this time, we do not have
enough evidence to conclude that there is a statistically
significant correlation between parental education and
offspring education in the US population." However, we
cannot trust this "inference" as it is only based on N=7..

With this, we can have established (with 99% certainty)
that parental education and offspring education are
correlated. Considering that parents tend to have their
schooling done before their children have theirs, on
average, it is also reasonable to assume that parental
education affects offspring education (and not vice versa)

7
.

6. Purely for demonstration purposes, we could also calculate the t for the 7 respondents

whose responses we used to calculate r=0.271:

7. In terms of establishing causality, we are limited by the bivariate case we

have: it is entirely possible (and expected) that other things affect offspring

education too, not just their parents' education. As well, it is possible than

something else (for example, wealth, income, socioecoomic class, etc.)
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Wouldn’t then be good to know exactly how much effect
parental education has on offspring education? That is,
wouldn’t you like to know that if a father had one more
year of schooling compared to another father, how much
more schooling the child of the former would be expected
to have compared to the child of the latter? One type of
regression — called linear regression — can tell us just
that.

might be affecting both parental and offspring education, rendering the

effect of parental educaion on offspring education spurious. These type of

considerations are exactly the purpose of mutlivariate analysis, but since

we are dealing with bivariate analysis here, we have to leave these

considerations aside. I bring them up here to remind you not to forget them

in the discussion that follows, which will focus on the two variables at

hand.
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10.2 Basics of Linear Regression

You may find it surprising but you already have an idea
about linear regression from Section 7.2.3. Again, when
describing and examining the association between two
continuous variables, we can use the correlation coefficient
r and a scatterplot plotting the observations in a coordinate
system. To visualize the linear relationship between the
variables, we could also add a line of best fit to the
scatterplot. The line of best fit is actually also called a
regression line; and regression itself is based upon the
concepts of correlation and variance, with which you are
already familiar.

You might be asking yourselves at this point what
regression adds to the analysis of two continuous variables,
or in other words, why do we even need it — don’t we
already have Pearson’s r for that? As you will see in the
examples below, linear regression allows us to precisely
calculate and predict a change in the dependent variable
that is due to the independent variable.

What we say in this case is that the independent
variable explains a percentage of the variance of the
dependent variable. Think about it this way: the
dependent variable varies due to arguably many causes
(i.e., independent variables), which affect it to a different
extent and which each explain some part of its total
variance. Through linear regression, we are able to
quantify to what extent an independent variable
explains the variability of the dependent variable, i.e.,
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to what extent it affects it
1
. To take the example about

parental and offspring education from the previous section,
doing a regression analysis on these two variables would
allow us to predict how much more education a respondent
is expected to have for one more year of schooling for
the parent

2
(father, in our case), and what percent of

respondent’s schooling is explained by the years of
education of the parent.

How does linear regression do all that? To put it simply,
through the regression line (of best fit), or more precisely,
through the way the regression line is created.

The linear function. How do you draw a line? The
simplest method requires exactly two pieces of
information: a starting point of the line, and an indicator
of slope (so that you know whether the line is straight,
sloping upward, or sloping downward). This is captured in
the following formula:

where α is the line’s starting point and β is the slope of
the line. The two variables, x and y, are the independent and
the dependent variable, respectively: we know this because

1. Multivariate regression thus allows for direct comparisons of the size of the

independent variables' effects. In the bivariate case, we only focus on the

effect of one independent variable, without considering and accounting for

others -- which is not something you should do in a real-life social science

research, especially in terms of causal analysis. Again, the bivariate case

serves only as an illustration/introduction to the expansive topic of

regression in general.

2. Or, to put it differently, if one father has one more year of schooling than

anther father, how much more schooling the offspring of the first would be

expected to have in comparison to the offspring of the second.
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the formula establishes y as a function of x (i.e., if we know
α and β, we can calculate y for any value of x).

Let’s take a brief example.

Example 10.2 Class Assignment Mark

Imagine you are given a written, take-home assignment in
some class. Your professor has stipulated that there are three
part of the assignment, each worth 30 points, and that you
would receive 10 points just for turning in your work.

In this case, your assignment mark is entirely a function
of your submitted work. You will be getting 10 points to
start with, then 30 points for fulfilling each of the three
requirements. The class grades on the submitted
assignments could thus be 10 points (0 completed
requirements), 40 points (1 completed requirement), 70
points (2 completed requirements), and 100 points (3
completed requirements). Figure 10.1 plots this.

Figure 10.1 Assignment Mark as a Function of Completed
Requirements
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As you can see, the relationship between the two
variables, assignment requirements completed and
assignment mark, is simply

as helpfully shown in the graph itself. This is a summary
form of having to write out all the observations:

• when x=0,
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• when x=1,

• when x=2,

• when x=3,

3
.

In the example above α=10 and β=30: the line starts at
x=0 and y=10, and for each additional unit of x (i.e., each
additional requirement completed), y increases by 30
points.

In fact, these are the exact definitions of α and β. That
is, α is the value of y when x=0, also called Y-intercept
(as it shows where the regression line crosses the vertical
Y-axis), and β is the slope, also called the regression
coefficient, i.e., the amount of change in the dependent
variable y expected for every unit change in the
independent variable x (or simply, the size of the effect
of x on y).

Let’s now take a look at the regression model in detail.

3. Of course, to draw a line you only really need two points. Thus if you only take

x=0/y=10 and x=3/y=100 and connect these points with a line, the line will also pass

through x=1/y=40 and x=2/y=70. This is a useful property if you need to draw a line

by hand.
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10.2.1 The Linear Regression Model

and the Line of Best Fit

You might have noticed that there was no uncertainty of
any kind in the Example 10.2 about the assignment
requirements and mark in the previous section. The line in
that case represented a deterministic relationship — x fully
determined y (i.e., x fully explained the variability of y) —
hence all the observation were on the line itself.

As such, this was not a typical situation and this was not
a typical regression line. In reality, in statistical inference
we deal with probabilistic associations, where the
regression line does not capture all observations in itself
but their general (on average) trend. That is, in a usual
regression model situation, some observations will be
above the line and some below it; thus some observations
would be underestimated and others would be
overestimated because the line serves as a prediction (an
expectation, a summary, a trend) of the association. And as
we know by now, predictions/estimations always contain a
level of uncertainty.

Specifically, we cannot expect that a single independent
variable x will explain away all variability in a dependent
variable y; there will always be some unexplained (by the
regression model) variability left. Figure 10.2 illustrates.

Figure 10.2 Assignment Mark as a Function of
Completed Requirements (With Variance)
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In Figure 10.2 I have added seven more observations to
the case we had in Figure 10.1 in the previous section, this
time allowing for additional variability in the assignment
marks: no longer is it enough to know the number of
requirements completed to predict the assignment grade.
(Imagine that the professor has started evaluating the
completed requirements substantively, not just counting
them: in this case while the number of requirements is still
essential for the grade, something else

1
also affects the final

assignment mark.)

An actual regression model accommodates the
uncertainty inherent in estimation through two
interrelated concepts, error of prediction (a.k.a.
statistical error) and residuals.

1. This something else is an 'unobserved variable', or a variable not included in

the model (even though we could speculate about it). This type of

unobserved variable/s is the source for the unexplained variance in y.
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The error of prediction reflects the difference between
the observations and the predicted values we would
have if we had data about the population. That is, if we
imagined a line of best fit of the population

2
, α+βx, the

difference between our observations and that line would
be:

= error of prediction
3

That is, we need to include the error term in the
regression model:

Considering that we pretty much never have information
about the population, however, we can restate the sample
regression model like this:

where a is the estimated α, b is the estimated β, and e
is the estimated ε, with all estimations based on sample
data. Note that e here is called the residual, and it is
not only the estimation of the unobservable error of
prediction, but also simply the difference between an
observation and its predicted value:

= residual

2. This line of course does not exist, it is a heuristic device.

3. This is the small-case Greek letter e, ε [EHpsilon].
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Since a+bx is the regression line, or the prediction, it
also stands for the predicted (estimated values), which we
can, as usual, denote . Then, since

,

we also have

or, again, that the residuals are the difference between
the observations and their predicted values.

With this, we come at a full circle and the reason for all
the notation and protracted explanations above (and here
you thought I was subjecting you to all these equations
without a purpose): in a graph, the residuals are simply
the distance between the observations and the
regression line. (In Figure 10.2 this is the empty space —
the shortest distance — between an observation and the
regression line.)

A comprehensive treatment of the residuals (through a
full-blown analysis of variance) is beyond the scope of
this book but they do help us understand the nature of the
regression line and of the logic of regression in general.
You see, the regression line is called a line of best fit
precisely because it minimizes the residuals — it is
created in such a way as to minimize the residuals (and
therefore the error of prediction) and fit the data/
observations as best as possible. Visually, this will mean
that the line is drawn to pass as close as possible to all the
observations.
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In fact, linear regression is also called OLS regression,
which stands for ordinary least squares. The least
squares concept comes from the fact that to minimize the
distances of the observations to the prediction line, we need
to first square them before adding them together

4
— just

like we needed to do that in the calculation of the variance
and the sum of squares (or the distances would cancel each
other out)

5
.

But how do we ensure that the regression line minimizes
the residuals? The next section explains.

4. I.e., .

5. The ordinary part is there to differentiate between another regression version

called generalized least squares regression, or GLS regression (not

discussed here).
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10.2.2 Elements of the Linear

Regression Model

The secret to minimizing the residuals — and to ensuring
the regression line is indeed the best fitting (to the data) line
— lies in the way the elements of the line are calculated.
The regression/preditcion line is, after all, created through
a and b, as I explained in Section 10.2:

= predicted values

We can calculate a and b such that they minimize the
residuals through the following formulas:

= slope, or regression coefficient

= Y-intercept, or constant

where SP is, again, the sum of products, SSx is the sum
of squares for x, and and are the variable means of x
and y, respectively.

As with the correlation coefficient r, once again,
everything revolves around variances (and means)

1
.

1. So much so that the correlation coefficient r and the regression coefficient b
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An example will serve best to illustrate all this.

Example 10.3 Assignment Requirements and Marks

Here I continue with the fictitious data on which Figure
10.2 is based. In a “sample” of N=11, I have data about the
“respondents”‘ completed assignment requirements (x) and
their assignment marks (y). In Table 10.3, I calculate the
necessary means, sums of squares, and sum of products.

Table 10.3 Assignment Requirements and Marks:
Calculating a and b

are related: where sy and sx are, of course, the standard

deviations of y and x, respectively.
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0 10 -1.64 2.68 -41.82 1748.76 68.43

1 40 -0.64 0.40 -11.82 139.67 7.52

2 70 0.36 0.13 18.18 330.58 6.61

3 100 1.36 1.86 48.18 2321.49 65.70

1 30 -0.64 0.40 -21.82 476.03 13.88

1 45 -0.64 0.40 -6.82 46.49 4.34

2 55 0.36 0.13 3.18 10.12 1.16

2 40 0.36 0.13 -11.82 139.67 -4.30

3 85 1.36 1.86 33.18 1101.03 45.25

3 90 1.36 1.86 38.18 1457.85 52.07

0 5 -1.64 2.68 -46.82 2191.94 76.61

1.6 51.8 SSx=12.55 SSy=9963.64 SPxy=337.27

Then, I substitute the relevant numbers into the formulas
for a and b:

Simple Stats Tools 531



This makes our best-fitting/regression line this:

… which is exactly what SPSS had already told us, if you
care to go back to Figure 10.2 in the previous section and
check.

You may or might not be impressed by this, but you
certainly need to know how to interpret it. In this case the
regression tells us that a student who doesn’t complete
even one requirement of their assignment is expected
to receive 7.83 points (that’s the constant, or Y-intercept);
further, for every requirement completed, their mark
would increase by 26.88 points (that’s the regression
coefficient). That is, the effect of one completed
requirement on the assignment mark is 26.88 points.

We can also calculate the actual predicted values (which
form the regression line itself):

• for x=0,

;

• for x=1,

;

• for x=2,

;
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• for x=3,

.

As you can see, these are different values than the ones
we had in the deterministic version with which we started in
Section 10.1 (i.e., 0 requirements = 10 points, 1 requirement
= 40 points, 2 requirements = 70 points, 3 requirements
= 100 points). The difference between the certainty of the
deterministic version and the uncertainty of the current
probabilistic version is the unexplained (by number of
requirements) variance

2
. How much variance we have

explained we will see in the next section. Before that, here
is Figure 10.2 again so that you can pinpoint the predicted
values for yourselves. (Hint: they’re on the line.)

Figure 10.2 Assignment Requirements and Mark (Redux)

2. That is, in the deterministic version, we could say that (reality = prediction),

or rather, that there is no prediction at all -- we know what the true relationship

between the variables is as the assignment mark depends entirely on the number of

fulfilled requirements. In the actual/probabilistic version, (reality =

prediction plus residual/error), where the residual is what is left unexplained, or

simply the difference between reality and prediction.
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Testing the regression coefficient for statistical
significance. Of course, as with any statistics obtained
through a sample, we have to be able to check whether the
regression coefficient is generalizable to the population,
i.e., whether it is statistically significant. In other words,
we have to examine the evidence whether the identified
effect of the independent variable on the dependent
variable exists in the population or whether it is a result of
random sampling.

The significance test for b is your familiar t-test, given
by the following formula

3
:

3. The population version is . Since we generally do not know , we
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where sb is b‘s standard error.
4

This can be simplified to be more user-friendly
but then I will need to introduce additional
concepts (like the mean squared error and the
standard error of the estimate) which are not
necessary for you at this stage and are therefore
beyond the scope of this book. You will be happy
to know that the hand calculation of sb also falls in
that category.:

The degrees of freedom for tb are N-2 in the bivariate
case. We can see what we can do with the test in hypothesis
testing, next,

substitute it with its estimate, the sample-based sb. This of course also

means we move to the t-distribution.

4. The standard error of b is calculated by this, admittedly scary-looking,

formula:
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10.2.3 Hypothesis Testing and

Confidence Intervals for the Regression

Coefficient

To test the regression coefficient b for significance we have
the following hypotheses:

• H0: The independent variable x has no effect on
the dependent variable y (i.e., the variables are
not associated); β=0.

• Ha: The independent variable x has an effect on
the dependent variable y (i.e., the variables are
associated); β≠0

1
.

After calculating tb with df=N-2 and finding its
associated p-value, we then compare the p-value to the
pre-selected significance level α. As usual, when p≤α, we
reject the null hypothesis, and have enough evidence
to deem the regression coefficient b statistically
significant. If, on the contrary, p>α, we fail to reject the
null hypothesis and therefore conclude that at present
there is no evidence to suggest an effect of x on y.

Again, similarly to other statistics, we can calculate

1. Note that I am using causal language here with the assumption that the

conditions for causality are met. Theirs is a separate investigation. In and of

itself, finding a significant effect of x on y does not itself establish that

changes in x cause changes in y.
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confidence intervals for b, so that we can report the
size of the effect with a specific level of certainty. For
example, the 95% confidence interval for the regression
coefficient b is:

• 95% CI:

To illustrate, let’s revisit our example about the effect
of parental education on their offspring education. (Don’t
worry, with N=1, 686 I will not offer you a
calculation by hand: SPSS is there for us.)

Example 10.4 Effect of Parental Years of Schooling on Respondent’s
Years of Schooling (GSS 2018)

We already examined the association between parental
and offspring education through the correlation coefficient r
and found it to be moderately weak at 0.413, and statistically
significant at α=0.01. Can we do better, however, and
estimate the effect of each additional year of parental
schooling on the schooling of the respondents?

Again, we use data from the U.S. GSS 2018 (NORC,
2019). Our sample is N=1,686, and our hypotheses are:

• H0: Father’s education has no effect on
respondent’s education; β=0.
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• Ha: Father’s education has an effect on
respondent’s education; β≠0.

The regression model is:

Our predicted values are:

Figure 10.3 plots the association and Table 10.4 show the
relevant SPSS output.

Figure 10.3 Linear Regression of Respondent’s Years of
Schooling and Father’s Years of Schooling
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Table 10.4 Linear Regression of Respondent’s Years of
Schooling and Father’s Years of Schooling

That is, SPSS has calculated the constant (or Y-intercept)
a and the regression coefficient b in such a way as to
minimize the residuals:

• a = 10.67

• b = 0.29
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Then, the predicted values (i.e., the regression line on
Figure 10.3 above) are:

We also know that the standard error of b is sb=0.016, so

2

Thus, with t=18.607, df=1,684, and p<α=0.001, we can
reject the null hypothesis. Our current evidence supports
our hypothesis that father’s education affects their
offspring’s education, on average. The effect is 0.29 years
(or about 3.5 months) for every additional year of
father’s schooling, and it is statistically significant.

As well, we can interpret the confidence interval:

• 95% CI:

Or, father’s education’s effect on offspring’s education
would be between 0.26 additional years and 0.32

2. If you actually divide 0.29 by 0.016, you wil end up with 18.125. The difference from

18.607 is due to rounding (as the standard error of b is rounded up to 0.016 from

0.01558...).
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additional years for every year of father’s schooling with
95% certainty; in other words, the effect would be 0.29 ±
0.031, 19 out of 20 times.

That’s a lot more information than simply stating that the
variables are associated based on the correlation coefficient!

Now let’s make sure you understand how regression
works and where the regression coefficients and line come
from by interpreting regression output.

Do It! 10.2 Class Attendance and Final Test Scores (Simulated
Data)

We are revisiting the simulated data on student class
attendance (measured in percent of classes attended) and
their final class scores. N=987. Start by stating your
hypotheses, then, using the SPSS’s output presented in
Figure 10.4 and Table 10.5 below, write a paragraph
interpreting what you have found, discussing the
evidence presented regarding your hypotheses and
your decision about them, etc. Include as much
information as possible, and do not forget to justify
your use of linear regression in this case.
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Figure 10.4 Class Attendance and Final Test Scores

Table 10.5 Class Attendance and Final Test Scores

Finally, these are the steps through which the regression
output is obtained in SPSS.
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SPSS Tip 10.1 Linear Regression

• From the Main Menu, select Analyze, then from
the pull-down menu, select Regression and
click on Linear;

• Select your dependent variable from the list of
variables on the left and, using the appropriate
arrow, move it to the Dependent open space on
the right;

• Select your independent variable from the list
of variables on the left and, using the
appropriate arrow, move it to the Block 1 of 1
empty space on the right.

• You can click OK or, if you need a confidence
interval for b, click on Statistics, and check off
Confidence intervals in the new window (here
you can also specify the confidence Level of the
CI); click Continue;

• Once back in the original window, click OK.

• After the OK, SPSS will provide the output in
the Output window. The relevant information
we have discussed so far can be found in the
last table called Coefficients.

SPSS provides several tables as the standard regression
output. Beyond the Coefficients one, there are three other
short tables: a Variables Entered/Removed (which lists the
independent variable/s in the model and the dependent
variable as a footnote), an ANOVA table (which presents
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analysis of variance information that, as mentioned before,
is outside the scope of this book), and a Model Summary
table. We qill take a brief look at that last table in the next
section.
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10.2.4 R-squared

In the previous section we established that the correlation
coefficient r and the regression coefficient b are related:

And how could they not be: if a slope exists, a
correlation exists. As such, the standard regression output
provided by SPSS includes a Model Summary table that
lists the Pearson’s r. Table 10.6 below is the Model
Summary table of the simulated-data class attendance/final
class scores regression.

Table 10.6 R and R2 for Class Attendance and Final
Class Scores

Pearson’s r (listed as R) in this table is, of course, exactly
the same as what the SPSS Correlate procedure provides.
Squaring that number, however, provides us with a new
and useful piece of information, sometimes called the
coefficient of determination, but more often simply
referred to as R2.
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R2 provides a measure of the proportion of
the variability in the dependent variable
explained by the independent
variable[footnote]Or, independent variables, in the case
of multivariate regression.[/footnote] in the model.

Recall that regression’s logic is based on minimizing
residuals/errors and about explaining the variation of the
dependent variable through information about the
independent variable. In a deterministic case, the
dependent variable will depend entirely on the independent
one, and then we would have a correlation of 1 and R2=1.
However, with uncertainty and estimation, this is not the
case — some variability of the dependent variable remains
unexplained by the regression model (i.e., the independent
variable).

Thus, one way to look at R2 is as an indication of
goodness of fit: how close the observations are fitted
around the regression line (i.e., how little variability is
left unexplained). The larger R2 then, the better — as a
large R2 would mean the model (the independent variable/
s) explains a large proportion of the variability in the
dependent variable.

As you can see in Table 10.6 above, the R2 of the class
attendance/final test scores is:
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Or, class attendance explains 72.1 percent of the
variability in final test scores, which is a lot, and quite good
regression fit

1
.

Compare this to the Model Summary table of
respondent’s and father’s years of schooling in Table 10.7
below.

Table 10.7 R and R2 for Respondent’s and Father’s Years
of Schooling

Unlike the very strong correlation of r=0.849, the
moderately weak correlation coefficient r=0.413 is already
an indication of not that great a fit. Thus, the R2 of
offspring and parental education is:

That is, fathers’ years of schooling explain only 17
percent of the variation of respondents’ years of schooling.
The biggest ‘chunk’ of the variation in schooling is left

1. Of course, this also means that (100-72.1=) 27.9 percent of the variation in

test scores is left unexplained by class attendance, i.e., is due to something

else beyond class attendance.

Simple Stats Tools 549



unexplained, i.e., there are other factors influencing how
much education one is expected to have, on average.
Regardless, we should not dismiss parental education
outright — it still has a statistically significant effect on
offspring education (albeit not very strong).

. . . Or does it? Recall our discussion on causality. The
fact that two variables are statistically associated does not
necessarily mean that one causes the other to change (or,
that it explains the other’s variability). Working
with only two variables prevents us from
accounting for alternative explanations — i.e., of
taking into account other factors, other variables,
other effects. Luckily, regression has our backs. I
leave you with how that happens in the next —
and final! — section of this textbook.
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10.3 What Lies Ahead: Multiple

Regression

Don’t worry, this is but a brief farewell. Do me a last
favour and imagine we had more ideas about why students
end up with different final test scores, or why people end
up with different number of years of education. In other
words, what else could possibly explain some of the
variability in the dependent variables we investigated in the
previous sections?

In the case of test scores, perhaps hours of independent
study? Doing end-of-chapter exercises? How many classes
in total the student is taking that semester? Does the student
work for pay? Have they recently experienced problems
related to their personal life? Do they have dependents of
whom they have to take care at home? Is English their
native language? Are they international students? What is
their area of study? . . . And so on, and so on; I’m certain
you can add more on your own.

In the case of years of schooling, perhaps the family’s
socioeconomic status? Wealth? Gender? Race/ethnicity?
Citizenship status? Attitudes toward education? The
presence of appropriate role models? Being passionate
about a specific field of study? Go on, add your ideas to the
list.

If there are so many factors that can affect a (dependent)
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variable, how do we examine their individual effects?
Bivariately, one by one? While this is a good first step (to
establish something is going on), obviously that cannot be
the end of our analysis. We have to be able to account for
all of them at the same time, to compare their effects, and to
create more complicated models which together to explain
more variability in the dependent variable.

Multiple regression allows us to do just that. Instead
of one independent variable x, we can consider many
independent variables at the same time. Then, the effect of
each single variable is provided net of the effects of the
other variables (or we say that we control for the other
variables), so that we can simultaneously take care of
alternative explanations. In this way, a variable’s effect on
y may be decreased or increased (from what it used to be
in the bivariate case), and its statistical significance may
disappear (or even appear, in some cases). In any case,
this effect would likely be ‘truer’ than the one obtained
bivariately (though this of course depends on the choice of
variable controls).

And this is where you will be going, if you choose
to continue on the path of statistics enlightenment. If I
said there is a lot more to learn it would be a gross
understatement — but, given what statistics (proper use
of statistics!) enables you to do in social research, it is
absolutely and totally worth it.

If you choose not to continue on, then use what statistical
knowledge you already have, and use it responsibly (great
power, and all that). Either way, here you are, in the
last section — you survived! (Possibly even with
your sanity mostly intact.) Go celebrate!
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With this, I bid you adieu.
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This is where you can add appendices or other back matter.
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