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Introduction 

This text is an informal beginner’s guide to the basics of statistics 
needed to conduct tests of statistical significance for simple 
experimental, quasi-experimental, and correlational research designs. 
Many free and open textbooks exist for more theoretical and traditional 
versions of introductory statistics, with more standard notation. This 
one is designed to be consistent with the approachable way I aim 
to teach the use of statistical analysis tools to students of psychology 
and the social sciences. The text is very informal and conversational, 
because it spawned from my written-out scripts to record brief video 
lessons. 

Over the years, many students have been surprised by the fact that 
they actually enjoy learning statistics when presented simply, as a 
decision-making tool, and supported by engaging examples. If you are 
a student approaching statistics for the first time, I hope that is your 
experience with this resource. 

In general in this textbook, I choose conceptual formulas with 
simplified notation. Learning to calculate by hand with less-
intimidating formulas is intended to lead you through practice to 
conceptual inference. Much evidence in the literature of teaching 
statistics supports this approach. Although some students of statistics 
are fortunate enough to make mental leaps straight to the abstract, 
most of us require a more hands-on approach with several examples to 
make the key cognitive connections. 

The material here is of my own creation, with some images and 
resources borrowed from other open-source materials. Please use this 
resource if you like. I do appreciate attribution, because it took me a 
long time to collect and develop some of these explanations, analogies, 
examples, and flow of logic. 

First edition note: This book is bare basics so far. Some day I will 
hopefully add in the interactive exercises and demonstrations my 
students use to apply concepts and procedures as we go. My dream is 
to build exercises and examples for this simplified notation style and 
also a more traditional style, so students can see they are equivalent. I 
also hope someday to rework the videos I have created as a companion 
so they are suitable for embedding in the text. Corrections and 
suggestions for revisions are welcome. 
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Dedication: I dedicate this project to Dr. Bryan Hendricks, statistics 
prof extraordinaire, who worked for years in the University of Wisconsin 
system. As his teaching assistant, I learned from a master. Rest in 
peace, Dr. H. 
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Learning Objectives 

Chapter 1 Why We Need Statistics and Displaying Data Using Tables 
and Graphs 

• articulate the purpose of a course introducing statistical principles 
and techniques 

• supply examples of situations in which data analysis techniques 
may be necessary 

• define descriptive and inferential statistics, variable, value, and 
score 

• distinguish between two levels of measurement and identify the 
appropriate techniques for summarizing different types of data 

• generate frequency tables 
• graph a dataset using a histogram, bar graph, or pie chart 
• describe a distribution shape in terms of peaks and symmetry 

Chapter 2 Central Tendency and Variability 

• define and determine mean, median, and mode, as three options 
to determine central tendency 
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• distinguish among the measures of central tendency and the 
circumstances under which each is suitable 

• define and determine variance and standard deviation, as two 
options to determine variability 

• interpret standard deviation 

Chapter 3 Z-scores and the Normal Curve 

• transform scores in any numeric dataset, using any scale, into the 
standard metric of Z-scores 

• interpret Z-scores and apply them for comparison of scores within 
and between datasets, including data measured on different 
scales 

• define and characterize the normal curve model 
• associate Z-scores with areas under the normal curve 
• define percentiles and determine Z-scores and raw scores that 

form the border of percentiles using the normal curve model 

Chapter 4 Probability, Inferential Statistics, and Hypothesis Testing 

• determine simple probabilities 
• appreciate the importance of probability and ubiquity of human 

failings in the realm of probability 
• connect probability to percentiles, areas under the normal curve, 

and the logic of inferential statistics such as hypothesis testing 
• define and distinguish between population and sample 
• articulate the central tendency theorem and describe its 

implications for the normality assumption in inferential statistics 
• outline and apply the steps of hypothesis testing 

Chapter 5 Single Sample Z-test and t-test 

• define and identify Type I and Type II errors 
• define and characterize the distribution of means as compared to 

the distribution of individuals 
• determine the mean and standard deviation of the distribution of 

means based on the characteristics of the distribution of 
individuals 

• conduct a hypothesis test using the single sample Z-test 
• define, determine, and interpret a p-value 

Table of Contents and Learning Objectives  |  5



• articulate a conclusion in plain language from an test of statistical 
significance 

• define and determine degrees of freedom 
• articulate the logic behind the sample size correction for sample-

based estimates of variance 
• describe the difference between t-distribution shapes with 

varying degrees of freedom 
• conduct a hypothesis test using the single sample t-test 
• identify scenarios in which a single sample Z-test or t-test is 

appropriate 

Chapter 6 Dependent t-test 

• identify and describe repeated measures and matched pairs 
research designs 

• conduct a hypothesis test using the dependent means t-test 
• identify scenarios in which a dependent means t-test is 

appropriate 

Chapter 7 Independent Means t-test 

• identify and describe classical experimental research designs 
• identify the (normal curve and homoscedasticity) assumptions 

behind the independent means t-test 
• conduct a hypothesis test using the independent means t-test 
• identify scenarios in which an independent means t-test is 

appropriate 

Chapter 8 Analysis of Variance, Planned Contrasts and Posthoc Tests 

• define partitioning of variance and apply the concept to one-way 
Analysis of Variance 

• define and identify factors and levels in research designs 
• use graphing techniques to visualize data from a research design 

using more than 2 levels in a factor 
• conduct a hypothesis test using one-way Analysis of Variance 
• articulate reasons for conducting planned contrasts or post-hoc 

tests following ANOVA 
• define experimentwise alpha level and articulate ways in which 

Bonferroni and Scheffé corrections address inflated risk of Type I 
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error 
• outline the procedure for conducting planned contrasts with 

Bonferroni correction 
• outline the procedure for conducting posthoc tests with Scheffé 

correction 
• identify scenarios in which a one-way ANOVA is appropriate 

Chapter 9 Factorial ANOVA and Interaction Effects 

• apply  the concept of partitioning of variance to two-way Analysis 
of Variance 

• describe factorial analysis and articulate its benefits and pitfalls 
• describe research designs using ___ X ___ factor and level 

summaries 
• conduct a hypothesis test using two-way Analysis of Variance 
• identify scenarios in which a two-way ANOVA is appropriate 
• identify and interpret main effects 
• identify and interpret interactions 

Chapter 10 Correlation and Regression 

• define correlation and regression 
• detect and describe linear correlation patterns using scatterplots 
• define partitioning of covariance 
• conduct a hypothesis test using correlation 
• find the proportion of variance explained by a correlation 
• identify scenarios in which a correlation is appropriate 
• create a predictive model using a simple regression line 
• articulate limits to accuracy and usefulness of regression models 

Chapter 11 Beyond Hypothesis Testing 

• define effect size, power, and confidence intervals 
• articulate the importance of effect size and power analyses 
• find and interpret Cohen’s d for a single-sample Z-test scenario 
• identify the two major determinants of statistical power 
• estimate and interpret power for a single-sample Z-test scenario 
• construct confidence intervals for a single-sample Z-test scenario 
• articulate similarities and differences between hypothesis testing 

and confidence interval procedures 
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1. Why We Need Statistics 
and Displaying Data 
Using Tables and Graphs 

1a. Why we need statistics 

One of the first things I think we need to accomplish in this course is 
to understand why statistics are important. Our objective in this first 
part of Chapter 1 is to be able to articulate the purpose of a course 
introducing statistical principles and techniques, and to be able to 
supply examples of situations in which the techniques you will learn in 
such a course may be necessary to use. 

First, let us establish that this is not a math course. This is a course 
that is primarily about decision making. Not just any decision making, 
but decisions that are made after analyzing data in order to make 
objective decisions that are guided by empirical evidence. Of course, 
we use some simple calculations in the course in order to process the 
data into a form that aids our decision making. However, the math is a 
necessary means to an end, not an end in itself. 

In some situations this kind of decision making is not needed. When 
the decision can be made based on intuition and subjective personal 
preference, we do not need rigorous data-driven systems. For example, 
if I am trying to decide whom to date, or what style of clothing I like 
to wear that suits my personality, I likely am not going to conduct 
research and a formal data analysis to come to those decisions. Maybe 
you can think of another situation, in which a good decision can be 
made without empirical evidence. 

On the other hand, sometimes a decision that you need to make is 
one that affects others, or is so high stakes that you want to make an 
informed decision that is objective and based on empirical evidence. 
In this kind of decision making, you should check your intuition at the 
door, and walk in with an open mind, letting the data be your guide. 
Examples of situations in which an objective decision making process 
might be necessary would be when you are trying to decide whether 

Why We Need Statistics and
Displaying Data Using Tables and

Graphs  |  11



a medical treatment is safe, or whether a proposed intervention is 
actually effective. Perhaps you need to find out if a crime prevention 
program is effective for urban and rural communities alike. Can you 
think of another kind of decision that should be made objectively 
based on data? What these scenarios have in common is that they are 
professional decisions, or are high stakes. In the professional workplace, 
we are often in situations where, if we just operated based on our 
intuition, we may make serious mistakes, because we have not 
considered whether the course of action we decide on is the best 
choice for all people, all situations, or over time. The techniques you 
will learn in this course will help you apply data analysis, so that you 
can set up a decision making framework that is objective and rigorous, 
and so that the decision you come to will be generalizable, to suit other 
people, situations, or time frames. 

Why does a student in your field of study require statistics? 
Regardless of your field of study, I bet you are asked to be a critical 
thinker. If we look at the list of critical thinking guidelines below that 
make for good science, I bet you can see the value of these guidelines 
for your own program of study. 

Critical thinking guidelines 

• Ask Questions: Be Willing to Wonder 
• Define Your Terms 
• Examine the Evidence 
• Analyze Assumptions and Biases 
• Avoid Emotional Reasoning 
• Don’t Oversimplify 
• Consider Other Interpretations 
• Tolerate Uncertainty 

from Wade, Tavris & Swinkels. (2017). Psychology. 
Boston: Pearson. 
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Statistics represents a tool for examining evidence and allowing us 
to use data effectively. However, it is also important to realize that 
statistics can help us avoid emotional reasoning. Instead of relying 
on our intuitions about whether a drug is effective, or whether one 
choice is significantly better than another, statistical analysis allows us 
to make an objective decision. 

In statistics, N stands for sample size. In other words, how many data 
points did you measure. Very often, in everyday life, we are tempted to 
make assumptions and derive conclusions from single data points. In 
the world of statistics, we call these situations, “an N of one”. These are 
situations scientists are extremely wary of, because they are vulnerable 
to bias. 

For example, let’s say my friend has a really bad experience in one 
neighborhood. After that, even if there are no objective reports of 
comparative neighborhood safety that support this conclusion, I am 
likely to say to others that that’s a bad neighborhood – one to avoid. 
We are always overly influenced by our own experiences and the 
experiences of those close to us. In such moments we should always 
remind ourselves that until we have asked many individuals who have 
been in that neighborhood what their experiences were, we only have 
one observation, and it may not be typical or representative. If my 
friend’s experience in the neighborhood were the one bad experience 
in 1000 experiences, would we still be tempted to consider it a “bad” 
neighbourhood? Next time you face a situation like this in your daily 
life, just take a moment to pause and think to yourself… what 
information should I have to make the right decision? 

Why We Need Statistics and Displaying Data Using Tables and
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Fig. 2.2 from Pulling Together: A Guide for Front-Line Staff, 
Student Services, and Advisors by Ian Cull, Robert L. A. 
Hancock, Stephanie McKeown, Michelle Pidgeon, and 

Adrienne Vedan 
In this course, we will be focusing on only one aspect of one way 

of knowing. Let us acknowledge the fact that various cultures and 
systems place particular value on various ways of knowing. For 
example, if we refer to the indigenous ways of knowing framework 
shown above, we might see this entire course as being one element of 
“intellectual” ways of knowing. Its contribution might be to contribute 
to responsibility and relevance by enhancing the generalizability of 
decision making as we discussed before. However, no one should 
mistake statistics for a holistic system of knowing. 

I encourage you to think of what you learn in this course as one 
tool in the toolbox. The reason many academic disciplines require a 
statistics course is that this is a tool most people do not get in other 
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areas of their lives. We tend not to learn statistics from our parents or 
by volunteering in the community. In fact, most of us are very bad at 
this form of decision making until we learn to use these tools. 

By requiring you to learn statistics, disciplines like Psychology are 
not suggesting it is the only important decision-making tool. It is one 
we think you need to understand to be a good scientist and to better 
interpret some types of evidence to which you will have access in your 
professional life. I encourage you to learn more about holistic ways of 
knowing and to reflect on the place that formal, data-driven decision-
making practices have in your own ways-of-knowing framework. I 
think we could all gain some insight by looking at such a model with 
an eye toward acknowledging areas in which we are weaker, because 
of our own individual experiences or because of the society in which we 
have grown up. 

 

A video element has been excluded from this 

version of the text. You can watch it online here: 

https://pressbooks.bccampus.ca/statspsych/?p=5 

1b. Displaying Data Using Tables and 
Graphs 

Have you ever heard the saying, “a picture is worth a thousand words”? 
That is what the rest of this chapter is all about. First, we need to 
cover some basic concepts and definitions, including the differences 
between descriptive and inferential statistics, and the meaning of the 
terms variable, value and score. We will then need to learn to 
distinguish among levels of measurement to be able to choose the 
appropriate techniques for summarizing different types of data. 

Finally, I will demonstrate how to generate frequency tables and to 
graph a dataset, because the first step in data analysis is always to look 
at it. Just as a picture is worth a thousand words, it is also worth a 
thousand numbers. 
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At first we will focus on descriptive statistics. These are ways to 
summarize or organize data from a research study – essentially 
allowing us to describe what the data are. 

A little later in the course, we will move into the realm of inferential 
statistics. These are analytical tools that allow us to draw conclusions 
based on data from a research study. In other words, we go beyond 
just saying what the data are, and make a statement about what they 
mean. Inferential statistics are used in research and policy as a tool to 
make decisions. 

Three basic terms are essential jargon in statistics. A variable is a 
quality or a quantity that is different for different individuals. A variable 
could be a quality, like ethnicity, for which each person might have a 
different characteristic. Or it could be a quantity, like temperature, that 
could be different each time you take a reading, and is measured on 
a number scale. A value is just any possible number or category that 
a variable could take on. So for ethnicity you might have 6 categories 
in which you place individuals. Or for temperature there might be 
a numeric range from -100 to +100. Those would be the full set of 
values for that variable. A score is a particular individual’s value on 
the variable. For ethnicity, you would identify yourself as one particular 
category, and that would be your score. For temperature, if you check 
your weather app and see that it is 7 degrees outside, that is the score 
for that time and place. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/statspsych/?p=5#h5p-1 

Measurement is the assignment of a number to the amount of 
something., or assigning labels for categories. This is often obvious (for 
example, we might measure time as number of seconds or number of 
minutes). Sometimes, however, it can be a bit more arbitrary. We might 
assign numbers to signify a category, for example 1 for male and 2 for 
female. 

Based on how we measure them, there are two major types of 
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variables in statistics, and these will be important to keep in mind as 
we go through the semester. The type of variable determines how we 
can use it. 

Type of 
variable Characteristics Examples 

 

Nominal/ 
Categorical 
 

•Label and categorize 
•If numbered, numbers are 
arbitrary 

•Gender 
•Diagnosis 
•Experimental or 
Control 

 

Numeric/ 
Quantitative 
 

•Numerical data 
•Numbers reflect size or amount 
of something 

•Temperature 
•IQ 
•Golf scores (above/
below par) 
•Number of correct 
answers 
•Time to complete 
task 
•Gain in height since 
last year 

The first type of variable is nominal or categorical (also called 
qualitative). Nominal variables label or categorize something, and any 
numbers used to measure these variables are arbitrary and do not 
indicate quantity or size. For example, if male is scored as 1 and female 
is scored as 2, that does not indicate that females are twice as good or 
double the size of males. It is just a code. 

Numeric or quantitative variables are ones for which numbers are 
actually meaningful. They indicate the size or amount of something. 

Examples of Numeric variables 

• Temperature, in which 10 degrees is warmer 
than 0 

• Golf scores, in which 2 below par means you did 
well 

• IQ, in which 100 is average intelligence 
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• Number of correct answers, in which 4 correct 
answers is twice as many as 2 correct answers 

When we calculate statistics, we will see that we can calculate an 
average IQ in a group of people, or an average temperature across 
several days. But we cannot calculate an average gender. What we will 
do is use groupings or categories as a basis for comparison of other 
variables; for example, does the experimental group have a higher 
number of correct answers than the control group? 

Now, a quick side note: If you take a course in research methods, you 
learn that measurement is a really tricky thing in practice, particularly 
when you want to measure something internal about a person. The 
process of operationally defining something so that you can measure it 
numerically or in discrete categories is a real challenge. This is beyond 
the scope of this course, but just to give you a sense, try brainstorming 
a way in which you could measure aggression? Think of at least one 
way that would create a nominal variable, and one way that would 
create a numeric variable. 

If you give that example some thought, you will quickly find that 
a relatively simple variable like aggression can be fiendishly difficult 
to measure, and in the field of psychology a lot of effort is put into 
developing good ways to measure mental constructs. In experimental 
psychology, we often prefer to measure things as numbers, because 
then we can use statistical methods to summarize and to make 
inferences about the thing we measured. 

We should return to our discussion of experimental research design. 
A variable is something that has different values for different 
individuals, and that we can measure. As an example, we can measure 
how fast someone is at completing a puzzle, and get those scores for 
a bunch of people. This variable would be speed. We can also assign 
each of those people into categories or conditions: a high-stress vs. low-
stress condition, for example. Research is the study of the relationship 
between variables. Therefore, there must be at least two variables 
in a research study (or there is no relationship to study). Typically an 
experimental study in psychology has one (or more) independent 
variables and one (or more) dependent variables. 
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An independent variable is one you manipulate — most often it is 
categorical, or nominal (e.g. experimental group vs. control group). A 
dependent variable is one you measure to detect a difference/change 
as a result of the manipulation — most often it is numeric (e.g. time to 
complete a puzzle). 

Example of Experimental Design 

Do members of your experimental group (who were 
required to give a speech in front of a group of people) 
solve a puzzle in a shorter or longer amount of time 
than members of your control group (who were 
allowed to browse magazines)? 

In the example above, the independent variable would be the 
manipulation: whether people are required to give a speech or are 
allowed to browse magazines. Note that is a nominal variable. The 
dependent variable is what you measure after the manipulation: how 
it takes the participants to solve a puzzle. Note that would be a numeric 
variable. 

Now that you have some basic definitions and concepts down 
regarding types of data and how to measure them, we need to learn 
how to deal with numeric data. 

Example of Numeric Dataset 

Stress ratings of 10 students: 8,7,4,10,8,6,8,9,9,7 
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First… what can you say about this data set from the list of numbers 
above? How would you describe the findings to someone? 

Perhaps you want to summarize a dataset in table form, to organize 
the data and make it easy to get an overview of the dataset quickly. 
A frequency table does just that. To create a frequency table, you 
just ask yourself: for each possible value on this variable, how many 
individuals have a particular score? That gives you the frequency of 
each value – or how often it occurred in the dataset. Let’s look at an 
example. We measure the stress levels of 10 students, on a scale of 1 to 
10, and above are their scores. Hard to make any sense out of that list, 
right? By following the steps below, we can create a frequency table. 

Steps for Making a Frequency Table 

• Label the first row: Values, Frequency, and 
Percentage. 

• In the first column, under the heading Values, 
list all the possible values the variable could take 
on. In this case, we have 10 possible values, so 
there should be 10 rows in the data portion of the 
table. 

• Make a list down the page of each score, from 
lowest to highest, to make it easier to count them. 

• Go one by one through the scores, making a 
mark for each next to its value on the list (e.g., 
how many 1’s are there? 0. … How many 4’s are 
there? 1. … How many 7’s are there? 2. Repeat that 
question for every value from 1 to 10. Write those 
frequencies, or counts, in the Frequency column. 

• Figure the percentage of scores for each value. 
To calculate a percentage you take the frequency, 
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divide by how many scores you have in the 
dataset (here we have 10 students, so 10 scores), 
and multiply that by 100 to move the decimal to 
the right two places. So for the value of 7, with 
frequency of 2, that becomes 2 divided by 10 
times 100 or 20%. Calculate and list all the 
percentages. 

Here is what the table should look like once you are done with those 
steps: 
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Values Frequency Percent 

1 0 0% 

2 0 0% 

3 0 0% 

4 1 10% 

5 0 0% 

6 1 10% 

7 2 20% 

8 3 30% 

9 2 20% 

10 1 10% 

Now you can scan down the table and quickly see where most of the 
scores fall within the range of possible values. Now that you have an 
organized summary of the data, you can clearly see that the majority 
of students are reporting fairly high stress scores. By looking at the 
percentages, you have a quick way to report the proportion of students 
that are highly stressed. For example, just by doing some quick 
addition, you can say that 60% of surveyed students report stress levels 
8 or higher. 

Most people find graphs easier to interpret at first glance than tables. 
What can you say about the dataset after looking at this graph? 
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I bet you were able to say that most scores pile up at the upper end 
of the graph, at the higher end of the range of stress score values. 

The graphical version of a frequency table is a histogram. The X axis 
on a histogram should have the values of the variable listed, from 
lowest to highest. The Y axis should represent the frequencies of each 
value in the dataset. In other words, the histogram is a frequency table 
that has been turned on its side. The added benefit comes from the 
visual representation of the frequency as the height of the bars in the 
graph, rather than just a number. You can thus see a clear shape in the 
dataset. 

In some circumstances, a frequency table is not an effective way to 
summarize a dataset. This is the case if the range of values is too large. 
For example, what if you were summarizing temperature scores, which 
can range from 0-100? This would mean more than 100 rows in the 
table. That is not so helpful. In such a case, a grouped frequency table 
is a much better option. 

A grouped frequency table defines ranges of values in the first 
column, and reports the frequency of scores that fall within each 
range. In this example, we have surveyed 30 students’ stress levels on a 
scale of 1-10: 
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Example of Numeric Dataset 

Stress ratings of 30 students: 
8,7,4,10,8,6,8,9,9,7,3,7,6,5,1,9,10,7,7,3,6,7,5,2,1,6,7,10,8,8 

If we wanted to get the table into the ideal format of 4-8 rows, we could 
create grouped frequencies, with two values in each row. 

By following these steps, we can create a grouped frequency table: 

Steps for Making a Grouped Frequency Table 

• Label the first row: Values, Frequency, and 
Percentage 

• Decide on the ranges of values you need. You 
want to choose ranges that will leave you with 4-8 
rows in the table 

• In the first column, under the heading Values, 
list all the possible value ranges the variable cold 
take on. In this case, we grouping by twos, so 
there should be 5 rows in the data portion of the 
table. 

• Make a list down the page of each score, from 
lowest to highest, to make it easier to count them. 

• Go one by one through the scores, making a 
mark for each next to its value range on the list 
(e.g., how many 1’s and 2’s are there? 3. … How 
many 3’s and 4’s are there? 3. … and so on. Repeat 
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that question for every value range. Write those 
frequencies, or counts, in the Frequency column. 

• Figure the percentage of scores for each value 
range. To calculate a percentage you take the 
frequency, divide by how many scores you have in 
the dataset (here we have 30 students, so 30 
scores), and multiply that by 100 to move the 
decimal to the right two places. So for the value 
range of 1-2, with frequency of 3, that becomes 3 
divided by 30 times 100, or 10%. Calculate and list 
all the percentages. 

Here is the completed grouped frequency table for the dataset of 30 
students: 

Values Frequency Percent 

1-2 3 10% 

3-4 3 10% 

5-6 6 20% 

7-8 12 40% 

9-10 6 20% 

Note that we can and should double check our work. Simply add up 
all the frequencies and make sure the sum is 30. Also add up all the 
percentages and make sure they add up to 100%. 

Here is a histogram of the grouped frequency table we just 
generated: 
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Note that histograms are appropriate for plotting numeric datasets. 
The X axis should be labeled with numbers, rather than with categories. 
That is how a histogram differs from your typical bar graph. The other 
difference is the width of the bar. In histograms, because the data 
are numeric or continuous, the bars should appear to touch – with 
no break in between the bars. This gives a unitary appearance to the 
shape of the graph. If you were to draw a smooth line over the shape 
of the distribution, or overall pattern of the data, you would get the 
impression of a curve. 

If you drew a smooth line over the shape of the dataset in a 
histogram, you could describe the shape that is generated with two 
types of descriptors: 

Describing a Distribution 
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• How many peaks there are 
• How symmetrical the shape is 

Skewness is the term for describing symmetry: is the distribution of 
data symmetrical (or very close) – meaning a mirror image from left 
to right, or is it skewed right/positively, or left/negatively? To determine 
the direction of skew, you need to check the direction of the “tail”. If the 
tail points right, it is right skewed. In this case, the tail points left, so it 
is left skewed. 

How many peaks the distribution contains is described as unimodal 
or bimodal. Unimodal distributions show one single collection of 
scores, whereas bimodal distributions look more like a camel’s back, 
with two clear lumps. Do not jump to a bimodal description unless 
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the two peaks are clear and distinct, with some low frequency bins in 
between. The peaks should also be fairly similar in size to be considered 
bimodal. This histogram above clearly displays just one peak, so we 
would describe it as unimodal. 

How would the shape of our stress scores distribution look if I 
measured stress scores once early in the semester and then again 
late in the semester? One could speculate that the distribution could 
become bimodal, with the early-in-semester scores piling up on the 
low end of the stress scale, and late-in-semester scores piling up on the 
high end of the stress scale (as exam and assignment “crunch time” 
has set in). 

Frequency tables and histograms are useful for summarizing 
numeric datasets. What about qualitative data, from nominal 
variables? Bar graphs and pie charts are excellent ways to summarize 
those types of data. Note the gap between bars in a bar graph, as 
opposed to the touching bars in a histogram. This indicates the 
arbitrariness of the categories. We are still portraying how many of 
the measured individuals fall into each category, but those categories 
are not associated with numeric values, so no continuity should be 
implied. Pie charts are excellent for highlighting the relative proportion 
of scores that fall into each category. 
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A video element has been excluded from this 

version of the text. You can watch it online here: 

https://pressbooks.bccampus.ca/statspsych/?p=5 

A video element has been excluded from this 

version of the text. You can watch it online here: 

https://pressbooks.bccampus.ca/statspsych/?p=5 

Chapter Summary 

In this chapter, we reviewed why we need statistics. We also introduced 
some key terms, listed below. We then saw how to summarize data 
effectively using tables and graphs and describe the patterns the 
distributions of data make. 

Key terms: 

descriptive nominal independent variable 

inferential numeric dependent variable 

variable frequency table right skewed 

value histogram left skewed 

score grouped frequency 
table unimodal 

bimodal 

Note: concise definitions of all key terms can be found in the Key Terms 
List at the end of the book. 
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2. Central Tendency and 
Variability 

2a. Central Tendency 

In this chapter we will discuss the three options for measures of central 
tendency. These measures are all about describing, in one number, an 
entire dataset. 

A measure of central tendency is a statistical measure that defines the 
centre of a distribution with a single score. The purpose of a central 
tendency statistic is to find a single number that is most typical of the 
entire group. It is a number that should represent the entire group as 
accurately as possible. 

Depending on the shape of a distribution, one of these measures 
may be more accurate than the others. We will see that for 
symmetrical, unimodal datasets, the mean will be the best choice. For 
asymmetrical (skewed), unimodal datasets, the median is likely to be 
more accurate. For bimodal distributions, the only measure that can 
capture central tendency accurately is the mode. 

It is very important to note that two out of three measures of central 
tendency only apply to numeric data. In order to arrive at a mean or 
a median, the data need to be measured in number form. It makes 
sense, for example, to measure the average student height in a class. It 
does not make sense to determine the average major from a class of 
students. 

Before we can learn to calculate a mean, we need to familiarize 
ourselves with some statistical notation. In statistics, when we want to 
denote “taking the sum” of a series of numbers, we use the term Σ. This 
is the Greek capital letter S, known as “sigma”. 

The tricky thing about Σ is learning how to use it within 
mathematical order of operations. You may remember the mnenonic 
BEDMAS from school. This indicates that you should first do any 
operations that are set off in brackets or parentheses. Next you should 
do exponents, then division or multiplication, and finally addition/
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subtraction. But summation fits in just after division/multiplication. So 
BEDMAS becomes BEDMSAS. 

Order of Operations 

1. Brackets 
2. Exponents 
3. Division/Multiplication 
4. Summation 
5. Addition/Subtraction 
BEDMSAS 

Let us try some examples. We will assume my variable X represents a 
set of scores in a dataset: 

X 

5 

8 

9 

6 

7 

If you see the formula: 

    

What is that telling you to do? Look at order of operations. First do 
anything in brackets. So first we have to do the ΣX part. This tells us to 
add up all the scores: 5+8+9+6+7 = 35. Next we need to take that result 
and square it (exponents): 352 = 1225. 

Let us try: 
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Now there are no brackets, so exponents come first. This formula says 
to square each score in the dataset, then add together all the results: 
52+82+92+62+72 = 25+64+81+36+49 = 255. So what seems like a minor 
difference in the formula really changes the result! 

Let us try: 

    

First brackets, so subtract off 1 from each score. Next exponents, so 
square each result. And finally summation, so add that all together. 
42+72+82+52+62 = 16+49+64+25+36 = 190. 

And finally, we will try: 

    

Now exponents is first, so square the number 1. Next is summation, 
so add all scores together. Finally, complete the subtraction. 12 = 1. 
5+8+9+6+7 = 35. 35 – 1 = 34. 

So, now you see that order of operations are vital to decode 
summation notation. Each of these variations have very different 
solutions. Whenever you see a new formula, try translating it into words 
after reviewing order of operations. 

Now we are ready to take a look at calculating a mean. The mean is 
the most common measure of central tendency, because it has some 
powerful applications in statistics. The mean is the same thing as an 
average, something you are very familiar with. You also probably know 
that to find an average, you add up all the numbers, then divide by how 
many numbers there were. 

    

In statistical notation, the formula for the mean is shown above. A 
mean is symbolized as M. The number of scores in a dataset is 
symbolized as N. 

Conceptually we can think of the mean as the balancing point for the 
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distribution. In a histogram, if we were to mentally convert the X-axis 
into a scale, the mean would be the fulcrum, or the point of the scale 
at which the two sides of the scale balance each other out. Each score 
is like a weight. Their position along the scale determines where the 
mean will be. Here are some examples. 

In the top histogram, the mean is (1+2+6+6+10)/5 = 25/5 = 5. In the 
bottom histogram, the mean is (3+6+6+9+11)/5 = 35/5 = 7.In the 
previous examples, the mean was pretty close to the middle of the 
scale – not that surprising, because the data were spread out fairly 
evenly. However, things can change if the data pile up toward one end 
of the distribution (i.e. skewed), or if any of the data points are quite 
extreme (outliers). In the example here, think about where the balance 
point would be. 
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If we put it close to the middle of the scale, for example at 5, the 
scale would tip to the right. So we have to move the balance point 
rightward. Let’s see if that intuition is correct: M = 
(1+2+3+4+5+6+6+7+7+7+8+8+8+8+9+9)/16 = 6.1 

The median, unlike the mean, is a counting-based measure. The 
values of the the scores are not important, just how many of them 
there are. To get the median, you find the midpoint of the scores after 
placing them in order. The median is the point at which half of the 
scores fall above and half of the scores fall below.  Finding the median 
for an odd number of scores is easy. Just find the single middle score, 
and that is the median. 

For an even number of scores, it is a little more complicated. You have 
to find the middle two scores and average those together. 

Here are some graphical examples of medians. 
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In the top histogram, 2 scores are below the median of 8, and two 
scores are above. Notice the median is not a balancing point (which 
would be a little to the left to account for the spread of the lower 
scores). In the bottom histogram, there are 2 scores below and two 
scores above the middle set of scores (2 and 3, averaged to 2.5). The 
median is not a balancing point (which would need to be further to 
the right to account for the score weighting down the right end of the 
scale). 

The mode is our final option for statistical measures of central 
tendency. The mode is simply the score that occurs most often in the 
dataset, the one with the highest frequency. This is the measure that 
can be used with nominal data too. It is possible to have more than one 
mode, if the dataset is bimodal, for example. In fact the term unimodal 
means “one mode” and bimodal means “two modes”. Note that the 
mode must correspond to an actual score in the dataset, so a grouped 
frequency table or histogram will not help you identify it. 

Another thing to note is that if your dataset happens to have two 
modes, that does not necessarily mean it is appropriate to describe 
the distribution as bimodal. Remember, true bimodal distributions are 
ones that show two distinct peaks in the smoothed line with some 
space between, indicating there are two collections of scores that are 
clustered together. Basically, if the distribution does not look like a 
camel’s back, then it is not truly bimodal. 
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Camel Farm in Mongolia 02 by Alexandr frolov is licensed 
under CC BY-SA 4.0 

Now we should take a look at the difference between a mean and a 
median. 

On the histogram above, you can see that there is a cluster of scores 
at the low end of the scale. However, there is one outlier with an 
extreme score at the upper end. The median is concerned with how 
many scores fall above or below, rather than their values, so it is not 
affected much by the 12 way out there. It still reflects the center of the 
distribution accurately. However, the mean takes into account the 
value of each score. Without the outlier, the mean would have been 
(2+2+2+3+3)/5 = 2.4. With the outlier, the mean is (2+2+2+3+3+12)/6 = 4. 
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With an outlier, or a heavily-skewed distribution, the mean can be 
pulled in the direction of the outlier or skew, and is thus not the most 
accurate measure of central tendency. Under these circumstances, 
the median will better describe the dataset. 

2b. Variability 

Our objectives in this part of the chapter will be that to explain the 
concept of variability and why it is important, and to calculate the 
descriptive statistics variance and standard deviation. 

Soon we will be progressing to inferential statistics, in which we will 
often wish to figure out if the central tendency of one group of scores 
is different from another group of scores. If we want to be able to 
assert differences in what is typical between one group and another, 
we need enough uniformity within each of those groups to discern 
those differences. If there is too much random variability, we will be 
unable to say much about the data or use them for decision making. 
There will be too little order in the chaos. For that reason, we need to 
learn how to measure variability in a data set and take that into account 
in the process of making inferences about the data. 

There are many ways to measure variability. However, we will focus 
on the two main measures of variability that are commonly use in 
both descriptive and inferential statistics of the sort we will cover in 
this course: variance and standard deviation. It is worth noting that 
variance and standard deviation are directly related, but standard 
deviation is easier to interpret and is thus more often reported as a 
descriptive statistic. 

In general, measures of variability describe the degree to which 
scores in a data set are spread out or clustered together. They also 
give us a sense of the width of a distribution. Finally, they help us 
understand how well any individual statistic (for example the mean) 
can possibly represent the distribution as a whole. 

When it comes to inferential statistics, smaller variability is better. 
When comparing two distributions, as we will be doing in inferential 
statistics, there are two ways to be confident that there is a difference. 
One is to have dramatically different central tendencies (such as the 
means). The other way is to have small variability, such that an 
individual statistic represents that distribution well. 
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The first measure of variability we will learn to calculate is variance. 
Variance summarizes the extent to which scores are spread out from 
the mean. To do that, we calculate the deviation of each score from the 
mean. Here is a graphical illustration of deviations. As the first step in 
calculating variance, for each score we find its distance from the mean. 
So here if the distributions mean is 6, a score of 1 is a deviation of 5 away 
from the mean, and a score of 7 is a deviation of 1 away from the mean. 

Here is the formula to calculate variance. 

    

I have translated the steps of the formula into words for you here. 
Keep in mind that we have to do each part if the formula in the order 
of operations.  First brackets, then exponents, then summation, and 
finally division. 

Steps to Calculate Variance 

1. Take the distance, or “deviation”, of each score 
from the mean 

2. Square each distance to get rid of the sign 
3. Add up all the squared deviations 
4. Divide by the number of scores 

The first part of the formula we need to calculate, then, is to take the 
distance, or “deviation”, of each score from the mean. This is written as 
X-M. 

Next, we square each distance to get rid of the sign (because some 
deviations will be negative numbers, which we do not want. This is the 
exponent outside the brackets. 
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Next, we do summation, so we add up all the squared deviations. In 
fact, the result of this step has its own name: Sum of Squares, which 
we will sometimes abbreviate as SS. 

And finally, we divide by the number of scores, to make sure this 
is an average measure of distances in the dataset. Now, we’re doing 
the division last, because of the notation, because there is a top and a 
bottom. So that makes it clear that the division is the last thing that we 
do in the order of operations. 

One thing to note is that the purpose of squaring each deviation 
before taking the sum is the following. All the deviations for scores 
smaller than the mean will come out negative. All the deviations for 
scores larger than the mean will come out positive. So if we added 
up the deviations without squaring them, the negatives would cancel 
out the positives and the variance would always end up zero. Squaring 
each deviation is mainly a way to convert them all to positive numbers. 

Standard deviation is the other measure of variability we will use in 
this course. It expresses the variability in terms of a typical deviation in 
the data set. This will be a single number that gives us the distance of 
typical scores in the dataset from the mean. 

Variance is essentially the average squared deviation; now we want 
to find the average deviation to get it back into the original units of the 
data. To find the standard deviation, we just need to take the square 
root of the variance. 

    

Most of the inferential statistics we will use in this course will be based 
on our calculations of the mean and either the variance or standard 
deviation. 

Chapter Summary 

In this chapter we examined the purpose and common methods for 
determining statistics representing the central tendency and the 
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variability of a dataset. We saw the particular characteristics of each 
statistic that makes it most appropriate or useful for specific situations. 
The combination of central tendency and the variability statistics not 
only provides a very succinct summary of the dataset, but it also will 
become the basis for making inferences from data. 

Key Terms: 

mean Σ variance 

median M standard deviation 

mode N Sum of Squares 
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3. Z-scores and the 
Normal Curve 

3a. Z-scores 

In this chapter, we will address the topic of Z-scores, one type of what 
are commonly called standard scores. 

Before we begin, we will examine a real world example of why 
standardizing scores is useful and important. Have a look at these 
images: 

“Apple” by Open Grid Scheduler / Grid Engine is marked with CC0 1.0 
“Oranges” by Dious is marked with CC PDM 1.0 

How sweet are these fruits? Is an apple sweeter? Or is an orange 
sweeter? What do you think? Is it difficult to say? Usually when I survey 
people with this question, there is a pretty even split, with half saying 
an apple is sweeter, and the other half saying the orange is sweeter. 
Why? When we think about it, it is tough to directly compare them in 
terms of the property of sweetness. One is more tart, the other quite 
mild in flavour, so it is difficult to compare oranges and apples. In fact, if 
you are a native speaker of English, you might have heard before “that’s 
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like comparing oranges to apples,” meaning it’s impossible to compare. 
The same is true of trying to compare numbers from different datasets. 

In this chapter, we will learn how to use the statistics of the mean 
and standard deviation to generate standard scores, or Z-scores. This 
will allow us to transform scores in any numeric dataset, using any 
scale, into a standard metric. This allows for precise comparison of a 
particular score to the rest of the scores in a dataset, and even across 
different datasets. 

A Z-score is just a raw score expressed in terms of its position relative 
to the mean and in terms of standard deviations. A negative Z-score 
means that raw score is below the mean. A positive Z-score means that 
raw score is above the mean. In addition to its position above or below 
the mean, a Z-score also communicates that score’s distance from the 
mean in terms of how many standard deviations away it is. 

For example, with a mean of 65 and standard deviation of 3, the raw 
score 59 can be converted into a Z-score. 

The Z-score tells you how many standard deviations away from the 
mean the raw score is. How many? … 2. It also tells you if it is above 
(greater than) or below (less than) the mean. Is it below or above the 
mean? … below. Thus the Z-score is -2, because it is 2 standard 
deviations below the mean. 

Z-scores can also be useful for comparing scores across two different 
variables. For example, let’s say two students, Jagdeep and Jasmine, 
are in both a Statistics class and an English class. 
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Raw scores Jagdeep Jasmine 

Statistics 20 38 

English 30 45 

 
Notice that in statistics, the mean grade is a raw score of 30. From 

the distance between Z-scores, we can surmise that the standard 
deviation in statistics is 5. In English, however, the mean grade is a 
raw score of 40, and the standard deviation is 10. It would not make 
sense to directly compare Jagdeep’s test score of 20 in statistics with 
Jasmine’s test score of 45 in English. These were entirely different tests, 
so some translation to standard scores is needed. With Z-scores, we 
can take their grades from those two different classes and figure out 
their performance relative to the mean in each class. Then we can 
compare Jagdeep’s performance in statistics to their performance in 
English, and we can also compare their performance to Jasmine’s 
performance. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/statspsych/?p=173#h5p-7 

So how do we actually calculate a Z-score? It’s a simple formula: 
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For any given raw score (X) that we want to translate, we subtract 
off the mean. Then we take that result and divide by the standard 
deviation. Note that if the result is a negative number, the score is 
below the mean. If the result is positive, the score is above the mean. 

We can also rearrange the Z-score formula to go backwards from a 
Z-score to a raw score. 

    

You might wish to do this if you want to figure out a cutoff score, for 
example in the context of grading. If you are grading a class on a curve, 
you may decide that anyone who falls 2 or more standard deviations 
below the mean will be given a failing grade. So you could figure out 
what the test score is, below which students will be assigned an F. To 
do this, you take the Z-score, in this case -2, and multiply it by the 
standard deviation. Then add the mean. This will get you to the test 
score that would serve as the cutoff, below which students would be 
assigned a grade of F. Note that if the Z-score is negative, essentially 
you are subtracting some amount from the mean. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/statspsych/?p=173#h5p-8 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/statspsych/?p=173#h5p-5 
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Z-scores can be very helpful for figuring out whether a score is extreme 
relative to a comparison distribution. We’ll see that this is what we 
typically wish to do in inferential statistics: if I give a new medicine to a 
sick patient, does that patient do better than most of the other patients 
treated with a standard remedy? 

In this example, we will test the hypothesis that rats fed a grain-heavy 
diet become unusually overweight. We have a group of rats, and their 
average weight is 400 grams, with a standard deviation of 20 grams. 
We start feeding the rats a grain-heavy diet, and measure each one 
after a few weeks on that new diet. The question is, how heavy should 
they be for us to conclude that they are unusually overweight? 

A good rule of thumb is that more than 2 standard deviations from 
the mean (in either direction) is considered fairly extreme. Beyond 3 
standard deviations is very extreme. 

Suppose we measure the first rat after the grain-heavy diet, and it 
weighs 418 grams. This is less than 1 standard deviation from the mean: 
Z = (418-400)/20 = 0.9. Therefore, we cannot be sure whether the diet 
made rats unusually heavy. 

Next, though, we measure rat number 2. It weighs 450 grams. That 
is 2.5 standard deviations from the mean, so more than 2: Z = 
(450-400)/20 = 2.5. Thus, rat number 2 qualifies as extreme on my 
distribution. 
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As we measure rats, if more of them end up in the extreme region 
on the distribution, then we will have a strong basis for concluding that 
the grain-heavy diet made for unusually heavy rats. 

Now we can take a closer look at our example with Jagdeep and 
Jasmine and their performance in two different classes. By converting 
their raw scores, shown here, into Z-scores, we can directly compare 
them to their classmates, each other, and between classes. 

Raw scores Jagdeep Jasmine 

Statistics 20 38 

English 30 45 

Note that the statistics class has a different mean and standard 
deviation than does the English class. For statistics, the mean score 
is 30 and the standard deviation is 5. Given this, with a grade of 20, 
Jagdeep’s Z-score in statistics is Z = (20-30)/5 = -2. They are two 
standard deviations below the mean. In English, the mean score is 40 
with a standard deviation of 10. So Jagdeep, with a score of 30, has a 
Z-score of Z = (30-40)/10 = -1, because they are one standard deviation 
below the mean. 

Jasmine, on the other hand, is above the mean in both classes. They 
are .5 standard deviations above the mean in English: Z = (45-40)/10 = 
.5. Their Z-score in statistics is Z = (38-30)/5 = 1.6. 

Note that we can compare all these scores against each other only 
once converted to Z-scores. In statistics, if a student had a score of 
40, that would be a very good grade! But in English it would be just 
average. Once converted in to Z-scores we can see that Z = +2 in 
statistics is clearly a higher grade than Z = 0 in English. 
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3b. Normal Curve 

In this part of the chapter, we will be discussing the normal curve, as 
a model distribution, and taking a look at how Z-scores relate to the 
normal curve. 

First, consider a real-life situation that you can likely relate to. What if 
I told you this class would be graded on a bell curve? What would your 
reaction be? 

Usually, when I ask that question of students, they have a negative 
reaction. But why? In highly traditional educational systems, there is 
a concept of gatekeeping that suggests only a particular proportion 
of students should receive a particular grade. Typically, the bell curve 
is used in situations where a program wants to make progression 
through the program competitive, to “weed out” students who 
perform less well than their peers on exams. Using the normal curve, or 
bell curve, as a model upon which to map student scores, the instructor 
can determine precisely how many students will receive A’s, B’s, C’s, 
and so on. 

If, for example, only about 2% of students should receive the highest 
grade, then, the instructor will set the minimum standard for that 
grade as a Z-score of +2. Only students who receive a calculated course 
score that is at least 2 standard deviations above the mean will get the 
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coveted A grade. Using areas under the normal curve, the instructor 
can relate that to the percentage of students who will receive a 
particular grade, and can map that onto which Z-score forms the 
criterion for that grade. 

So why is grading on a bell curve unpopular among students? It 
assumes that, regardless of who is in the class, only the top few 
students should be awarded a high grade. The bell curve model 
assumes that most students show a mediocre level of mastery. In 
effect, this assumption means that students compete directly against 
one another for their grades. By helping another student in the class, 
you could be risking losing your place in the rankings to them. This can 
create a high-stress environment, and it can distort the reality of how 
many students in the class do actually understand the material quite 
well. 

Now that you have a sense of what the normal curve looks like and 
one of its common uses, let us take a broader view of the basic 
concepts involved. A normal curve is a theoretical distribution that is 
sometimes called a Z distribution. The normal curve has very distinct 
set of properties that make it a useful model for data analysis. In real 
life, few distributions actually match this theoretical model, so when 
you are describing the shape of a distribution, even if it looks pretty 
nice and symmetrical like this, you should refrain from describing it as 
a normal curve. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/statspsych/?p=173#h5p-2 

Another important concept we will address is that of a percentile. A 
percentile is a score on a distribution that corresponds to a certain 
area under the curve. It’s often used as a means to rank scores – for 
example, if you take a standardized test like the GRE, they will report 
your percentile ranking as well as your actual score. 

The standard normal distribution is a theoretical distribution that 
should usually be approximated if a dataset is large enough. For 
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example, if I were to measure the IQ score of millions of people, or 
measure the heights of all the people currently alive in the world, or 
make a histogram of all the scores of all students who could ever take 
a test, these distributions would likely look pretty close in shape to this 
theoretical distribution. 

For this reason, and because it has very predictable set of properties, 
it is commonly used as a model for data analysis. As you can see here, 
using this model you can easily identify what percentage of scores in a 
standard normal distribution fall between Z score landmarks. 

In fact, you should memorize these handy area-under-the-curve 
landmarks: the 2-14-34 rule. These come in very helpful for quick visual 
estimation, when we are working with the normal curve model. 
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An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/statspsych/?p=173#h5p-3 

In addition to the handy 2-14-34 percentage estimates, the standard 
normal curve also can be used to determine a score’s exact percentage 
probability of occurring within this theoretical distribution. In our 
interactive exercises, we will see how to work with tables to look up 
the exact area under the curve associated with any Z-score, not just 
the landmarks shown on these illustrations. We will also be able to 
work backwards from percentiles, which are often used as a measure 
of relative standing in a distribution. 

Percentiles can be a tricky concept at first. Let’s take a closer look. 
A percentile is the score at which a given percentage of scores in the 
distribution fall beneath. To visualize the percentage, we always sketch 
the normal curve, and shade the area under the curve starting from 
the left end up to the relevant proportion. The 90th percentile is the 
score at which 90% of individuals scored lower than that. So you start 
from the left end of the curve and shade up until you have shaded in 
90% of the area under the curve. Clearly that would be the vast majority 
of the area. 
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The 20th percentile is the score at which only 20% of individuals 
scored lower. So you are only shading a pretty small area under the 
curve, starting from the left end. 

Note that the 50th percentile would be shading the lower half of the 
curve, so the 50th percentile is always right in the middle of the curve, 

Z-scores and the Normal Curve  |  51



and thus it always a Z-score of 0, otherwise known as the mean of the 
distribution. 

If you ever find yourself getting confused about the concept of the 
percentile and how it works, think about this. New parents frequently 
report on their baby’s achievements in these terms: little Doneil is in 
the 80th percentile for weight, and the 99th percentile for height! They 
are mentioning these things because they are above average. Baby 
Doneil is heavier and longer than most babies that age! You do not 
hear people bragging too often about their babies being in the 30th 
percentile for anything. Why? Because that would mean their baby is 
below average in that characteristic. So with percentile rankings, you 
are always starting from the bottom of the distribution and seeing 
what percentage of the distribution of scores you are outranking with 
the score in question. 

Recall our experiment with the rats being fed a grain-heavy diet. We 
saw that the rat who weighed 418 grams after eating the diet was a 
bit heavier than the average of non-treated rats, but that was not even 
a full standard deviation higher than the mean. The Z-score was 0.9, 
when we calculated it. If we were to look up in a table the area under 
the curve to the right of that Z-score, we would see that the area in the 
tail of the distribution associated with that Z-score is 18.41%. 

So when we ask ourselves, “how unusual is that score?” or “what 
percentage of scores are more extreme?” we have a precise answer, if 
we use the normal curve as our model. We can say that there is about 
an 18% probability that any rat drawn at random from the normal rat 
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weight distribution will be at least that heavy. That does not seem too 
unusual. 

On the other hand, if you recall, the second rat in our experiment, 
who ate the grain-heavy diet, weighed quite a bit more. In terms of Z-
scores, his weight was 2.5, or 2-and-a-half standard deviations above 
the mean. Such a score is far less probable under our normal curve 
model. If we look up the area under the curve in a table, we will see 
that the area in the tail of the distribution associated with that Z-score 
is 0.62%. 
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There is less than a 1% chance that any rat drawn at random from 
the normal rat weight distribution will be at least that heavy. That is far 
more unusual as a rat weight. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/statspsych/?p=173#h5p-9 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=173#h5p-10 
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These are lots of puzzle pieces I have tossed together, just to give you 
a preview of how they all fit together, and how we might be able to 
use them for inferential data analysis. A raw score can be translated to 
a Z-score, which can be mapped onto the normal curve. If it’s a normal 
curve, then a known proportion of the distribution is associated with 
that Z-score, and that allows us to connect scores to probabilities. That 
is where we are headed with the next chapters, and soon we will be 
getting into full-on inferential statistics techniques. 

Chapter Summary 

In this chapter, we introduced the concepts and utility of standardized 
scores like Z-scores and the normal curve. We saw that combining 
those tools offers the opportunity to rank scores using percentiles and 
to estimate the probability of a particular score occurring within a 
distribution, from which we can make inferences about how unusual a 
score is. 

Key terms: 

Z-score normal curve percentile 
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4. Probability, Inferential 
Statistics, and Hypothesis 
Testing 

4a. Probability and Inferential Statistics 

In this chapter, we will focus on connecting concepts of probability
with the logic of inferential statistics. 

“The whole problem 
with the world is that 
fools and fanatics are 
always so certain of 

themselves, and wiser 
people so full of 

doubts.” 
— Bertrand Russel 

(1872-1970) 

These notable quotes represent 
why probability is critical for a 
basic understanding of scientific 
reasoning. 

“Medicine is a science of 
uncertainty and an art 

of probability.” 
— William Osler 

(1849–1919) 

In many ways, the process of 
postsecondary education is all 
about instilling a sense of doubt 
and wonder, and the ability to 
estimate probabilities. As a 
matter of fact, that essentially 
sums up the entire reason why 

you are in this course. So let us tackle probability. 
We will be keeping our coverage of probability to a very simple level, 

because the introductory statistics we will cover rely on only simple 
probability. That said, I encourage you to read further on compound 
and conditional probabilities, because they will certainly make you 
smarter at real-life decision making. We will briefly touch on examples 
of how bad people can be at using probability in real life, and we 
will then address what probability has to do with inferential statistics. 
Finally, I will introduce you to the central limit theorem. This is probably 
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one of the heftiest math concepts in the course, but worry not. Its 
implications are easy to learn, and the concepts behind it can be 
demonstrated empirically in the interactive exercises. 

First, we need to define probability. In a situation where several 
different outcomes are possible, the probability of any specific 
outcome is a fraction or proportion of all possible outcomes. Another 
way of saying that is this. If you wish to answer the question, “What are 
the chances that outcome would have happened?”, you can calculate 
the probability as the ratio of possible successful outcomes to all 
possible outcomes. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=226#h5p-17 

People often use the rolling of dice as examples of simple probability 
problems. 
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“Dice” by matsuyuki is licensed under CC BY-SA 2.0 

If you were to roll one typical die, which has a number on each side 
from 1 to 6, then the simple probability of rolling a 1 would be 1/6. There 
are six possible outcomes, but only 1 of them is the successful outcome, 
that of rolling a 1. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=226#h5p-13 

Another common example used to introduce simple probability is 
cards. In a standard deck of casino cards, there are 52 cards. There are 4 
aces in such a deck of cards (Aces are the “1” card, and there is 1 in each 
suit – hearts, spades, diamonds and clubs.) 
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If you were to ask the question “what is the probability that a card 
drawn at random from a deck of cards will be an ace?”, and you know 
all outcomes are equally likely, the probability would be the ratio of the 
number of times one could draw and ace divided by the number of all 
possible outcomes. In this example, then, the probability would be 4/
52. This ratio can be converted into a decimal: 4 divided by 52 is 0.077, 
or 7.7%. (Remember, to turn a decimal to a percent, you need to move 
the decimal place twice to the right.) 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=226#h5p-16 

Probability seems pretty straightforward, right? But people often 
misunderstand probability in real life. Take the idea of the lucky streak, 
for example. Let’s say someone is rolling dice and they get 4 6’s in a 
row. Lots of people might say that’s a lucky streak and they might go 
as far as to say they should continue, because their luck is so good at 
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the moment! According to the rules of probability, though, the next 
die roll has a 1/6 chance of being a 6, just like all the others. True, the 
probability of a 4-in-a-row streak occurring is fairly slim: 1/6 x 1/6 x 1/6 
x 1/6. But the fact is that this rare event does not predict future events 
(unless it is an unfair die!). Each time you roll a die, the probability of 
that event remains the same. That is what the human brain seems to 
have a really hard time accepting. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=226#h5p-15 

When someone makes a prediction attached to a certain probability 
(e.g. there is only a 1% chance of an earthquake in the next week), 
and then that event occurs in spite of that low probability estimate 
(e.g. there is actually an earthquake the day after the prediction was 
made)… was that person wrong? No, not really, because they allowed 
for the possibility. Had they said there was a 0% chance, they would 
have been wrong. 

Probabilities are often used to express likelihood of outcomes under 
conditions of uncertainty. Like Bertrand Russell said, wise people rarely 
speak in terms of certainties. Because people so often misunderstand 
probability, or find irrational actions so hard to resist despite some 
understanding of probability, decision making in the realm of sciences 
needs to be designed to combat our natural human tendencies. What 
we are discussing now in terms of how to think about and calculate 
probabilities will form a core component of our decision-making 
framework as we move forward in the course. 

Now, let’s take a look at how probability is used in statistics. 
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An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=226#h5p-18 

We saw that percentiles are expressions of area under a normal curve. 
Areas under the curve can be expressed as probability, too. For 
example, if we say the 50th percentile for IQ is 100, that can be 
expressed as: If I chose a person at random, there is a 50% chance that 
they will have an IQ score below 100.” 

 

If we find the 84th percentile for IQ is 115 there is another way to say 
that “If I chose a person at random, there is an 84% chance that they 
will have an IQ score below 115.” 
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An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=226#h5p-19 

Any time you are dealing with area under the normal curve, I 
encourage you to express that percentage in terms of probabilities. 
That will help you think clearly about what that area under the curve 
means once we get into the exercise of making decisions based on that 
information. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 
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https://pressbooks.bccampus.ca/

statspsych/?p=226#h5p-21 

Probabilities, of course, range from 0 to 1 as proportions or fractions, 
and from 0% to 100% when expressed in percentage terms. In 
inferential statistics, we often express in terms of probability the 
likelihood that we would observe a particular score under a given 
normal curve model. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=226#h5p-20 

Although I encourage you to think of probabilities as percentages, the 
convention in statistics is to report to the probability of a score as a 
proportion, or decimal. The symbol used for “probability of score” is p. 
In statistics, the interpretation of “p” is a delicate subject. Generations 
of researchers have been lazy in our understanding of what “p”: tells 
us, and we have tended to over-interpret this statistic. As we begin to 
work with “p”, I will ask you to memorize a mantra that will help you 
report its meaning accurately. For now, just keep in mind that most 
psychologists and psychology students still make mistakes in how they 
express and understand the meaning of “p” values. This will take time 
and effort to fix, but I am confident that your generation will learn to 
do better at a precise and careful understanding of what statistics like 
“p” tell us… and what they do not. 

To give you a sense of what a statement of p < .05 might mean, let us 
think back to our rat weights example. 
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If I were to take a rat from our high-grain food group and place it on 
the distribution of untreated rat weights, and if it placed at Z = .9, we 
could look at the area under the curve from that point and above. That 
would tell us how likely it would be to observe such a heavy rat in the 
general population of nontreated rats — those that eat a normal diet. 

Think of it this way. When we select a rat from our treatment group 
(those that ate the grain-heavy diet), and it is heavier than the average 
for a nontreated rat, there are two possible explanations for that 
observation. One is that the diet made him that way. As a scientist 
whose hypothesis is that a grain-heavy diet will make the rats weigh 
more, I’m actually motivated to interpret the observation that way. I 
want to believe this event is meaningful, because it is consistent with 
my hypothesis! But the other possibility is that, by random chance, we 
picked a rat that was heavy to begin with. There are plenty of rats in the 
distribution of nontreated rats that were at least that heavy. So there 
is always some probability that we just randomly selected a heavier 
rat. In this case, if my treated rat’s weight was less than one standard 
deviation above the mean, we saw in the chapter on normal curves 
that the probability of observing a rat weight that high or higher in 
the nontreated population was about 18%. That is not so unusual. It 
would not be terribly surprising if that outcome were simply the result 
of random chance rather than a result of the diet the rat had been 
eating. 
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If, on the other hand, the rat we measured was 2.5 standard 
deviations above the mean, the tail probability beyond that Z-score 
would be vanishingly small. 

The probability of observing such a rat weight in the nontreated 
population is very low, so it is far less likely that observation can be 
accounted for just by random chance alone. As we accumulate more 
evidence, the probability they could have come at random from the 
nontreated population will weigh into our decision making about 
whether the grain-heavy diet indeed causes rats to become heavier. 
This is the way probabilities are used in the process of hypothesis 
testing, the logic of inferential statistics that we will look at soon. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=226#h5p-11 
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Now that you have seen the relevance of probability to the decision 
making process that comprises inferential statistics, we have one more 
major learning objective: to become familiar with the central limit 
theorem. 

However, before we get to the central limit theorem, we need to 
be clear on the distinction between two concepts:  sample and 
population. In the world of statistics, the population is defined as all 
possible individuals or scores about which we would ideally draw 
conclusions. When we refer to the characteristics, or parameters, that 
describe a population, we will use Greek letters. A sample is defined 
as the individuals or scores about which we are actually drawing 
conclusions. When we refer to the characteristics, or statistics, that 
describe a sample, we will use English letters. 

It is important to understand the difference between a population 
and a sample, and how they relate to one another, in order to 
comprehend the central limit theorem and its usefulness for statistics. 
From a population we can draw multiple samples. The larger sample, 
the more closely our sample will represent the population. 

Think of a Venn diagram. There is a circle that is a population. Inside 
that large circle, you can draw an infinite number of smaller circles, 
each of which represents a sample. 
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The larger that inner circle, the more of the population it contains, 
and thus the more representative it is. 

Let us take a concrete example. A population might be the 
depression screening scores for all current postsecondary students in 
Canada. A sample from that population might be depression 
screening scores for 500 randomly selected postsecondary students 
from several institutions across Canada. That seems a more reasonable 
proportion of the two million students in the population than a sample 
that contains only 5 students. The 500 student sample has a better 
shot at adequately representing the entire population than does the 
5 student sample, right? You can see that intuitively… and once you 
learn the central limit theorem, you will see the mathematical 
demonstration of the importance of sample size for representing the 
population. 

To conduct the inferential statistics we are using in this course, we 
will be using the normal curve model to estimate probabilities 
associated with particular scores. To do that, we need to assume that 
data are normally distributed. However, in real life, our data are almost 
never actually a perfect match for the normal curve. 
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So how can we reasonably make the normality assumption? Here’s 
the thing. The central limit theorem is a mathematical principle that 
assures us that the normality assumption is a reasonable one as long 
as we have a decent sample size. 

According to the theorem, as 
long as we take a decent-sized 
sample, if we took many samples 
(10,000) of large enough size 
(30+) and took the mean each 
time, the distribution of those 
means will approach a normal 
distribution, even if the scores 
from each sample are not 
normally distributed. To see this 
for yourself, take a look at the 
histograms shown on the right. 
The top histogram came from 
taking from a population 10,000
samples of just one score each, 
and plotting them on a 
histogram. See how it has a flat, 
or rectangular shape? No way we 
could call that a shape 
approximating a normal curve. 
Next is a histogram that came 
from taking the means of 10,000 
samples, if each sample included 
4 scores. Looks slightly better, but 
still not very convincing. With a 
sample size of 7, it looks a bit 
better. Once our sample size is 10, 
we at least have something 
pretty close. Mathematically 
speaking, as long as the sample 
size is no smaller than 30, then 
the assumption of normality 
holds. The other way we can 
reasonably make the normality 
assumption is if we know the population itself follows a normal curve. 
In that case, even if individual samples do not have a nice shaped 
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histogram, that is okay, because the normality assumption is one apply 
to the population in question, not to the sample itself. 

Now, you can play around with an online demonstration so you can 
really convince yourself that the central limit theorem works in 
practice. The goal here is to see what sample size is sufficient to 
generate a histogram that closely approximates a normal curve. And to 
trust that even if real-life data look wonky, the normal curve may still be 
a reasonable model for data analysis for purposes of inference. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=226#h5p-36 

4b. Hypothesis Testing 

We are finally ready for your first introduction to a formal decision 
making procedure often used in statistics, known as hypothesis 
testing. 

In this course, we started off with descriptive statistics, so that you 
would become familiar with ways to summarize the important 
characteristics of datasets. Then we explored the concepts 
standardizing scores, and relating those to probability as area under 
the normal curve model. With all those tools, we are now ready to make 
something! 
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“(not my) toolbox” by erix! is licensed under CC BY 2.0 “Dovetail Dresser” by 
Didriks is licensed under CC BY 2.0 

Okay, not furniture, exactly, but decisions. 
We are now into the portion of the course that deals with inferential 

statistics. Just to get you thinking in terms of making decisions on 
the basis of data, let us take a slightly silly example. Suppose I have 
discovered a pill that cures hangovers! 

Well, it greatly lessened 
symptoms of hangover in 10 of 
the 15 people I tested it on. I am 
charging 50 dollars per pill. Will 
you buy it the next time you go 
out for a night of drinking? Or 
recommend it to a friend? … If 
you said yes, I wonder if you are 
thinking very critically? Should 
we think about the cost-benefit 
ratio here on the basis of what 
information you have? If you said 
no, I bet some of the doubts I 
bring up popped to your mind as 
well. If 10 out of 15 people saw 
lessened symptoms, that’s 2/3 of 
people – so some people saw no benefits. Also, what does “greatly 
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lessened symptoms of hangover” mean? Which symptoms? How 
much is greatly? Was the reduction by two or more standard 
deviations from the mean? Or was it less than one standard deviation 
improvement? Given the cost of 50 dollars per pill, I have to say I would 
be skeptical about buying it without seeing some statistics! 

On this list is a preview of the basic concepts to which you will be 
introduced as we go through the rest of this chapter. 

Hypothesis Testing Basic Concepts 

• Hypothesis 
• Null Hypothesis 
• Research Hypothesis (alternative hypothesis) 
• Statistical significance 
• Conventional levels of significance 
• Cutoff sample score (critical value) 
• Directional vs. non-directional hypotheses 
• One-tailed and two-tailed tests 
• Type I and Type II errors 

You can see that there are lots of new concepts to master. In my 
experience, each concept makes the most sense in context, within its 
place in the hypothesis testing workflow. We will start with defining 
our null and research hypotheses, then discuss the levels of statistical 
significance and their conventional usage. Next, we will look at how 
to find the cutoff sample score that will form the critical value for 
our decision criterion. We will look at how that differs for directional 
vs. non-directional hypotheses, which will lend themselves to one- or 
two-tailed tests, respectively. 

The hypothesis testing procedure, or workflow, can be broken down 
into five discrete steps. 
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Steps of Hypothesis Testing 

1. Restate question as a research hypothesis and a 
null hypothesis about populations. 

2. Determine characteristics of the comparison 
distribution. 

3. Determine the cutoff sample score on the 
comparison distribution at which the null 
hypothesis should be rejected. 

4. Determine your sample’s score on the 
comparison distribution. 

5. Decide whether to reject the null hypothesis. 

These steps are something we will be using pretty much the rest of the 
semester, so it is worth memorizing them now. My favourite approach 
to that is to create a mnemonic device. I recommend the following 
key words from which to form your mnemonic device: hypothesis, 
characteristics, cutoff, score, and decide. Not very memorable? Try 
association those with more memorable words that start with the 
same letter or sound. How about “Happy Chickens Cure Sad Days.” 
Or you can put the words into a mnemonic device generator on the 
internet and get something truly bizarre. I just tried one and got 
“Hairless Carsick Chewbacca Slapped Demons”. Another good one: 
“Hamlet Chose Cranky Sushi Drunkenly.” Anyway, you play around with 
it or brainstorm until you hit upon one that works for you. Who knew 
statistics could be this much fun! 

The first step in hypothesis testing is always to formulate 
hypotheses. The first rule that will help you do so correctly, is that 
hypotheses are always about populations. We study samples in order 
to make conclusions about populations, so our predictions should be 
about the populations themselves. First, we define population 1 and 
population 2. Population 1 is always defined as people like the ones in 
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our research study, the ones we are truly interested in. Population 2 
is the comparison population, the status quo to which we are looking 
to compare our research population. Now, remember, when referring 
to populations, we always use Greek letters. So if we formulate our 
hypotheses in symbols, we need to use Greek letters. 

It is a good idea to state our hypotheses both in symbols and in 
words. We need to make them specific and disprovable. If you follow 
my tips, you will have it down with just a little practice. 

We need to state two hypotheses. First, we state the research 
hypothesis, which is sometimes referred to as the alternative 
hypothesis. The research hypothesis (often called the alternative 
hypothesis) is a statement of inequality, or that Something happened! 
This hypothesis makes the prediction that the population from which 
the research sample came is different from the comparison 
population. In other words, there is a really high probability that the 
sample comes from a different distribution than the comparison one. 

The null hypothesis, on the other hand, is a statement of equality, 
or that nothing happened. This hypothesis makes the prediction that 
the population from which sample came is not different from the 
comparison population. We set up the null hypothesis as a so-called 
straw man, that we hope to tear down. Just remember, null means 
nothing – that nothing is different between the populations. 

 
Step two of hypothesis testing is to determine the characteristics 

of the comparison distribution. This is where our descriptive statistics, 
the mean and standard deviation, come in. We need to ensure our 
normal curve model to which we are comparing our research sample 
is mapped out according to the particular characteristics of the 
population of comparison, which is population 2. 

Next it is time to set our decision rule. Step 3 is to determine the 
cutoff sample score, which is derived from two pieces of information. 
The first is the conventional significance level that applies. By 
convention, the probability level that we are willing to accept as a 
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risk that the score from our research sample might occur by random 
chance within the comparison distribution is set to one of three levels: 
10%, 5%, or 1%. The most common choice of significance level is 5%. 
Typically the significance level will be provided to you in the problem 
for your statistics courses, but if it is not, just default to a significance 
level of .05. Sometimes researchers will choose a more conservative 
significance level, like 1%, if they are particularly risk averse. If the 
researcher chooses a 10% significance level, they are likely conducting 
a more exploratory study, perhaps a pilot study, and are not too worried 
about the probability that the score might be fairly common under the 
comparison distribution. 

The second piece of information we need to know in order to find our 
cutoff sample score is which tail we are looking at. Is this a directional 
hypothesis, and thus one-tailed test? Or a non-directional hypothesis, 
and thus a two-tailed test? This depends on the research hypothesis 
from step 1. Look for directional keywords in the problem. If the 
researcher prediction involves words like “greater than” or “larger than”, 
this signals that we should be doing a one-tailed test and that our 
cutoff sample score should be in the top tail of the distribution. If the 
researcher prediction involves words like “lower than” or “smaller than”, 
this signals that we should be doing a one-tailed test and that our 
cutoff sample score should be in the bottom tail of the distribution. 
If the prediction is neutral in directionality, and uses a word like 
“different”, that signals a non-directional hypothesis. In that case, we 
would need to use a two-tailed test, and our cutoff scores would need 
to be indicated on both tails of the distribution. To do that, we take our 
area under the curve, which matches our significance level, and split it 
into both tails. 
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For example, if we have a two-tailed test with a .05 significance level, 
then we would split the 5% area under the curve into the two tails, so 
two and a half percent in each tail. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=226#h5p-26 

We can find the Z-score that forms the border of the tail area we have 
identified based on significance level and directionality by looking it 
up in a table or an online calculator. I always recommend mapping this 
cutoff score onto a drawing of the comparison distribution as shown 
above. This should help you visualize the setup of the hypothesis test 
clearly and accurately. 
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An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=226#h5p-22 

The next step in the hypothesis testing procedure is to determine your 
sample’s score on the comparison distribution. To do this, we calculate 
a test statistic from the sample raw score, mark it on the comparison 
distribution, and determine whether it falls in the shaded tail or not. 
In reality, we would always have a sample with more than one score in 
it. However, for the sake of keeping our test statistic formula a familiar 
one, we will use a sample size of one. We will use our Z-score formula 
to translate the sample’s raw score into a Z-score – in other words, 
we will figure out how many standard deviations above or below the 
comparison distribution’s mean the sample score is. 

    

Finally, it’s time to decide whether to reject the null hypothesis. 
This decision is based on whether our sample’s data point was more 
extreme than the cutoff score, in other words, “did it fall in the shaded 
tail?” If the sample score is more extreme than the cutoff score, then 
we must reject the null hypothesis. Our research hypothesis is 
supported! (Not proven… remember, there is still some probability that 
that score could have occurred randomly within the comparison 
distribution.) But it is sound to say that it appears quite likely that 
the population from which our sample came is different from the 
comparison population. Another way to express this decision is to say 
that the result was statistically significant, which is to say that there 
is less than a 5% chance of this result occurring randomly within the 
comparison distribution (here I just filled in the blank with the 
significance level). 

What if the research sample score did not fall in the shaded tail? In 
the case that the sample score is less extreme than the cutoff score, 
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then our research hypothesis is not supported. We do not reject the 
null hypothesis. It appears that the population from which our sample 
came is not different from the comparison population. Note that we 
do not typically express this result as “accept the null hypothesis” or 
“we have proved the null hypothesis”. From this test, we do not have 
evidence that the null hypothesis is correct, rather we simply did not 
have enough evidence to reject it. Another way to express this decision 
is to say that the result was not statistically significant, which is to say 
that there is more than a 5% chance of this result occurring randomly 
within the comparison distribution (here I just used the most common 
significance level). 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=226#h5p-23 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=226#h5p-24 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 
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https://pressbooks.bccampus.ca/

statspsych/?p=226#h5p-25 

So we have described the hypothesis testing process from beginning 
to end. The whole process of null hypothesis testing can feel like pretty 
tortured logic at first. So let us zoom out, and look at the whole process 
another way. Essentially what we are seeking to do in such a 
hypothesis test is to compare two populations. We want to find out if 
the populations are distinct enough to confidently state that there is a 
difference between population 1 and population 2. In our example, we 
wanted to know if the population of people using a new medication, 
population 1, sleep longer than the population of people who are not 
using that new medication, population 2. We ended up finding that 
the research evidence to hand suggests population 1’s distribution 
is distinct enough from population 2 that we could reject the null 
hypothesis of similarity. 

In other words, we were able to conclude that the difference between 
the centres of the two distributions was statistically significant. 

If, on the other hand, the distributions were a bit less distinct, we 
would not have been able to make that claim of a significant 
difference. 
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We would not have rejected the null hypothesis if evidence 
indicated the populations were too similar. 

Just how different do the two distributions need to be? That criterion 
is set by the cutoff score, which depends on the significance level, and 
whether it is a one-tailed or two-tailed hypothesis test. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=226#h5p-29 

That was a lot of new concepts to take on! As a reward, assuming you 
enjoy memes, there are a plethora of statistics memes, some of which 
you may find funny now that you have made it into inferential statistics 
territory. Welcome to the exclusive club of people who have this rather 
peculiar sense of humour. Enjoy! 
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Chapter Summary 

In this chapter we examined probability and how it can be used to 
make inferences about data in the framework of hypothesis testing. 
We now have a sense of how two populations can be compared and 
the difference between their means evaluated for statistical 
significance. 

Key Terms: 

probability research hypothesis one-tailed test 

central limit 
theorem null hypothesis non-directional hypothesis 

population cutoff sample score statistical significance 

sample significance level reject the null hypothesis 

hypothesis testing directional 
hypothesis 

do not reject the null 
hypothesis 
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5. Single Sample Z-test 
and t-test 

5a. Single Sample Z-test 

Now that you have mastered the basic process of hypothesis testing, 
you are ready for this: your first real statistical test. First, we will examine 
the types of error that can arise in the context of hypothesis testing. 

Which type of error is more serious for a professional?  1. I decide that 
a new mode of transportation, the driverless car, is much safer than 
current modes of transportation, and recommend to the state that 
they force conversion to that new mode. But then it turns out after a 
year that the rates of accidents actually increased. 

“Google Self-Driving Car” by smoothgroover22 is licensed under CC BY-SA 2.0 

Or… 2. I decide that a new mode of transportation is safer than current 
modes, but I do not have enough confidence in that margin of safety 
and therefore do not recommend a sweeping change. After a year it 
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becomes clear that driverless cars are indeed much safer, and a switch 
would have been beneficial. 

If you selected the first error as the more serious one, then you chose 
a Type I error. This is the type of error that is considered more serious 
in the realm of statistical decision making, as well. 

In the process of hypothesis testing, the decision you make is all 
about probabilities. It is an educated guess. However, there is always 
room for error. In fact, there are two types of errors you can make in 
hypothesis testing. Their imaginative labels are Type I and Type II error. 
As we saw, Type I error is considered more serious, so the Significance 
level is typically set with an eye toward the probability of Type I error 
that is deemed acceptable in that study. α = .05 indicates that the 
researcher accepts a 5% chance of a Type I error. In the decision matrix 
shown here, you can see how the hypothesis test can play out in four 
different ways. 

Note that the real situation, whether the null hypothesis is true or the 
research hypothesis is true, is unknown. We can never know which is 
true – that is why they are hypotheses, after all! 

If, hypothetically, the null were true, and if we made the decision to 
reject the null hypothesis, then we would land in this corner of the 
decision matrix: Type I error. This is what happens if we go out on a 
limb, reject the null hypothesis, but we are wrong. As researchers we 
live in fear of making a Type I error. No one wants to make a big thing 
about their research findings and promote change to a new, different, 
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risky, expensive thing, and then be wrong about it. On the other hand, 
if the null were true and we did not reject it, then we would be correct. 

Hypothetically, let us suppose the research hypothesis were true. If 
we make the decision to reject the null hypothesis, then we are correct. 
However, if we decide not to reject the null hypothesis, we would be 
making a Type II error. This is when we are too conservative, decide 
there is not enough evidence that the research (alternative) hypothesis 
could be correct, but we are wrong. Type II error is also not great, so we 
do try to minimize that probability by doing something called a power 
analysis. However, researchers generally would rather make a Type II 
than a Type I error. Keeping the status quo may not do much for to 
make your scientific career exciting, but objectively speaking it is not 
such a scary proposition. 

Now, a key thing to remember when you refer back to this decision 
matrix to determine for which error you are at risk, you never know 
which column you are in, because the real situation is always unknown. 
What determines the possible type of error is the thing you have 
control over: the decision. So you can switch the row you will place 
yourself in, depending on the observed data, and thus remove yourself 
from unreasonable risk of Type I error. (The probability of making a 
Type I error is symbolized as α, so significance levels are often referred 
to as α .) 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=318#h5p-31 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 
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here: 

https://pressbooks.bccampus.ca/

statspsych/?p=318#h5p-32 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=318#h5p-33 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=318#h5p-34 

Okay, we are about to make a connection that is intellectually a bit 
challenging. So prepare yourself: we will be drawing connections 
between the central limit theorem, sampling distributions, and the 
appropriate type of comparison distribution we should use for a 
hypothesis test where the sample is made up of more than one data 
point. 

84  |  Single Sample Z-test and t-test

https://pressbooks.bccampus.ca/statspsych/?p=318#h5p-32
https://pressbooks.bccampus.ca/statspsych/?p=318#h5p-32
https://pressbooks.bccampus.ca/statspsych/?p=318#h5p-33
https://pressbooks.bccampus.ca/statspsych/?p=318#h5p-33
https://pressbooks.bccampus.ca/statspsych/?p=318#h5p-34
https://pressbooks.bccampus.ca/statspsych/?p=318#h5p-34


An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=318#h5p-37 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=318#h5p-38 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=318#h5p-39 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 
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https://pressbooks.bccampus.ca/

statspsych/?p=318#h5p-40 

In the past, we have been using the normal distribution made of up 
individual scores as our comparison distribution. In the illustration 
below, if distribution (A) is the distribution of individual scores, (B) is the 
histogram of a sample of scores drawn from (A). (C) is the distribution 
of means from many samples such as the one portrayed in (B). 

The shape of a distribution of means is narrower than the distribution 
of individual scores from which it came. The variance is smaller, 
because it is divided by N, the sample size: 

    

The standard deviation is smaller, because it is divided by the square 
root of N: 

    

The means are the same for both types of distributions: 
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Up until now we worked with individuals as our samples, so we could 
use our old Z-score formula and compare the sample score to a 
comparison distribution of individuals. We did this, so that we could 
avoid adding new symbols to our formulas, and concentrate on the 
hypothesis testing logic. Now, we want the more realistic situation, so 
we will use the Z-test to compare a sample mean to a comparison 
distribution of sample means. To rephrase, when we had an individual 
score, we used the distribution of individuals. When we have a sample 
mean, we need to use the distribution of sample means. The new Z-
test statistic formula is shown here: 

    

In this formula, M is the sample mean, μM is the comparison 
distribution mean, and σM is the comparison distribution standard 
deviation. 

We will be using the terminology “distribution of means,” because 
it’s a name that reminds us of how it differs from the distribution of 
individuals. A term in statistics that means the same thing is “sampling 
distribution.” Why do we need this distribution of means? In reality, 
we do not compare an individual sample score against a population 
distribution of individuals. For a real statistical test, we collect a sample 
and calculate a mean, and compare that sample mean against a 
comparison  distribution of means. We will ground that in an example: 
If I want to know if my introductory psychology class is collectively 
performing at the expected level on a test, I do not take their average 
performance and compare that mean against a set of individual scores, 
I want to compare it to a set of other class averages. How does this 
impact our hypothesis test? It matters for Step 2, determining the 
characteristics of the comparison distribution. Well, it does not change 
anything about the comparison mean, because the mean of a 
distribution of means is equal to the mean of the distribution of 
individuals. But the standard deviation now needs to be converted into 
the standard deviation of the distribution of means, which is often 
called the standard error of the mean. As these equations above show, 
the variance of a distribution of means is equal to the variance of 
the distribution of individuals divided by the number of individuals in 
the sample. And thus, if we take the square root of the variance, the 
standard deviation of a distribution of means is equal to the standard 
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deviation of the distribution of individuals divided by the square root of 
the number of individuals in the sample. 

We will now examine the way the steps of the hypothesis test 
procedure play out when using the single-sample Z-test. First, we need 
to formulate the research and null hypotheses. Remember, in such a 
hypothesis test, we are trying to compare two populations. Population 
1, the research population, is the one from which we have drawn a 
research sample. 

We do not have access to the actual research population mean, 
hence the need to calculate a sample mean. That sample mean is our 
best proxy for the population 1 mean, which we need to compare to the 
mean of population 2. The nature of the comparison, in particular its 
directionality, is determined by the researcher’s prediction. 

In step 2, we need to determine the characteristics of the comparison 
distribution. This means that we need the mean and standard 
deviation of the comparison distribution, which represents Population 
2. This is where we need to introduce the new distribution of means. 
The mean is the same as provided, but the standard deviation needs to 
be converted. 

If the variance is provided, you can start with this formula to convert 
to the distribution of means, then take the square root to get the 
standard deviation: 

88  |  Single Sample Z-test and t-test



    

If the standard deviation is provided, it is easiest to use this formula: 

    

Step 3 is to determine the cutoff sample score, which is derived from 
two pieces of information. First, we need to know the conventional 
significance level that applies. Second, we need to know which tail 
we are looking at. The bottom, the top, or both? This depends on the 
research hypothesis, so we should always look for directional keywords 
in problem. If the research hypothesis is directional, we should use a 
one-tailed test. If the research hypothesis is non-directional, we should 
use a two-tailed test. 

Once we have those two pieces of information, we can find the Z-
score that forms the border of the shaded tail by looking it up in a table. 
We can then map the cutoff score onto a drawing of the comparison 
distribution. 

Example of comparison distribution sketch showing Z-score cutoff and shaded 
tail representing decision rule 

In step 4, we need to calculate the Z-test score from the sample mean: 
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In this formula, M represent the research sample mean, μM 

represents the comparison population mean, and σM represents the 
standard deviation of the comparison population. Remember, we are 
using the distribution of means as our comparison distribution. Once 
we have calculated the Z-test score, we will mark where it falls on the 
comparison distribution, and determine whether it falls in the shaded 
tail or not. 

Example of mapping sample mean (M) onto comparison distribution based 
on Z-test calculation 

Finally, it is time to decide whether or not to reject the null hypothesis. 
If the sample mean falls within the shaded tail, we reject the null 
hypothesis. If it does not, we do not reject the null hypothesis. In other 
words if the sample mean is extreme enough relative to the 
comparison distribution of means, then we reject the null hypothesis. 

Once we make our decision, we will need to take a close look at 
what kind of error we might have made as a result of our decision. And 
remember, from our decision matrix, all we have control over whether 
we’re on the top row or the bottom row. 
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We do not know the real situation. if we do make the conclusion that 
we should reject the null hypothesis, then we are at some risk of a Type 
I error, but as long as we don’t exceed our significance level, we accept 
that risk. If we do not reject the null hypothesis we could be at a risk for 
Type II error. 

Typically, after conducting a hypothesis test, researchers want to 
obtain the p-value, or the probability of the observed sample score or 
more extreme occurring just by random chance under the comparison 
distribution. The p-value associated with the sample mean has to be 
less than the significance level in order to reject the null hypothesis. A 
common way to find the p-value is to use an online calculator. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=318#h5p-41 

One last exercise I would like you to try is to pretend you are publishing 
these results in a scientific journal. So you might write this sentence in 
your results section based on your findings: 
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“We found that patients 
with insomnia who 

received a new drug 
slept significantly more 
than patients who did 

not receive the new 
drug (p < .05).” 

Notice the term “significantly” 
is used in this example, because 
the null hypothesis was rejected 
at the end of the hypothesis test. 
Also, the p-value is in brackets at 
the end of this sentence, before 
the punctuation, just like you 
would use a citation to back up a 
factual claim… only here, it is a 

claim of statistical significance. 

5b. Single-sample T-test 

Now it is time to introduce your second real statistical test: the single-
sample t-test. This test is much like the Z-test, but more commonly 
used in real life. 

Before we get started on the t-test, I am curious… would you have 
greater confidence in a statistic that comes from a small sample? 

Or in one that comes from an entire population?… If you said that you 
would have greater confidence in a number that comes from an entire 
population, then the field of statistics would agree with you. 

Sometimes, though, we do not have access to all the data from 
population that we need, and we have to take a best guess based on a 
sample. In that case, we probably want to be more conservative in our 
decision making. That’s what a t-test is for. 
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Often, even if we have information regarding the comparison 
population mean, we do not have access to the population standard 
deviation (σ). In this situation, what we must do is collect a sample 
reflecting population 1, calculate its mean and standard deviation, and 
compare that sample mean against a comparison distribution of 
means using an estimate (SM) of the population (σM). Note the change 
in symbol (from σ to S) to reflect the fact that we are basing our 
estimate on sample data, rather than using a known population 
parameter. 

    

You may have noticed that this new formula for calculating variance 
in a sample has on the bottom “N minus 1” rather than just “N” as 
our old calculation formula had. Why “N minus 1”? This is a correction, 
based on sample size, that derives from the concept of degrees of 
freedom. We will return to that concept later. For now, let us consider 
“N minus 1” as a correction based on sample size that has the following 
deliberate and intentional effects on our calculation. If we have a small 
sample size, in which we should not have a great deal of confidence, 
subtracting 1 really affects the calculation. For example, if we had an N 
of 2, subtracting off 1 from that sample size will mean that we divide 
by 1 instead of 2. That has a drastic impact on the variance calculation, 
in effect doubling our estimated variance. Of course in the context of 
hypothesis testing, more variance is bad – in that we are less likely to be 
able to make conclusions based on the data. 

On the other hand, with a larger sample size, subtracting 1 will have 
little impact on our calculation… dividing by 100 or dividing by 99 will 
have nearly identical results. Think of it this way – if we have a small 
sample size, we are punishing ourselves, like a handicap in a golf game. 
With a larger sample size, we reward ourselves, boosting our chance of 
a conclusion statistical decision. 

Subtracting off 1 is like a flat tax – a flat income tax of 10% for all 
Canadians would be harder on those with a low income, who would 
have even less money to meet basic survival needs, whereas the 
wealthiest Canadians would still have plenty of money for their needs. 
That is, of course, why democratic governments typically use 
progressive tax rates, because those who have more can afford to pay 
a greater proportion of their income and still have enough to cover 
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their basic costs of living. With hypothesis testing, though, the flat tax 
is desirable, because it is our intent to penalize the smallest sample 
sizes the most, given the fact that we can have little confidence in the 
estimates we derive from them. 

The t-test is designed around the concept of degrees of freedom, 
which is defined as the number of scores in a given calculation that are 
free to vary. This is an abstract definition that is difficult to grasp, so it is 
helpful to consider a concrete example. 

Degrees of Freedom Practical Example 

First, consider the game of baseball.  We 
understand the field-of-play consists of 9 
positions.  The coach is “free” to assign any of 
the 9 players to any of the 9 positions. Once the 
8th player is assigned to the 8th position, the 
9th player-position is pre-determined, so to 
speak.  In other words, the coach is not “free” to 
pick either the last position or the last player. 

Source: https://www.isixsigma.com/ask-dr-mikel-
harry/ask-tools-techniques/can-you-explain-degrees-
freedom-and-provide-example/ 

The same logic holds when doing a calculation involving all of a 
sample’s scores. Up until the last score inputted into the formula, the 
scores are free to vary; but the last score is pre-determined. Thus 
degrees of freedom in a t-test is N-1, or 1 less than the total number of 
scores in the dataset. 

In a t-test we will be using the t-distributions, rather than a normal 
distribution, as our comparison distributions. The t-distributions are a 
series of distributions, based on the normal distribution, that adjust 
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their shape according to degrees of freedom (which in turn is based 
on sample size). 

As mentioned previously, when we do not have the population 
standard deviation we must estimate it from our sample. This involves 
a greater risk of error. The risk is related to how large our sample is. So, 
the fewer the scores in our sample, the fewer the degrees of freedom, 
and the more conservative the distribution we must use – one that is 
wider and shorter (more area in the tails). 

Above you can see examples of how the shape of the t-distributions 
changes with reduced degrees of freedom. With degrees of freedom 
of 100, the shape of the distribution is very close to the normal curve. If 
we have very few degrees of freedom, like 1, then our shading rejection 
regions, or goal posts, will move farther out into the tails of the 
distribution, because there is more area under the tails of the curve. 
In effect, then, with fewer degrees of freedom, we will find it more 
difficult to reject the null hypothesis. This is, of course, by design, in 
order to penalize the hypothesis test if it is based on a very small 
sample size. 

Single Sample Z-test and t-test  |  95



Inspiration for this creative illustration came from one of my former students, 
Andi. Blame for artwork quality is entirely on me. 

Above is a less technical visual to see the difference in distribution 
shape when the sample size is small, versus when the sample size is 
large. As you can see, when you have a large sample size, the goal posts 
are very close and easy to reach, but when you have a small sample size, 
they will really be far away, and this will make it difficult to reject our 
null hypothesis. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=318#h5p-43 

Now we are ready to take a look at how a hypothesis test works based 
on a single-sample t-test. As before, the structure of the test is familiar 
– we are comparing the means of Population 1 and Population 2. 
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As usual, we do not have access to the mean of population 1, just 
the mean of a sample from that population. Furthermore, unlike in 
a Z-test, we do not have access to one piece of information about 
population 2: the population standard deviation. Therefore, we will 
form hypotheses the same way, but when we do steps 2 and 4, we will 
need to use the sample to generate an estimate of the comparison 
population standard deviation. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=318#h5p-44 

In step 2, we identify the known comparison population’s mean. 
However, we will need to use the sample to generate an estimate of the 
comparison population standard deviation. We calculate the sample 
variance, using the formula with the “N-1” correction, 
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and then convert the variance to the distribution of means by 
dividing by N, 

    

and finally we square root to get from variance to standard deviation. 

    

SM is what we will use to describe our comparison distribution. 
In step 3, as before we need to find our cutoff  sample score based 

on the significance level and directionality of the test. Now, however, 
we also need to use a third piece of information: degrees of freedom. 
This is found by subtracting one from the sample size. Then we can 
look in the t-tables, identifying the row of the table with the matching 
degrees of freedom, then looking in the appropriate column based on 
directionality and significance level. Once we identify the t-score that 
forms the border of the shaded tail, we can map this onto a drawing 
of the comparison distribution. For visualization purposes, it is fine to 
sketch the distribution the same way you did the normal distribution. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=318#h5p-42 

Now for step 4. The t-test formula is just like the Z-test one on top – 
sample mean minus comparison population mean. Then you divide by 
SM, the estimate of standard deviation that you calculated back in step 
2. 
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If your calculated t-test score fell into the shaded tail beyond your 
cutoff score, then you may reject the null hypothesis. In other words, if 
the sample mean was extreme enough on the comparison distribution 
of means, reject the null. 

After conducting a hypothesis test, it is helpful to also obtain a report 
the precise p-value associated with the result. The p-value offers the 
precise probability of obtaining the t-test result (or more extreme) 
just by random chance under the comparison distribution. It is found 
by calculating the area under the comparison distribution in the tail 
beyond the observed t-test score calculated in step 4 (or in both tails, if 
it was a two-tailed test). 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 
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https://pressbooks.bccampus.ca/

statspsych/?p=318#h5p-45 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=318#h5p-46 

Chapter Summary 

In this chapter we learned about the two types of logical errors we 
can make in hypothesis testing: Type I and Type II errors. We saw 
that Type I error is considered more serious in statistics, because it 
represents going out on limb, making a strong conclusion, when that 
is in fact the wrong decision. For that reason, Type I error risk is strictly 
controlled in inferential statistics by setting a particular significance 
level (α). We also introduced our first real inferential statistical tests: 
the single-sample Z-test and the single-sample t-test. In each of these 
tests, we are comparing the means of two populations, using a sample 
to estimate the mean of the research population. A Z-test is used when 
we know the standard deviation of the comparison population (σ); a t-
test is used when we do not have that information and must estimate 
the standard deviation from the sample (S). 

Key terms: 
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Type I error distribution of means p-value 

Type II error Z-test t-test 

α standard error of the 
mean degrees of freedom 
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6. Dependent t-test 

6. Dependent t-test 

This chapter will introduce you to the dependent means t-test, which 
is most often used for experiments with a repeated measures design. 
Repeated measures designs are very common experimental 
approaches, just as posts on social media often compare before and 
after images to show off the effects of a diet or a renovation. 

Actual footage of your instructor upon waking in the morning, demonstrating 
the qualitative effects of coffee 

Repeated measures experimental designs are also known as within-
subjects designs. Such an experiment involves obtaining two separate 
scores for each individual in the sample. Instead of having an 
experimental group and control group, there is just one sample, from 
which the same participants are used in all treatment conditions. 
Typically this kind of study uses a pre-test post-test design. 

As an example, perhaps I want to see if memory span is affected by 
the colour in which items are presented. I first test people on black 
and white items, then test them with red items. I will compare their 
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performance on the second test with their performance on the first 
test. 

Another less-common type of experimental design that would be 
analyzed using a dependent t-test is the matched pairs design. In this 
type of approach, two separate samples are used, but each individual 
in a sample is matched one-to-one with an individual in the other 
sample. This is most commonly used when the researcher is intent 
on controlling for a possible confounding variable and thus matches 
participants based on that variable – for example, age or genetic 
relatedness. Because of this matching, the two samples are not 
independent, but rather they are related in some way. Hence the name 
“dependent t-test”. 

This may not be a familiar idea, so we will consider an example of a 
matched pairs design. Perhaps I want to test differences in memory 
capacity in an experimental group and compare to a control group, but 
I know age can greatly impact this type of memory. So, I make sure 
for each person aged 20 in one group there is another person with the 
same age in the other group, and so on, for each age. That way, I am 
getting the difference in memory scores for each matched pair, and 
thus age is explicitly controlled for as a possible third variable. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 
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https://pressbooks.bccampus.ca/

statspsych/?p=379#h5p-47 

As before, the first step of the hypothesis test is to formulate 
hypotheses. The goal is to compare the means of two populations. This 
time, though, we not only have no standard deviation from population 
2, we also have no mean. For both populations, we will rely on sample-
based estimates for the mean and the standard deviation. In a 
repeated measures experiment, we would have one set of scores 
measured at baseline, the before scores. These scores will represent 
population 2, the comparison population. The scores that are 
measured after the experimental manipulation will represent the 
research population, population 1. 

To conduct the comparison, we will actually take the difference score 
for each individual in the study, by subtracting the before score from 
the after score, and then calculate the mean and standard deviation 
of the difference scores. As an example, I made up some scores on 
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a mood measure for people after eating chocolate and before eating 
chocolate, and calculated after-before difference scores for each 
individual (shown above). Negative difference scores indicate mood 
scores went down after eating chocolate; positive difference scores 
indicate mood scores went up after eating chocolate. (Worry not, this 
is a completely invented dataset — it seems unlikely to me that eating 
chocolate would actually worsen most people’s mood!) 

In step 2, we need to approach the mean and standard deviation 
of the comparison distribution a little differently than before. The 
comparison distribution will now be the distribution of means for the 
population of difference scores, which are defined as after-minus-
before scores. Under the comparison population, the mean of 
difference scores should be 0: under the null hypothesis, there is no no 
difference between those who ate chocolate and those who did not, for 
example, so there would be no change before to after. Thus we set the 
mean of the comparison population to 0. 

Now for the standard deviation: we will need to use the sample 
of difference scores to generate an estimate of the comparison 
population standard deviation. Perhaps you are wondering why we 
calculate difference scores as after-minus-before? This is important for 
the way we interpret the difference scores, and to fit the directionality 
of our hypothesis test. In our example, if people’s mood scores worsen, 
this should result in a negative difference score, moving the mean 
toward the low end of the distribution, right? And if the mood improves 
that should result in a positive score. That is why we have to set up the 
difference scores as after-minus-before. 
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If we look at these example data, right away by looking at the 
difference scores, we can tell the mood went down for almost every 
one, except for one person who did not change. 

The formulas to calculate a sample-based estimate of the 
comparison distribution standard deviation are exactly the same as for 
a single sample t-test: 

    

    

    

In fact, that is why I wanted to introduce you to the dependent t-test 
before we move on to the independent t-test, which has a different set 
of formulas. 

Before we get to our example, I would like to note that once we 
calculate the difference scores for each individual in the sample, we will 
be using those difference scores to calculate the mean and standard 
deviation. We no longer need the before or after scores for anything. I 
recommend crossing them out, so you are not confused about which 
numbers to include as X in the formulas. 
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In step 3, we need to determine the cutoff sample score. As with 
the single sample t-test, this will be derived from three pieces of 
information: the significance level, the directionality, and degrees of 
freedom. We can use t-tables to find the cutoff score and map it onto 
our drawing of the comparison distribution. 

Step 4 is the moment of truth – does the sample mean fall far 
enough from the comparison population mean to reject the null 
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hypothesis? We can use the same t-test formula as for the single-
sample t-test. 

    

Remember, the comparison population mean is now set to zero, so 
we can use that in place of μ. 

    

Once we have calculated the t-test result, we can mark it on 
comparison distribution to determine whether it falls in shaded tail or 
not. 

Finally, it’s decision time. Did the sample mean of difference scores 
fall within a shaded tail on the comparison distribution? Is it extreme 
enough to reject the null? 
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An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=379#h5p-48 

As always, we can also use a calculator find the p-value, the precise 
probability that this t-test score (or more extreme) would have 
occurred by random chance alone under the comparison distribution. 

If you were writing these results for publication, how would you 
translate the hypothesis test into a concise sentence? Does the 
chocolate make people’s mood change? In this example, we found that 
mood scores were not significantly different after people consumed 
chocolate. 

“We found that mood 
scores were not 

significantly different 
after people consumed 

chocolate (p = 0.16).” 

We can support that statement 
with the information that the 
probability of the sample mean 
occurring on the comparison 
distribution was more than 5%. As 
a result we have an inconclusive 
hypothesis test. 

As we continue to build our decision tree, you can use it to guide your 
choice of a statistical test appropriate for a particular research design. 
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If you have two samples, and they are in some way related, like in 
repeated measures or matched pairs designs, that’s when we should 
use the dependent means t-test. In the next chapter we will add the 
independent means t-test to our toolbox. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=379#h5p-49 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=379#h5p-50 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=379#h5p-51 
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An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=379#h5p-52 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=379#h5p-53 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=379#h5p-54 

Chapter Summary 

In this chapter we introduced the use of the dependent means t-test 
in hypothesis tests for research designs such as repeated measures 
and matched pairs. 

Key terms: 
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dependent means 
t-test repeated measures matched pairs 
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7. Independent Means 
t-test 

7. Independent Means t-test 

In this chapter, I will introduce to you one last t-test variation – the 
independent means t-test. This one is intended for the classic 
experimental design, in which two independent samples are 
compared. 
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In a classic experimental design, we are comparing two samples. 
The independent means t-test is typically used to compare the data 
from an experimental group to those from a control group. The 
experimental group is the one that receives the manipulation, or the 
independent variable, and the control group is the one that receives 
either no manipulation, or an alternative one that represents the status 
quo – like a placebo. What makes this different from the repeated 
measures type of design, is that the scores from the two groups are 
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independent. They are obtained from different participants who are 
randomly assigned to one group or the other. 

For example, if I want to see if memory span is affected by the colour 
in which items are presented. I test one group of people with black and 
white items, and test another group of people with red items. 

I will compare one group average with the other group average. 
There is no relationship or dependency of one group of scores with 
the other group, so it will be appropriate to analyze the data with an 
independent t-test. 

With all statistical tests, we know each sample comes from a 
population. The question is: are they different populations? To answer 
this question using statistical tests, we need to make some 
assumptions about the data. We have been making the normal curve 
assumption all along, and we saw how the central limit theorem can 
be used to justify this assumption when our samples are large enough. 
With this new kind of t-test, we are also going to make the 
homoscedasticity assumption: that the two populations we are 
comparing have the same variance. In an introductory course like this, 
we will not go into the technicalities of verifying this assumption, but it 
is possible to do so before we conduct the analysis. 
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An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=410#h5p-60 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=410#h5p-58 

In the independent means t-test, just like with the dependent t-test, 
we have no direct information about population 1 or 2. We calculate 
sample means from our research and comparison samples. To find the 
standard deviation for the comparison population, we will take sample 
based estimates using all the scores we have to hand, by pooling 
together the variance of each sample. This makes sense if we are 
assuming the two populations have equal variance. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=410#h5p-59 

In step 2, we will once again set the comparison population mean 
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to zero, because the comparison reflects the distribution of means 
under the null hypothesis, in which there is no difference between the 
populations. 

The standard deviation will be calculated through a workflow 
previous students have told me looks like an hourglass shape. 
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Starting from the top, we first calculate the variance of sample 1 and 
sample 2 separately. 

    

We then pool the two variances together using a weighted average 
formula. This formula just allows us to count one variance more than 
the other if the sample size is bigger. With two independent samples, 
it is not uncommon to have an unequal N, or number of scores, in each 
group. 

    

 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=410#h5p-63 

Once we have the pooled variance calculated, we use that to convert 
to the variance of the distribution of the difference between means, 
which is the comparison distribution for this test. 
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An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=410#h5p-64 

We then square root to get the estimated standard deviation for the 
comparison distribution. 

    

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=410#h5p-65 

Now for step 3: the one new thing here is the degrees of freedom we 
will use to look up the cutoff sample score in the t tables. Because we 
have two samples, we will use the pooled, or total, degrees of freedom 
for lookup. That is the main advantage of the independent means t-
test. Because we have two samples of scores, we get the benefit of 
more degrees of freedom. 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 
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https://pressbooks.bccampus.ca/

statspsych/?p=410#h5p-61 

For step 4, we have a new t-test formula. We subtract the sample mean 
of the control group from the sample mean of the experimental group, 
so that our directionality makes sense when we mark the test score 
on the comparison distribution and determine whether it falls in the 
shaded tail. 

    

 

An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=410#h5p-66 

One thing never changes: In step 5, if the t-test score falls in the shaded 
tail we reject the null hypothesis. 
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An interactive H5P element has been excluded 

from this version of the text. You can view it online 

here: 

https://pressbooks.bccampus.ca/

statspsych/?p=410#h5p-62 

As we go through the course, we are repeating lots of concepts and 
procedure enough, that I start to go quickly through those elements. 
If some aspect of the hypothesis test is still not making sense, that’s 
totally okay, and it’s completely normal. But you need to come back to 
those bits and grapple with them, perhaps by heading back to earlier 
chapters where those concepts or procedures were first introduced. 
Do not give up on a concept if it is still fuzzy. By now things should 
be starting to gel. Are there any aspects that you are still doing by 
rote rather than through conceptual understanding? I recommend 
that you persist. It will make sense if you get enough examples and 
explanations. For most of us it takes quite a bit of repetition and a few 
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different approaches. Check out another textbook for an alternative 
look at the same piece. 

If we were writing up the hypothesis test outcome from the example 
illustrated above, we might interpret it this way in the results section: 

“We found that people 
who consumed 
chocolate had 

significantly lower 
mood scores than the 

control group (p = 
0.0145).” 

The p-value represents the 
probability of the test score, or 
any score that is more extreme 
than that, occurring under the 
comparison distribution. To get 
that, we find the area under the 
curve beyond the test score, 
either in one tail or in both tails, 
depending on the directionality 

of the test. 
We have now completed the decision tree for this section of the 

course. If we have two samples to compare, and there is no relationship 
between the individuals in the two samples, we use the independent 
t-test. 
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An interactive H5P element has 
been excluded from this version of 
the text. You can view it online 

here: 
https://pressbooks.bccampus.ca/
statspsych/?p=410#h5p-57 

Chapter Summary 

In this chapter, we introduced the use of the independent means t-
test in the context of hypothesis tests of the difference of two sample 
means. This test is appropriate for research designs in which two 
samples are formed through random assignment to groups, for 
example and experimental group and a control group. Scores from 
both samples are used to estimate the comparison population 
distribution, and to contribute to degrees of freedom. 

Key terms: 

independent means 
t-test 

normal curve 
assumption 

homoscedasticity 
assumption 
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8. Analysis of Variance, 
Planned Contrasts and 
Posthoc Tests 

8a. Analysis of Variance 

In this chapter we graduate from teenage statistics to adult statistics! 
Analysis of Variance is a technique that is very widely used in the 
analysis of data in psychology and many other disciplines. It is a system 
of analysis that is very flexible, and it is based on a statistical concept 
called the general linear model. Once you learn how to use it, you can 
adapt it to nearly any situation. 

Our tasks for this lesson include grasping the concept of partitioning 
variance into different buckets, like treatment effects vs. error, or 
between-groups vs. within-groups variance. Next, we will have a look at 
why Analysis of Variance is needed to analyze data from experimental 
designs with more than 2 groups. In particular we will examine the 
dangers of inflating the risk of Type I error, or alpha. And finally, we 
will demystify the analysis of variance system by conducting a one-
way ANOVA. Just to give a little preview, in the following lessons, we 
will learn how to follow up on ANOVA with planned contrasts and post 
hoc tests, and then we will progress to a two-way ANOVA with factorial 
analysis. 

The most important concept to grasp in order to intuitively 
understand what analysis of variance does, is the partitioning of 
variance. Variance should be a familiar concept by now. Variance is a 
statistic that summarizes the extent to which the individual scores in a 
dataset are spread out from the mean. It is calculated by the following 
steps: 

124  |  Analysis of Variance, Planned
Contrasts and Posthoc Tests



Steps to calculate variance (sample-based estimate for a 
population) 

1. Take the distance (“deviation”) of each score 
from the mean. 

2. Next, Square each distance to get rid of the sign 
(because some deviations will be negative). 

3. Add up all the resulting “squared deviations”. 
This number is known as “sum of squares” (SS). 

4. Divide the SS by the number of scores minus 1. 

This gives us an estimated variance based on a sample, that is 
appropriate to use in statistical analysis, in which we want to use the 
differences between sample means to make inferences about the 
differences between population means. 

The way the partitioning of variance works is this. Differences 
among scores exist for all sorts of reasons. One of those reasons is 
the one we are actually interested in. Systematic difference cause by 
treatments or associated with known characteristics of interest are 
the differences we are hoping to see in the data. The difference in 
amount of sleep that can be attributed to the effects of a new drug. 
The difference in mood specifically caused by chocolate. These are 
difference between groups, or between samples, that can be explained 
by the variable of interest. 
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Sources of variability in data from experimental (or 
quasi-experimental) research designs 

However, there are also difference between scores that are not 
explained by the variable of interest. These are random, or 
unsystematic differences. The individual differences among scores 
within an experimental or control condition count in this category. 
Error in experimental design or in our measurements also go in this 
bin. When we want to make an objective decision about data, we 
need to separate out the systematic, explained differences, which we 
can label “good variance”, from the random, unexplained differences, 
which we shall label “bad variance”. Note that good and bad in this 
context just means it counts toward (“good”) or against (“bad”) 
statistical significance. 

Before we get to numeric examples of partitioning variance, maybe 
a visual example will help. At left we have a whole sample of dots of 
various colours. 
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What if we wanted to sort the 
data by hue, to achieve greater 
consistency in colour within each 
group. We can apply the factor of 
hue to the dots, using three 
levels: green, blue and red. There 
are still variations of hue within 
each grouping, but some of the 
systematic variability has been 
separated out by grouping into 
these three levels. Thus we have 
accounted for (or explained) 
some proportion of the variance. 
The more variance we can 
explain, the more confident we 
can be in the effect of our factors. 

(In an experimental design, factors are independent variables.) 
In the next chapter, we will see that applying an additional factor 

can further sort the colours, to account for even more variability among 
colours. The more variance we can explain, through multiple factors 
and/or multiple levels, the better! This is what we will be able to do with 
two-way ANOVA and factorial designs. 

Note: a one-way ANOVA includes one factor, whereas a two-way 
ANOVA includes two factors. 

Think of data analysis as a game in which the goal is to explain as 
much of the variability in the scores as possible through known factors. 
It’s like imposing order over chaos in order to see patterns more clearly. 

Analysis of Variance becomes necessary when we have 
experimental designs that are more complex than the ones we have 
used to date. Up until now, we have covered statistical tests that can 
handle one-sample and two-sample experimental designs. But what if 
we are comparing three or more samples? For example, what if we 

have a drug trial in which we are 
comparing the mean pain levels 
of patients after receiving 
placebo, a low dose of the drug, 
or a high dose of the drug? 

Analysis of Variance, Planned Contrasts and Posthoc Tests  |  127



Or what if our memory test 
using various types of stimuli 
measures memory for lists of 
words in black, red, blue or 
green? ANOVA can handle 
comparisons among 3, 4, or really any number of groups at once. 

Let’s make sure we have a handle on the jargon that is used in 
ANOVA. First of all, the shortened term ANOVA came from making 
an acronym of sorts from the phrase Analysis of Variance. Secondly, 
the term factor is used to designate a nominal variable, or in the case 
of an experimental design, the independent variable, that designates 
the groups being compared. If we have a drug trial in which we are 
comparing the mean pain scores of patients after receiving placebo, a 
low dose of the drug, or a high dose of the drug, the factor would be 
“drug dose.” Finally, the term levels refers to the individual conditions 
or values that make up a factor. In our drug trial example, we have three 
levels of drug dose: placebo, low dose, and high dose. 

So how is this ANOVA thing different from the t-tests we already 
learned? Well, in fact, you can think of it as an extension of the t-test to 
more than 2 groups. If you run an ANOVA on just 2 groups, the results 
are equivalent to the t-test. The only difference is that you get an F-
value instead of a t-value. Fun fact – the statistician who invented the t-
test published it under a pseudonym “Student”. Perhaps he was scared 
of the angst of the many students who would have to learn to use it. 
The F-test, however, is named for Fisher. He apparently had no such 
fear. Maybe he was that confident that students would love learning 
ANOVA. Hopefully he was right… ! Anyway, trust me – if you were to 
calculate the t-value and the F-value for the exact same two sample, 
the F-value would be the t-value squared. 

There is a nice part of using the F distribution and a not so nice part 
of it. The F distribution requires two degrees of freedom. Annoying, 
yes. But the nice part outweighs that annoyance, in my opinion. The 
F distribution starts from 0 and heads to the right. It has only positive 
values. 
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What this means is no more distribution sketches, and no more one-
tailed or two-tailed nonsense. So the logistics of the hypothesis test 
actually get a whole lot simpler. 

You might be wondering, okay so the ANOVA thing has some 
advantages, but we do already know the t-test, so could we not just use 
multiple t-tests to compare each group within the factor against each 
other? The problem is, each comparison includes a risk of a Type I error. 
The risk of Type I error accumulates with multiple statistical tests on the 
same data, and that is called the experimentwise alpha level. ANOVA 
does one overall, or omnibus, test of treatment effects, to keep our risk 
of Type I error down. Inflating alpha is dangerous, and any statistical 
method we can use to keep it under control is a good thing. 

The calculation method I will show you differs from more efficient 
methods you can find on the internet or in many other textbooks. Sorry 
for that, but the nice thing about the method I will show you here 
is that it has beautiful symmetry to it and highlights the concept of 
partitioning of variance. In other words these are conceptual rather 
than calculational formulas. This is a deliberate choice to help you 
understand how ANOVA works, because if we think about it, you will 
never need to calculate statistics by hand in the “real world.” You will 
always be able to use a computer instead. However, all the computers 
in the world cannot help you choose an appropriate statistic for a 
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particular situation, or to understand/articulate how the selected 
statistical test works. This is what an introduction to statistics is really 
about. 

 
There will also be an inherent math double-check opportunity in this 

method, which I think you will appreciate. In reality, most people use 
a computer to calculate ANOVA. However, I do like to ask you to try 
calculating things by hand, so you can see how it works. My hope is 
that you gain a better conceptual understanding of the mechanisms 
behind these statistical tests by applying them, and seeing how it all 
fits together like a puzzle, with tangible examples. Given that, I think 
this calculation system is better than others you can use. 

So, how does ANOVA work? Essentially it works by calculating 
different kinds of Sums of squares, which we will continue to 
abbreviate as SS. As you can see, there are three flavours of SS that can 
each be calculated using the formulas shown. 

The Sum of squares Between-groups (SSB) and Sum of Squares 
Within-groups (SSW) should add up to the Sum of Squares Total (SST). 
So here you see the partitioning of variance coming in. 

There are also three flavours of degrees of freedom, with matching 
labels. They also should add up. 
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Notice I used colour coding to help you track the “good” variance in 
green and the “bad” variance in red. 

Once you have the SS and degrees of freedom calculated, you can 
find the variances. 

The F-test is simple: it is the ratio of explained to unexplained 
variance, which is represented by the variance between and the 
variance within. You need more explained than unexplained variance 
to be able to reject the null. 

How much the ratio needs to be depends on the degrees of freedom. 
And that’s where sample size becomes very important, just as we saw 
in the t-test. 

One of the beautiful things about ANOVA is the calculation table. 
This is a way of organizing all the components of the workflow, and also 
highlighting our two math double-checks. For both SS and degrees of 
freedom, the Between and Within numbers should add up to the total. 
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This table is a good reference for you to keep to hand, as a reminder 
of each formula and how the ANOVA puzzle fits together. 

Note what each symbol in these formulas means, by referring to the 
symbols key in the lower right of the table. The one element that tends 
to be confusing is Ng. This symbol refers to the number of scores in the 
group – not to the number of groups in the study. This is important to 
interpret correctly. If you ever find that your SSB and SSW do not add 
up to your SST, like really not even close, then that is the first thing to 
double check. Did you use the number of scores in the group when 
calculating SSB? 

Now that our research designs are getting more complex, our 
statistical findings will need a little more descriptive statistics and 
graphical portrayal in order to easily interpret what those hypothesis 
test results really tell us. I would encourage you to always graph the 
means and standard deviations of your data before conducting your 
inferential statistics, so that you get a sense for significance before 
you begin. Do not go blind into that statistical routine… remember, 
numbers are never as informative as a picture of the data. 
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I recommend a bar graph 
displaying group means, and 
adding error bars as tall as the 
standard deviation (or standard 
error) on top of the mean. You 
can also show the bars going one 
standard deviation downward as 
well, to get the full range of the 
typical scores in the group. 

If the error bars eclipse the 
difference in group means, that is 

a bad sign if your goal is to report a significant difference among 
means. This visual allows you to preview the signal-to-noise ratio in 
your data, or your between-to-within variance ratio. 

Another really great visual is 
the group scatter plot, shown 
here. It is not really a standard 
way to view datasets, but I think 
it should be. 

Step 1 of hypothesis testing for 
an ANOVA truly becomes a 
formality. The hypotheses are 
always the same. Define a 
population for each group. Set the research hypothesis to be a general 
statement of difference among population means. Set the null to be a 
statement of equality among population means. There is no 
directionality with the F distribution, so we do not need to worry about 
the predicted direction of differences. 

Using our drug-dose example with three levels, the populations and 
hypotheses would look something like this: 

Population 1: People who receive low dose of drug 
Population 2: People who receive high dose of 

drug 
Population 3: People who do not receive drug 
Research Hypothesis: There exists at least one 
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difference among the population means. 
Null Hypothesis: µ1 = µ2 = µ3  All population means 

are equal. 

Now we can move on to step 2. The 
F distribution has two degrees of 
freedom. 

We no longer have to worry 
about the mean or standard deviation of the comparison distribution, 
we just need to find the degrees of freedom between and within. The 
“good” variance is  the differences between groups, and so the degrees 
of freedom between is number of groups – 1. The within-groups 
variance, the “bad” variance, is the individual differences among the 
scores within each group. The degrees of freedom within, then, is the 
total number of scores in all groups, minus the number of groups. 

For step 3, we can find the cutoff score in the F-tables if we know 
the significance level, degrees of freedom between and degrees of 
freedom within. 
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Step 4 is where things take some getting used to. Here we use 
this new system of formulas. Start with Sum of squares calculations: 
Between, Within, and Total, and double check that both they and the 
degrees of freedom add up. 

    

    

    

Then move across the table, finding the good and the bad variance… 

    

    

… and finally getting their ratio for the F-test result. 

    

To make our decision in Step 5, we examine the calculated F value 
(from Step 4) and determine whether it exceeds the cutoff F score 
(from Step 3).  If so, we reject the null hypothesis. 

“There is a significant 
difference among the 
mean digit memory 

scores after listening to 
the three types of music 

(f2,6 = 27.00, p < 0.05).” 

Here is an example of how to 
express the results – note the 
phrase “significant difference 
among the means.” If we do not 
reject the null, we can switch the 
statement of results to “no 
significant difference.” The test 
statistic and p-values are 
expressed here in common formats. 

We can continue building a decision tree to help you decide which 
statistical test to use when you look at a research question. What are 
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the circumstances in which you would need to use a one-way ANOVA 
test? 

 

8b. Planned Contrasts and Posthoc Tests 

In the second part of this chapter we will have a look at follow-up tests 
we can conduct after an ANOVA hypothesis test, to investigate the 
findings in greater detail. 

Planned contrasts and post-hoc tests are commonly performed 
following Analysis of Variance. This is necessary in many instances, 
because ANOVA compares all individual mean differences 
simultaneously, in one test (referred to as an omnibus test). If we run 
an ANOVA hypothesis test, and the F-test comes out significant, this 
indicates that at least one among the mean differences is statistically 
significant. However, when the factor has more than two levels, it does 
not indicate which means differ significantly from each other. 
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In this example, a significant F-
test result from a one-way 
ANOVA with the three drug dose 
conditions does not tell us where 
the significant difference lies. Is it 
between 0 and 100 mg? Or 
between 100 and 200 mg? Or is it 
only the biggest difference that is 
significant – 0 vs. 200 mg? 

Planned contrasts and post 
hoc tests are additional tests to 
determine exactly which mean differences are significant, and which 
are not. Why is that we cannot just do 3 independent means t-tests 
here? Each time we conduct a t-test we have a certain risk of a Type I 
error. If we do 3, we have triple the risk. So first we test for omnibus 
significance using the overall ANOVA as detailed in the first part of this 
chapter. Then, if a statistically significant difference exists among the 
means, we do the pairwise comparisons with an adjustment to be 
more conservative. These follow-up tests are designed specifically to 
avoid inflating risk of Type I error. 

Now, this is very important. We are only allowed to conduct these 
tests if the F-test result was significant. This procedural rule also helps 
protect us from the statistical sin of p-hacking, which is selectively 
hunting for and reporting significant results in a way that is biased and 
subjective. 

Planned contrasts are used when researchers know in advance 
which groups they expect to differ. For example, suppose from our 
worksheet example, we expect the pop group to differ from the 
classical group on our measure of working memory. We can then 
conduct a single comparison between these means without worrying 
about Type I error. Because we hypothesized this difference before 
we saw the data, perhaps based on prior research studies or a strong 
intuitive hunch, and because there is only one comparison to be 
analyzed, we need not be concerned about inflated experimentwise 
alpha. If multiple comparisons are planned, then we will need to adjust 
the significance level. 

Let us take a look at how to conduct a single planned contrast. The 
process is quite simple, as it is just a modified ANOVA analysis. First 
we calculate SSB with just those two groups involved in the planned 
contrast. We figure out the degrees of freedom between using just 
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the two groups. Then, we calculate the variance between using the 
new SSB and degrees of freedom, and we calculate an F-test for the 
comparison using the new variance between and the original overall 
variance within. To find out if the F-test result is significant, we can 
use the new degrees of freedom but the original significance level for 
the cutoff. (Because there is just one pairwise comparison, we can use 
original significance level.) 

Steps to calculate a planned contrast 

1. Calculate SSBetween with just those two groups. 
2. Find the dfBetween using just the two groups. 
3. Calculate S2

Between using the new SSBetween 

and the new dfBetween. 
4. Calculate F using the new S2

Between and the 
overall S2

Within. 

If we were to perform multiple planned contrasts, things change a 
little. Suppose we had hypothesized in this experiment that each group 
would differ from the others? The Bonferroni correction involves 
adjusting the significance level to protect from the inflation of risk 
of Type I error. The procedure for each comparison is the same as 
for a single planned contrast. The difference is that the cutoff score 
to determine statistical significance will use a more conservative 
significance level. When we do multiple pairwise comparisons, the 
Bonferroni correction is to use the original  significance level divided 
by number of planned contrasts. The adjusted significance level is not 
likely to be in our F-tables, so to find the cutoff for such tests, we would 
need to use an online calculator in reverse (that is, we enter the p-value 
and degrees of freedom, and look up the value on the F-distribution 
corresponding to that area in the tail). 

What about post hoc tests tests? As the name suggests, these tests 
come into the picture when we are doing pairwise comparisons 
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(usually all possible combinations) after the fact to find out where the 
significant differences were. These are tests that do not require that we 
had an a priori hypothesis ahead of data collection. Essentially, these 
are an allowable and acceptable form of data-snooping. This is where 
we must be cautious about doing so many tests – we could end up 
with huge risk of Type I error. If we use the Bonferroni correction that 
we saw for multiple planned comparisons on more than 3 tests, the 
significance level would be vanishingly small. This would make it nearly 
impossible to detect significant differences. For this reason, slightly 
more forgiving tests like Scheffe’s correction, Dunn’s or Tukey’s post-
hoc tests are more popular. There are many different post-hoc tests out 
there, and the choice of which one researchers use is often a matter of 
convention in their area of research. 

Now we shall take a look at how to conduct post hoc tests using 
Scheffé’s correction. In this example, we will test all pairwise 
comparisons. The Scheffé technique involves adjusting the F-test 
result, rather than adjusting the significance level. The way it works is 
the same as the planned contrast procedure, except for the very end. 
Before we compare the F-test result to the cutoff score, we divide the 
F value by the overall degrees of freedom between, or the number of 
groups minus one. Thus, we keep the significance level at the original 
level, but divide the calculated F by overall degrees of freedom 
between from the overall ANOVA. 

 

Steps to calculate post-hoc tests with Scheffé’s correction 

For each pairwise comparison: 

1. Calculate SSBetween with just those two groups. 
2. Find the dfBetween using just the two groups. 
3. Calculate S2

Between using the new SSBetween 

and the new dfBetween. 
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4. Calculate F using the new S2
Between and the 

overall S2
Within. 

5. Divide F by overall dfBetween. 

Chapter Summary 

In this chapter we introduced the concepts underlying Analysis of 
Variance and examined how to conduct a hypothesis test using this 
technique. We also saw how to follow up on a statistically significant F-
test result in an ANOVA with more than two levels in a factor, in order 
to determine which levels were significantly different from each other. 

Key terms: 

Analysis of Variance post hoc tests Bonferroni correction 

general linear model factor Scheffé correction 

partitioning of variance levels 

planned contrasts experimentwise alpha level 
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9. Factorial ANOVA and 
Interaction Effects 

9a. Factorial Analysis 

In factorial analysis, just like the 
fractals we see in nature, we can 
add multiple branchings to every 
experimental group, thus 
exploring combinations of factors 
and their contribution to the 
meaningful patterns we see in 
the data. 

In this chapter we will tackle 
two-way Analysis of Variance and 
explore conceptually how 
factorial analysis works. To 
understand when you need two-
way ANOVA and how to set up the analyses, you need to understand 
the matching research design terminology. We will also need to define 
and interpret main effects and interaction effects, both of which can 
be analyzed in a factorial research design. Later we will approach the 
detection and interpretation of interaction effects, specifically, which 
will really help you see the extraordinary complexity of information 
factorial analyses can offer. 
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Factorial analyses such as a 
two-way ANOVA are required 
when we analyze data from a 
more complex experimental 
design than we have seen up 
until now. Specifically, when an 
experiment (or quasi-
experiment) includes two or 
more independent variables (or 
participant variables), we need 
factorial analysis. Examples of 

designs requiring two-way 
ANOVA (in which there are two 
factors) might include the 
following: a drug trial with three 
doses as well as the sex of the 
participant, or a memory test 
using four different colours of 
stimuli and also three different 
lengths of word lists. 

As we saw in the chapter on 
Analysis of Variance, the total 
variability among scores in a 
dataset can be separated out, or 
partitioned, into two buckets. The 
first bucket, often called between-groups variance or treatment effect, 
refers to the systematic differences caused by treatments or associated 
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with known characteristics. 
These are the differences among 
scores we are hoping to see — 
the explained differences — and 
thus I casually refer to this as the 
“good” bucket of variance and 
colour code it in green. The other 
bucket, often called within-
groups variance or error, refers to 
the random, unsystematic 
differences that cannot be 
explained by the research design. 
These are the unexplained 

individual differences that represent the noise in the data, obscuring 
the signal or pattern we are looking for, and thus I casually refer to it as 
the “bad” bucket of variance and colour code it in red. 

We can revisit our visual example from before, in which the goal is 
to separate colour swatches according to some factor, such that the 
colours within each grouping (or level) is more uniform. If we first sort 
the colours according to the factor of hue, let’s say into green or blue 
hues, then we explain some of the overall variability. But if we add 
a second factor, brightness, then we can explain even more of the 
differences among the colour swatches, making each grouping a little 
more uniform. 
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Clearly there is still some work to be done, and if in factor A we 
could have included a third level of “red”, the uniformity would have 
been much improved. And with factorial analysis, there is technically 
no limit to the number of factors or the number of levels we can 
employ to explain away the variability in the data. The more variance 
we can explain, through multiple factors and/or multiple levels, the 
better! This is what we will be able to do with two-way ANOVA and 
factorial designs. 

You will recall the jargon of ANOVA, including factors and levels. To 
grasp factorial research designs, it becomes even more important to 
develop comfort with these concepts, so that you can identify and 
describe the design and thus the requisite analysis setup. Let us 
suppose that we have a research study that measures the effect of a 
placebo, a low dose and a high dose of the drug, and also takes into 
account whether the participants were male or female. The first factor 
could be succinctly identified as “drug dose”, and the second factor 
as “sex”. In another example, perhaps we show participants words in 
black, red, blue or green, and we also take into account whether the 
word list presented is long, medium, or short. What would you call each 
of those two factors? 

What if, in a drug study, you notice that men seem to react differently 
than women? If you have that information (male/female), you can use 
it in your ANOVA and see if you can put more variance in your “good” 
bucket. 

In the design illustrated here, 
we see that it is a 3 x 2 ANOVA. 
There are three levels in the first 
factor (drug dose), and there are 
two levels in the second factor 
(sex). This notation, that identifies 
the number of levels in each 
factor with a multiplier between, helps us see clearly how many 
samples are needed to realize the research design. In this example, we 
would need six samples in total, each of which would need to have a 
good enough sample size to allow for the central limit theorem to 
justify the normality assumption (N=30+). That is a lot of participants! 
However, we could learn much more by including both factors, if 
indeed the sex of the participant is associated with a different response 
to the drug. 
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We can see an example of a 4×3 
two-way ANOVA here, with our 
example of word colour and 
length of list. Altogether, this 
design would require 12 samples. 

And just for the sake of 
showing you the potential of factorial analyses, you could also impose 
a third factor on the design: the age of the participants. In this case, you 
have a 4x3x2 design, requiring 12 samples. At 30 participants each, that 
would be 30×12=360 people! You can appreciate how each factor 
exponentially increases the practical demands (costs) of the research 
study. For this reason, a cost-benefit analysis must be carefully applied 
in factorial research design, such that the minimum complexity is used 
to answer the key research questions sufficiently. 

In a two-way ANOVA, just as in a one-way ANOVA, we calculate 
various flavours of Sums of Squares (SS). The SS total is broken down 

into SS between and SS within. 
However, with a two-way ANOVA, 
the SS between must be further 
broken down, because there are 
now two different factors that 
can have a main effect (i.e., can 
explain some of the total 
variance). Also, with more than 
one factor, there can be an 

interaction between the two that itself uniquely accounts for some of 
the variance. So now, we can SS row (the first factor), SS column (the 
second factor) and SS interaction. For each SS, you can also see the 
matching degrees of freedom. 

Here is the full ANOVA table expanded to accommodate the three 
subtypes of between-groups variability. 
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Note that all of the Sums of Squares and degrees of freedom still 
should add up to the total. As you can see, there will now be three 
F-test results from this one omnibus analysis, one for each of the 
between-groups terms. Each can be compared to the appropriate 
degrees of freedom to determine the statistical significance of the 
degree to which that factor (or interaction) accounts for variance in the 
dependent variable that was measured in the study. 

To help you interpret the formulas as they reference row means, 
column means, and cell means, I have added a diagram here to help 
you see how to locate these numbers in a 2×2 two-way ANOVA 
scenario. 
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The row and column means, the averages of cell means going across 
or down this matrix, are often referred to as marginal means (because 
they are noted at the margins of the data matrix). 

When it comes to hypothesis testing, a two-way ANOVA can best 
be thought of as three hypothesis tests in one. For each factor, and 
also for the interaction of the two, you need to identify populations 
and hypotheses, cutoffs, calculate the SS between, degrees of freedom, 
variance between, and F-test results. All three will share the same error 
terms, the SS, degrees of freedom, and variance within groups. As you 
can imagine, the complexity of calculating such an analysis could be 
daunting, but a systematic, organized approach and the use of the 
ANOVA table keeps it well under control. 

As with one-way ANOVA, if any factor has more than two levels, you 
may need to calculate pairwise contrasts for that factor to determine 
where exactly a significant difference among group means lies. Even 
with a 2×2 ANOVA, the interaction effect has four possible pairwise 
comparisons to investigate, and that would require a planned contrast 
or post-hoc test. The same rules apply to such analyses as before: they 
may only be conducted if there is a significant overall ANOVA result, 
and the experimentwise risk of Type I error must be controlled. 

We can continue building our statistical decision tree to help us 
decide which test to use when we examine a research question/design. 
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If we have two independent variables (factors) in the experimental 
design, then we need to use a two-way ANOVA to analyze the data. 

Before we move on to detecting and interpreting main effects and 
interactions, I would like to bring in two cautions about factorial 
designs. Many researchers new to the trade are keen to include as 
many factors as possible in their research design, and to include lots of 
levels just in case it is informative. This is an understandable impulse, 
given how much effort and expense can go into designing and 
conducting a research study. We want to gather as much information 
as possible from that effort! However, as we saw before, the more 
factors we add in, the more participants we need to ensure a decent 
sample size in each cell of our data matrix. There is another important 
element to consider, as well. For each factor we add in, we add 
interaction terms. If we were ambitious enough to include three 
factors in our research design, we would have the potential for 
interaction effects among each pair of the factors, but we would also 
potentially see a three-way interaction effect. 

Interactions for a three-way ANOVA 

In a three-way ANOVA involving factors A, B, and C, 
one must analyze the following interactions: 
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• A x B 
• B x C 
• A x C 
• A x B x C 

The interpretation of all these interactions becomes very challenging. 
For this reason, solid advice to researchers is to limit ourselves to two 
factors for any given analysis, unless there is a very strong hypothesis 
regarding a three-way interaction. 

9b. Interaction Effects 

In this part of the chapter, we will dig into interaction effects and 
how to detect and interpret them alongside main effects in factorial 
analyses. We will see that main effects can be detected using group 
means tables, and interactions can be detected using the tools of bar 
graphs and interaction plots. 

We will also look at how to interpret three major scenarios: when we 
have significant main effects but no significant interaction; when we 
have a significant interaction, but no main effects and when we have 
both interactions and main effects that turn out significant. 

A main effect means that one of the factors explains a significant 
amount of variability in the data when taken on its own, independent 
of the other factor. You can tell (roughly) whether a main effect is likely 
to exist by looking at the data tables. Specifically, you want to look at 
the marginal means, or what we called the row and column means in 
the context of a two-way ANOVA above. 

Let us look at the first example. 
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Data Example 1 

Male Female Row means 

Low dose of drug 20 10 15 

High dose of 
drug 10 20 15 

Column means 15 15 

Going across the data table, you can see the mean pain score 
measured in people who received a low dose of a drug, and those who 
received a high dose. The marginal means are 15 vs. 15. This indicates 
there is clearly no difference between the two, so there is no main 
effect of drug dose. Now look top to bottom to find the comparison 
between male and female participants on average. 15 vs. 15 again, so no 
main effect of education level. 

Now look at the second example. 

Data Example 2 

Male Female Row means 

Low dose of drug 40 20 30 

High dose of 
drug 30 10 20 

Column means 35 15 

Going across, we can see a difference in the row means. People who 
receive the low dose  have less pain that those who receive the high 
dose: this could be a significant main effect. Going down, we can see 
a different in the column means as well. Males report more pain than 
females. Another likely main effect. So in this example there is an 
apparent main effect of each factor, independent of the other factor. 

Now, detecting interaction effects in a data table like this is trickier. 
But if you can see a clear X-pattern in the group means table (the four 
cell means), such that similar numbers connect in an “X”, then that is a 
sign that there is probably an interaction. If not, there may not be. 

In the first example, it is clear that there is an X pattern if you connect 
similar numbers (20 with 20 and 10 with 10). Probably an interaction. 
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Data Example 1 

Male Female Row means 

Low dose of drug 20 10 15 

High dose of 
drug 10 20 15 

Column means 15 15 

In the second example, it is not so clear. Ask yourself: if you take one 
row at a time, is there a different pattern for each or a similar one? 

Data Example 2 

Male Female Row means 

Low dose of drug 40 20 30 

High dose of 
drug 30 10 20 

Column means 35 15 

People with a low dose have lower pain scores if they are female. A 
similar pattern exists for the high dose as well. This similarity in pattern 
suggests there is no interaction. You can do the same test with the 
columns and reach the same conclusion. 

It is far easier to tell at a glance 
whether an interaction exists if 
you graph the data. In a bar 
graph, look for a U- or inverted-U-
shaped pattern across side-by-
side bar graphs as an indication 
of an interaction. 

In the top graph, there is clearly 
an interaction: look at the U 
shape the graphs form. 

In the bottom graph, there is 
no such U shape. When you look 
at each set of bars in turn, the 
pattern displayed is similar – just 
a little higher overall for the older 
people. Clearly, there is no hint of an interaction. 
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Interaction plots make it even 
easier to see if an interaction 
exists in a dataset. If you were to 
connect the tops of like-coloured 
bars of the graphs on the 
previous bar graphs, you would 
get line plots like those shown 
here. 

If the two resulting lines are 
non-parallel, then there is an 
interaction. On the other hand, if 
the lines are parallel or close to 
parallel, there is no interaction. 

Now you have seen the same 
example datasets displayed in 
three different ways, each 
making it easy to see particular 

aspects of the patterns made by the data. 
More challenging than the detection of main effects and 

interactions is determining their meaning. Learning to interpret main 
effects and interactions is the most challenging aspect of factorial 
analyses, at least for most of us.  Now we will take a look systematically 
at the three basic possible scenarios. 

 
The first possible scenario is that main effects exist with no 

interaction. This can be interpreted as the following: each factor 
independently influenced the dependent variable (or at least 
accounted for a sizeable share of variance). 

Data Example 2 

Row means 

Low dose of drug 30 

High dose of 
drug 20 

Column means 
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In other words, if you were to look at one factor at a time, ignoring 
the other factor entirely, you would see that there was a difference in 
the dependent variable you were measuring, between the levels of that 
factor. 

Data Example 2 

Male Female Row means 

Column means 35 15 
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The second possible scenario is that an interaction exists without 
main effects. We can interpret this as follows: each factor did not, in 
and of itself, influence the dependent variable. 

Data Example 1 

Male Female Row means 

Low dose of drug 20 10 15 

High dose of 
drug 10 20 15 

Column means 15 15 

Here you can see that neither dose nor sex marginal means differ – 
no main effects. But the non-parallel lines in the graph of cell means 
indicate an interaction. 
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The best way to interpret an interaction is to start describing the 
patterns for each level of one of the factors. First we will examine the 
low dose group. They have lower pain scores only if they are female. 
Now look at the high dose group: they have a lower pain scores only if 
they are male – the opposite pattern. This means that the effect of the 
drug on pain depends on (or interacts with) sex. 

The third possible basic scenario in a dataset is that main effects and 
interactions exist. This means each factor independently accounted 
for variability in the dependent variable in its own right. But also, they 
interacted synergistically to explain variance in the dependent variable. 
Together, the two factors do something else beyond their separate, 
independent main effects. 

In this example, at both low dose and high dose of the drug, pain 
levels are higher for males. 

Data Example 3 

Male Female Row means 

Low dose of drug 40 20 30 

High dose of 
drug 20 15 17.5 

Column means 30 17.5 
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For both sexes, the higher dose is more effective at reducing pain than 
the lower dose. But there is also an interaction, in that the difference 
between drug dose is much more accentuated in males. Just look at 
the difference in the slope of the lines in the interaction plot. 

The lines are certainly non-parallel. So drug dose and sex matter, 
each in their own right, but also in their particular combination. 

You can probably imagine how such a pattern could arise. Perhaps 
males are more sensitive to pain, and thus require a high dose to 
achieve relief. Or perhaps the higher body mass in males means a 
higher dose of drug is required to be effective. For females, both doses 
are similar in their efficacy. 

Chapter Summary 

In this chapter we introduced the concept of factorial analysis and took 
a look at how to conduct a two-way ANOVA. We further examined ways 
to detect and interpret main effects and interactions. 
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10. Correlation and 
Regression 

10a. Correlation 

This chapter marks a big shift from the inferential techniques we have 
learned to date. Here we will be looking at relationships between two 
numeric variables, rather than analyzing the differences between the 
means of two or more experimental groups. 

Correlation is used to test the direction and strength of the 
relationships between two numerical variables. We will see how 
scatterplots can be used to plot variable X against variable Y to detect 
linear relationships. The slop of the linear relationship can be positive 
or negative, which reveals systematic patterns in how the two variables 
co-relate. We will also look at the theory of correlational analysis, 
including some cautions around interpreting the results of 
correlational analyses. Thanks to the third variable problem, 
correlation does NOT equal causation, a mantra that should be familiar 
from your introductory psychology courses. And finally, we will try 
calculating correlation by partitioning covariance, and put it all into 
practice in a hypothesis test. Later in the chapter, we will build in 
regression, which allows us to predict the future from the past. 

Just like a bar graph is helpful to examine visually the differences 
among means, a scatterplot allows us to visualize the pattern that 
represents the relationship between two numeric variables, X vs. Y. 

If the trend line that best indicates the linear pattern in the scatter 
plot has an upward slope, we consider that a positive directionality. 
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To find out if there appears to 
be a positive correlation, you can 
ask yourself “are those that score 
high on one variable likely to 
score high on the other?” Here 
we see an example: what is the 
relationship between feline 
friendliness and number of 
scritches received? As you can 
see, when cat friendliness is high, 
the cuddles received is also high. 
There is a clear positive trend line. This make sense – people may be 
more likely to offer cuddles to a cat that solicits them. 

A downward slope indicates a 
negative directionality. To find 
out if there appears to be a 
negative correlation, you can ask 
yourself “are those that score 
high on one variable likely to 
score low on the other?” Here you 
can see an example: what is the 
relationship between feline 
aloofness and the number of 
scritches received? There is a 

clear negative trend line. This makes logical sense, because people may 
be less likely to offer cuddles to a cat that keeps to itself. 

When we look at a scatter plot, we want to ask ourselves two 
questions: one about the apparent strength of the relationship 
between the variables, and the other about the direction of the 
relationship. Let us take a look at a few examples. 
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In graph A), if we ask “are variables X and Y strongly or weakly 
related?” We would say strongly related. This is because the points 
on the scatter plot are in a perfect line. There is no distance between 
the points and the trend line. It is a perfect correlation. If we ask “is 
the trend line positive or negative in slope?” We would say that it is 
negative in slope. As scores on variable X increase, scores on variable Y 
do the opposite – they decrease. We might expect such a relationship 
if we plotted speed against time. The faster something is, the less 
time it takes. In the next example, graph B), if we ask “are variables X 
and Y strongly or weakly related?” We would say weakly related. There 
is no clear linear trend that can be visually discerned – it just looks 
like a random scatter of dots. With no trend line, the question about 
directionality is irrelevant. This correlation is close to zero, so it is neither 
positive nor negative as a directional relationship. If we look at example 
C), the strength is not quite as perfect as in the first example, but the 
dots would not be very distant from a trend line through them, so this 
would be a fairly strong correlation. As scores on variable X go up, so 
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do those on variable Y, making this a positive correlation. Now it is your 
turn. In example D), would this be a strong relationship or weak? Or 
somewhere in between? And do you see a positive or a negative slope 
to a trendline that runs through the cloud? 

Correlational analysis seeks to answer the question “how closely 
related are two variables.” This is a very useful analytical approach when 
we have two numeric variables and we wish to analyze the patterns in 
how they co-vary. However, correlational analyses have limitations that 
it is vital to be aware of. 

First, the correlational method we will cover in this course is only 
capable of detecting linear relationships. Patterns that have a curve to 
them will not be captured by the correlation formula we will use. 

Secondly, correlation does not equal causation. Correlational 
research designs do not allow for causal interpretations, because the 
third variable problem renders correlational analyses vulnerable to 
spurious results. When we measure two variables at the same time 
and plot them against each other, what we can do is describe their 
relationship. We can even test whether the strength of their 
relationship is significantly different from zero. However, we cannot 
determine whether X causes Y. 

For example, if we measured 
the consumption of ice cream as 
well as drowning deaths on a 
sample of days throughout the 
year, we might determine that 
there is a strong positive 
relationship between the two 
variables. Consumption of ice 
cream and drowning deaths are 
apparently closely related 
phenomena. But does 
consumption of ice cream cause drowning deaths? That seems a little 
far fetched. Could there be another explanation for the pattern? Is there 
a third variable that could in fact explain the trends in each of the two 
variables measured here? What might cause people to consume more 
ice cream as well as put themselves at greater risk for drowning? Warm 
weather perhaps? If we were to plot temperate against ice cream and 
drowning deaths, would we see positive correlations with each? Very 
likely. With this third variable connecting the two, it would be a logical 
fallacy to interpret the apparent correlation shown here as meaningful. 
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But then again, is it possible that consuming ice cream could be a 
risk factor for drowning? Did an elder ever tell you that you should not 
eat right before swimming, because you might cramp up and drown? 
Maybe there is some truth to that. 

So how could we find out whether there is a true causal relationship 
between two variables? In order to make cause-effect conclusions, we 
must use an experimental design. Two major features of experimental 
research designs eliminate the logical fallacies associated with 
correlations. First, an experiment makes use of random assignment 
of participants to conditions, because that controls for extraneous 
variables like the third variable of temperature in this example. And 
secondly, an experiment manipulates the independent variable, to 
establish a cause, and then measure effects. 

Requirements for cause-effect conclusions 

A true experiment requires the following elements in 
order to control for extraneous variables and establish 
cause-effect directionality: 

• random assignment of participants to 
conditions (or randomization of order of 
conditions in repeated measures designs) 

• manipulation of the independent variable 

In our ice cream and drowning study here, how could we make it into 
an experiment, to allow for causal conclusions? First we would have 
to assign our participants randomly into the experimental and control 
groups. There must be no systematic bias in who is given ice cream and 
who is not. Second, we would have to manipulate independent variable 
– we would have to have those participants in the experimental group 
eat ice cream. Then we would put all participants in water, at the same 
temperature, and see how many of them drown. We would calculate 
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“Herp Derp :D” by O hai :3 is licensed 
under CC BY 2.0 

the average number of drowning events in the ice-cream-eating vs. 
the control group, and run a t-test or ANOVA to find out if they are 
significantly different from each other. 

Of course, you might be thinking, “would this be ethical?” At least I 
hope you are thinking that. Of course not! It would not make sense to 
allow people to drown, just to answer this empirical question. In fact, 
that is exactly why correlation exists. 

Often, practical or ethical 
limitations make an experiment 
prohibitively difficult or 
impossible. If we are limited to 
correlational techniques in a 
particular research study, then 
we simply cannot draw cause-
effect inferences. 

So, a major take-home point of 
this lesson is… don’t be like this 
guy. 

Okay, so how do we go about 
calculating correlation? Well, 

similar to ANOVA, we can think of the process conceptually as the 
partitioning of variance. But this time, what counts as good variance is 
covariance. This is the systematic variance that both variables X and Y 
have in common. Because it is variance that is explained by the co-
relation of the two variables, we will put covariance in the “good” 
bucket. The random variance that is unexplained by the relationship 
between X and Y, the distance between the dots and the trend line, 
that is the variance that we will put in the “bad” bucket. A conceptual 
formula for the correlation coefficient r would be covariablity of X and 
Y divided by the variability of X and Y separately. 

Once we find r, another statistic that provide helpful information is 
r squared. r2 is the proportion of variability in one variable that can be 
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explained by the relationship with the other variable. Make note of this 
fact, because the proportion of variability explained by a correlation is 
a very helpful metric. 

Now we can examine what form a hypothesis test would take in 
the context of a correlational research design. Such a hypothesis test 
asks the question, “how unlikely is it that the correlation coefficient is 
actually zero?” 

In step 1, in order to keep the hypothesis in a form similar to what 
we did before, we can identify the populations in a particular way. 
Population 1 will be “people like those in the sample,” and population 
2 will be “people who show no relationship between the variables.” 
That way, the research hypothesis can be set up as “The correlation for 
population 1 is [greater than/less than/different from] the correlation for 
population 2. The null hypothesis can be “The correlation for population 
1 is the same as the correlation for population 2.” 

In step 2, we need to find the characteristics of the comparison 
distribution, and in this case we need the correlation coefficient r, 
which can range from -1 to 1. An r value of 0 indicates there is no 
correlation whatsoever between the two measured variables. An r of 
1 is a perfect positive correlation, and an r of -1 is a perfect negative 
correlation. Most correlations in real life fall closer to 0 than to 1 or -1. 

    

This correlation coefficient formula makes use of Z-scores, which is 
a great way to review these standardized scores covered in an earlier 
chapter.  Recall that 

    

, where 

    

For each variable, X and Y, we must calculate the mean and standard 
deviation of the variable, so each score can be translated to Z-scores. 
Only then can they be cross-multiplied and then summed in the r 
formula. 

Once we calculate the r value for a correlation, we can test the 
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statistical significance of this value, based on how extreme it is on the t 
distribution. An r of 0 is placed in the centre of the t distribution, as the 
comparison distribution mean, and positive one and negative one are 
placed at either tail of the distribution. 

The further out we get into the appropriate tail, the better our chance 
of rejecting the null hypothesis of a zero correlation. The bad news 
is, we are back to the t-test, which means we have to think about 
directionality. The good news is, this is a great opportunity to refresh 
ourselves on how the t-test works. 

In step 3, we find the cutoff score using the t tables. For correlation 
degrees of freedom will be N-2, where N is the number of people in the 
sample. This is so, because we have two measured (numeric) variables, 
each of which has N-1 scores that are free to vary. 

In step 4, the t-test is calculated as r divided by Sr, where Sr quantifies 
the unexplained variability. 

    

Step 5 is the decision: we reject the null hypothesis if the t-test result 
falls in the shaded tail beyond the cutoff. 

Correlation and Regression  |  165



We could express our hypothesis test results on the relationship 
between income and grades in the following manner: 

“We found that there 
was a significant 

positive correlation 
between family income 

and student grade 
average (r = 0.65, t11 = 

2.97, p < 0.05).” 

Notice that our interpretation is 
not that we found higher family 
income results in a higher grade 
average. Why not? Well, as we 
said before, causal conclusions 
require experimental design. To 
draw such a conclusion regarding 
the relationship between family 
income and student grade 

average, we would need to randomly assign students into family 
income conditions, wealthy or poor, then measure the effects of that 
manipulation on their grades. Just like our drowning example, this 
seems not only logistically challenging, but also rather unethical. So, 
we are limited to correlation here for a reason, and thus we simply 
need to characterize our findings as a relationship or pattern, rather 
than a statement of cause and effect. 

As we put the final branch to our decision tree, we now have a 
decision flow for the situation of no independent variables. If both 
variables are numerical, you must use correlation to test their 
relationship. 

166  |  Correlation and Regression



10b. Regression 

In the next part of the chapter, we will examine the statistical 
technique of regression. Regression allows us to extend the findings of 
a correlation to predict the future from the past. 

Once we have calculated a correlation, a regression allows us to 
predict how an individual would perform on one variable based on 
their performance on another variable. In an example of a correlation 
between income and grades, the regression would allow us to see 
what grade level would be achieved by an individual with a family 
income level that was not actually collected in our dataset. We could 
also identify the income level based on a given grade level. 

The regression line is a line through our scatter plot that can be 
described with an equation. The equation has two components: slope 
and intercept. The slope says how many units up (or down) the line 
goes for each unit over.  The intercept says where the line hits the y axis. 

The regression line is a line that “best fits” the data points that we 
have collected. Mathematically, it is the line that minimizes the 
squared deviations (i.e. error) of the individual points from the line. 
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To find the equation for the regression line, you can calculate slope b 
and then intercept a using the formulas shown. 

    

 

Steps to find b, slope of regression line 

1. For each individual, find the deviation of the X 
score from the mean.* 

2. For each individual, find the deviation of the Y 
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score from the mean.* 
3. For each individual, multiply the deviation of X 

by the corresponding deviation of Y 
4. Add together the products from step 3 for all 

individuals. 
5. Divide this sum by SSx.* 

*These calculations should already be 
completed for correlation. 

    

Once a and b are calculated, we can plug these numbers into the 
regression line equation. 

    

Here I will show you the regression line equation for our family 
income vs. grade example. 
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b is 0.11, which means that for every one unit of Family Income, the 
line goes up 0.11 unit of Average Grade. a is 77.96, which means that the 
line meets the y axis at a height of 77.96. 

The line equation allows us to plot the precise regression line on the 
scatter plot. To plot a regression line, pick two X values that are on the 
low and the high end of the scale. Plug those into the line equation to 
find the corresponding Y values that are on the line. 

Using the regression line, you can predict X value from Y values and Y 
values from X values. This means that even if you did not have someone 
in your dataset with a family income of 105, you can figure out what 
a student’s average grade would have been if they had that family 
income. Likewise, if you had no one in your dataset with an average 
grade of 75, you can figure out what their family income would have 
been if they had that grade. Note that these are just predictions. They 
are imperfect, and do not take into account other factors or individual 
variability. 

Here we will try try predicting the average grade (Y) for a student 

170  |  Correlation and Regression



who has a family income of 200. To do this, we will plug 200 in for X in 
the regression line equation (as shown here). 

    

    

    

The result is a grade of 100.55. Of course getting a grade average 
above 100% is impossible (at least at many institutions). In this case, our 
prediction shows a “ceiling effect”. This means that there is a maximum 
average grade that we hit before we hit a maximum family income. 
Therefore, the regression line equation becomes useless above a family 
income of around 190. 

Now, we can try predicting family income (Y) for a student with an 
average grade of 60 (X). To do this, you must plug in 60 for Y in the 
equation, then solve for X. 
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Notice that to rearrange the equation to solve for X, you first have to 
move intercept (a) over: 

    

Then you have to divide by the slope: 

    

Now you are ready to solve for X: -159. The result of finding X for 
the Y of 60 is a negative income! This is, of course, impossible (or very 
unlikely). Here we can see the floor effect. 

This means that there is a minimum family income that we reach 
before reaching the minimum grade. So the regression line becomes 
useless below an average grade of 77.96 (the Y intercept). Floor and 
ceiling effects are common problems for regression, and you should 
watch out for these problems when you use this technique. We can 
see that the regression line for this particular dataset is useful to make 
predictions for the grade of 80-100 average grade and the range of 
0-190 income level. 

Now of course, predictions are not perfect. Regression allows for 
a prediction of one variable from another variable. As we can see in 
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our scatterplots, not every real data point is exactly on the regression 
line. The actual data point might be different. Why is that? Because, 
unless it’s a perfect correlation, some variability in the real data is 
not accounted for by the regression equation. We can estimate just 
how accurate our predictions are by looking at r squared. r2 is the 
proportion of variance in one variable explained by its relationship with 
the other variable. The rest is the amount that is not accounted for. 

Just as we can include multiple factors in ANOVA, we can also 
include multiple predictive variables in a regression. We will not 
attempt that in this course, but if you take more advanced statistics 
course you will see that the more variables you include, each explaining 
a piece of the variability in the criterion variable, the more precise your 
regression model will become. Here, we are using just one predictive 
variable, and our r2 is likely to be well shy of 100% explained variance. 
So in that case, we can expect our regression to be only modestly 
accurate. 

Chapter Summary 

This chapter introduced you to the statistical techniques of correlation 
and regression. We saw how we can detect and describe the strength 
and direction of the relationship between two numeric variables, and 
to run a hypothesis test to find out if the correlation is significantly 
different from zero. Finally, we saw that regression can generate a 
linear model allow for the prediction of one variable from the other. A 
key reminder: correlation does not equal causation. These techniques 
suit research designs that do not meet the requirements of 
experimental design, and as such, our conclusions regarding the 
statistical findings must avoid cause-effect language. 

Key terms: 

correlation regression r squared 

covariance r 
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11. Beyond Hypothesis 
Testing 

11. Beyond Hypothesis Testing 

In this chapter we will introduce some big concepts that go beyond 
hypothesis testing. The three big concepts we need to cover to finish 
off our coverage of inferential statistics are effect size, power and 
confidence intervals. Effect size measures just how big a difference 
between means is, or just how much variability a regression model 
explains. Effect size is a vital piece of any inferential statistics to 
complement tests of statistical significance. Power is a critical concept 
whenever we test a statistical hypothesis – the power to find statistical 
significance if the research hypothesis is in fact true. And confidence 
intervals are another approach to inferential statistics that offers an 
alternative to hypothesis testing. All three of these concepts are 
extremely important, and they only got left until the end so that we 
could get all the way through our tour of the full range of statistical 
tests and techniques first, before zooming out again to these big, 
important ideas that complement hypothesis testing procedures. 

When a hypothesis test reveals that there is a significant difference 
between means, the question remains… how big was the difference? 
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Measures of effect size seek to 
quantify just how big the effect 
was of an experiment. For each 
test of statistical significance, 
there is a corresponding test of 
effect size. We already looked at 
r-squared as the measure of 
effect size for a correlation, but 
we have not yet discussed effect 
size measures for differences 
between means. Effect size 
metrics increase with greater 
differences between the means 
we are comparing. But how 
much of a distance between two 
means is a good, or large effect 
size and how much is not so 
good, or small effect size? 

Cohen’s d is the most popular measure of effect size, and it is very 
easy to use. To calculate Cohen’s d, we just take the difference between 
two means and divide by the standard deviation for the distribution 
of individuals. The formula shown here is to find the effects size of 
the difference between means in a situation in which we know the 
comparison population standard deviation, so the same scenario in 
which we would conduct a single-sample Z-test to determine whether 
the difference between means is statistically significant. 

    

Of course, we do not know μ1, the research population mean, so we 
must use the sample mean M as the estimate in its place. 

Once we calculate Cohen’s d, we can place it on this relative scale to 
judge the effect size. A Cohen’s d of 0.2 is small, 0.5 is medium, and 0.8 
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is considered large. So if our two 
means are a whole standard 
deviation apart, then we have a 
very good effect size. Together 
with a finding of statistical 
significance from a Z-test, we 
would have excellent evidence to 
suggest there is a true difference 
between the means we were 

comparing. If, on the other hand, we have a significant Z-test results, 
but a small effect size, then the difference between the means might 
be statistically significant, but perhaps it is not such an important 
difference. This is a common pattern when a research study has a very 
large sample size, such that it is “over-powered.” The concept of power 
will come up a little later in the chapter. 

Such a situation came up when researchers conducted effect size 
analyses on the many clinical trials published to establish the efficacy 
of antidepressant drugs like SSRIs on the symptoms of depression. 
Once they looked at effect size, they realized that although 
antidepressants had a statistically significant effect on symptoms, it 
was a fairly small effect. This called into question the true clinical 
efficacy of these medications, the most widely prescribed class of 
psychotropic medication on the planet. Now scientific journals are far 
more cautious and require researchers to report not just tests of 
statistical significance, but also tests of effect size, to help the reader 
interpret the results. 

The next concept on our bucket list is power. Statistical power is 
defined as the probability that the study will produce a statistically 
significant result if the research hypothesis is true. In other words, 
when there is a true difference between means, will we be able to 
detect that? Or will we miss that fact and make a Type II error, failing 
to reject the null hypothesis when it is false? Power is important, and it 
directly depends on two factors we have already focused on. Effect size, 
or the difference between means, is one factor that impacts power. 
The other factor is sample size, which translates into the width of the 
distributions being compared.  As you will see, power has to do with 
minimizing the amount of overlap between distributions, which can be 
minimized with a) a robust difference between means and b) narrow 
distributions. 
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Factors affecting power 

Two factors play into power, the probability of 
detecting statistical significance when we should. 

• Effect size: Difference between means 
• Sample size: Width of distributions 

Recall that in hypothesis testing comparing two means, we use the 
distribution of sample means as the comparison distribution. The 
standard deviation (i.e. the width of the distribution) is found by 
dividing by the square root of sample size. 

    

Thus, as sample size increases, the distribution becomes narrower. 
Some illustrations will help you picture how these two elements 

play into power. First, let us examine the relationship between effect 
size and power, in a simple situation of comparing the means of two 
distributions. 

In these images, the shading under the population 1 distribution 
represents power. Where does the shading start? Where the cutoff 
sample score falls on the population 2 distribution. The cutoff score for 
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a Z-test that is two-tailed, with .05 
significance level, would be at +/- 
1.96. Here the shading starts at 
about Z=2 on the population 2 
curve, and continues to the end 
of the population 1 curve. As you 
can see here, if the distance 
between distributions is robust, 
so the effect size is large, then we 
have good power. We will be 
have a pretty good chance of 
detecting a true significant 
difference. We might think of this 
as having enough “good variance”. On the other hand, if we have a very 
modest distance between distributions, so the effect size is small, then 
the distributions overlap too much, leaving little shaded area. In this 
scenario, then, we have little chance of rejecting the null hypothesis 
even when we should. 

The other factor that 
determines statistical power is 
sample size, which plays into the 
width of sampling distributions. 
When we have a large sample 
size, the distributions are 
narrower, and thus there will be 
less overlap between them. With 
effect size held constant, just 
widening the distributions is 
enough to bring us from very 

good power to rather poor power. We can think of this as having too 
much “bad variance”. 

So of course, to maximize power we would like to have a large effect 
size and a large sample size. In reality, of course, we have little control 
over effect size. As an example, either our insomnia medication helps 
people sleep a lot longer, or it only helps them sleep a little longer. 
There is little we can do about just how much of an impact our 
medication has over sleep. What we researchers can do, though, is 
make sure that our statistical analysis is based on data from many 
participants. Even with a moderate effect size, if we have a large 
sample, we will have nice narrow distributions and thus have a very 
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good shot at detecting a statistically significant result if our medication 
does help people sleep… even if it is only a modest boost. 

Let us take a look at how we can calculate power precisely for the 
simplest research design we have encountered – a Z-test. 

First, we draw out the 
comparison population 
distribution using the mean and 
standard deviation we identified 
from Step 2 of hypothesis testing. 
On a sketch of the normal 
distribution, map Z-scores to raw 
scores (X). In this example, the mean of the comparison distribution is 
18, with a standard deviation of 1. As you can see, as Z-scores go up by 
one, so does the raw score. And as the Z-scores go down by one, so 
does the raw score. 

Next, we draw out the research 
population distribution using the 
research sample mean M that we 
calculated for step 4 of 
hypothesis testing as centre and 
σM as standard deviation. Align 
the distributions according to the 
raw scores. Here the sample 
mean is 15, so we line it up the 
centre of this new distribution 
with a raw score of 15 on the 

comparison distribution. 
Next, draw a line straight up from your cutoff score. Shade in 

everything from there toward the side of the distribution that is away 
from the middle of the comparison distribution. 

Either visually estimate the Z-score where the shading starts on the 
research population distribution, or find the precise Z-score 
mathematically by converting the Z-score cutoff to a raw score on 
comparison distribution, then converting that raw score to a Z-score 
on the research population distribution. I have shown you what those 
conversions would look like in the illustrations. 

Finally, find the shaded area on the research population distribution 
by looking up the appropriate area in the Z tables. We have shaded 
more than half the curve, so we just need to add to 50% the area from 
the mean to the Z-score for the calculated Z-score of 1.04. As you can 
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see in the table the % mean to Z is 34.85%, so the total shaded area is 
84.85% 

The area you shaded corresponds to your power, the probability of 
detecting a significance difference if it existed. So in this particular 
example, we have pretty good power. Our chance of detecting 
statistical significance if it is the correct conclusion is about 85%, which 
leaves 15% chance of making a Type II error (symbolized as β). We are 
generally not too worried about Type II error, as long as it is less than 
50% risk, so this would be considered adequate statistical power. 

Our final concept is confidence intervals. Confidence intervals are 
a complete alternative procedure to hypothesis testing. They offer the 
same information, but in a different format and with a different flow of 
logic. Instead of reporting a test value and its level of significance, we 
can report a range of values, into which the real value would fall with 
a certain probability. That range of values is the confidence interval. 
A 95% confidence interval states that the research population mean 
would fall in the range of values 95% of the time. This is a similar idea 
as the hypothesis test with significance level 0.05. A 99% confidence 
interval states that the research population mean would fall in the 
range of values 99% of the time. This is a similar idea as the hypothesis 
test with significance level 0.01. 

So how do confidence intervals work? Well, the goal of inferential 
statistics (of any sort related to experimental design) is to estimate 
a population mean, from which a sample came, and decide if that 
population mean is different from the comparison population mean. 
To accomplish this judgement with hypothesis testing, we figure out 
comparison mean and variability around that mean. We then use the 
sample mean the find out if the research population mean differs from 
the comparison population mean. To accomplish the same judgement 
with confidence intervals, we start instead from the sample mean and 
the variability around that mean. We determine the range in which the 
research population mean must fall by using the variability measure. 
We then decide whether the comparison population mean falls within 
that range or beyond it. So the entire distinction is whether you start 
with attentional focus on the comparison population mean or the 
research population mean. And how you represent the results looks 
different. 

Here is a visual representation of confidence intervals and how they 
would look for a situation when we know the comparison population 
standard deviation, as we would when conducting a Z-test. 
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With this approach, we would use the normal distribution’s areas 
under the curve to figure out the range we need to capture the 
research population mean with a particular probability. As you can see, 
the range from a Z-score of -2 to +2 is pretty close to 95% probability, 
and the range of -3 to +3 is close to 99%. We place the sample mean, 
calculated from our research study sample, in the middle of this 
normal distribution. The task, then, is to add either 2 or 3 standard 
deviations to the mean to find the upper bound, and subtract either 
2 or 3 standard deviations to find the lower bound of the confidence 
interval. How many standard deviations you must go to be sure you 
include the population mean depends on how confident you need 
to be. Are you okay with 95% confidence, or should you have 99% 
confidence? That decision is based on tolerance for Type I error, just like 
with significance levels in hypothesis testing. 

To find precisely the Z-scores matching 95 or 99% confidence 
intervals, we can use the normal curve areas table. For a 95% 
confidence interval, just like with a two-tailed hypothesis test with 
significance level of .05, the Z score that precisely corresponds with 
2.5% area in the tails on either side of the curve, or 47.5% area from the 
mean to the Z score, is Z = 1.96. To find the lower end of the confidence 
interval, use this formula: 

    

In other words, subtract 1.96 standard deviations from the sample 
mean. To find the upper end of the interval, use this formula: 

    

In other words, add 1.96 standard deviations to the sample mean. 
Once you have those two limits, you can make the claim that there 
is a 95% chance that the research population mean corresponding to 
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this sample mean is between the lower end and the upper end of the 
confidence interval. 

Once you have that range, you can also determine whether there 
is a statistically significant difference between the research and 
comparison population mean, by answering this question: does the 
comparison population mean fall within the reported confidence 
interval? If so, there is no significant difference. The two means are 
too close together. If it falls outside the interval, then you can report a 
significant difference between means. 

So you end up at the same place, whether you use hypothesis testing 
or confidence intervals. The difference is simply in where you start 
from. Also, hypothesis testing can be one-tailed, but it is uncommon 
to see directional confidence intervals. Finally, if p-values are reported 
precisely, hypothesis testing offers slightly more information, but if they 
are not reported, confidence intervals offer more information. It is a 
matter of professional preference which technique you choose as a 
method for making inferences about data following a research study. 

Chapter Summary 

In this chapter, we covered three big concepts that are vital to 
understand in the context of inferential statistics. Effect size offers 
information critical to interpreting a finding of statistical significance. 
Power tells us whether tests of significance are even worth doing, or 
if we are at too much risk of Type II error. Confidence intervals offer 
a system for statistical inference that represents a full alternative to 
the hypothesis testing procedure we employed for the past several 
chapters. 

Key terms: 

effect size confidence intervals Cohen’s d 

power 
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12. Afterword 

Here we are, at the end of the course. Now, a whole universe of statistics 
memes are there for you to explore. Seriously, though, I hope you can 
look back to the beginning of the book and see how far you have 
come with your understanding of statistical concepts and practical 
approaches to applying them in a research setting. 

Are there more techniques to explore? For sure! Could you go deeper 
into the mathematical underpinnings of these statistical methods? 
Totally. But you should now have a good foundation that is ready to 
apply to typical experimental and correlational research designs. 

And hopefully, you have deeply internalized the notion that science is 
about deep humility and about measuring likely truths in probabilities. 
Now you see what I meant in the beginning of the course, that this is a 
course about decision making… making sound judgements from data. 
And now, hopefully, you have a good basic set of tools to use. 

Thanks for your hard work and practice, and your willingness to let 
me guide you – the key to learning any new skill. I hope it has been 
an enjoyable journey, and that you continue your exploration of data 
analysis. 
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Homework Chapter 1 

Assignment: 
Objective: Apply concepts Variable, Value, and Score 

1. A geologist employed by a ski resort measures the stability of a 
rock face near the lodge on a scale of 1 to 100, with 1 meaning it 
will collapse today, and 100 meaning it will last until the end of 
time. This particular rock face receives a 64. This is an example of a 
______________. 

2. A geologist employed by a ski resort measures the stability of a 
rock face near the lodge on a scale of 1 to 100, with 1 meaning it 
will collapse today, and 100 meaning it will last until the end of 
time. In this example, stability is the ______________. 

3. A geologist employed by a ski resort measures the stability of a 
rock face near the lodge on a scale of 1 to 100, with 1 meaning it 
will collapse today, and 100 meaning it will last until the end of 
time. The scale of 1 to 100 represents the ______________. 

Objective: Apply concepts Nominal, Numeric 

4. A nurse in an intensive care unit measures the risk of superbug 
infection in the ward using a metric based on the percentage 
chance of a patient becoming ill with such an infection in a two 
week period of admission. Values range from 0-100%. The variable 
of superbug infection risk would best be described as 
______________. 

5. A nurse in an intensive care unit measures the risk of superbug 
infection in the ward by recording which types of fungi/bacteria 
are present in each patient’s screening upon discharge. The 
variable of superbug infection risk would best be described as 
______________. 

Objective: Apply techniques Grouped Frequency Table, Histogram, 
Describe Distribution Shape 

6. A forensic psychologist measures 20 inmates in a prison on the 
Hare Psychopathy Checklist – Revised (PCL-R). The results are as 
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follows: 32, 40, 18, 22, 38, 25, 15, 19, 36, 33, 10, 24, 22, 18, 37, 33, 27, 25, 
40, 26. Create a grouped frequency table using value ranges that 
begin with 1s or 6s and results in 4 rows. Create a histogram using 
the same ranges. Describe the shape of the smoothed distribution 
in terms of both symmetry and peaks. The percentage of inmates 
that scored in the 31-40 range (and thus qualified as 
“Psychopaths”) is ______________. 

7. A forensic psychologist measures 20 inmates in a prison on the 
Hare Psychopathy Checklist – Revised (PCL-R). The results are as 
follows: 32, 40, 18, 22, 38, 25, 15, 19, 36, 33, 10, 24, 22, 18, 37, 33, 27, 25, 
40, 26. Create a grouped frequency table using value ranges that 
begin with 1s or 6s and results in 4 rows. Create a histogram using 
the same ranges. Describe the shape of the smoothed distribution 
in terms of both symmetry and peaks. The histogram’s X-axis is 
labeled with ______________. 

8. A forensic psychologist measures 20 inmates in a prison on the 
Hare Psychopathy Checklist – Revised (PCL-R). The results are as 
follows: 32, 40, 18, 22, 38, 25, 15, 19, 36, 33, 10, 24, 22, 18, 37, 33, 27, 25, 
40, 26. Create a grouped frequency table using value ranges that 
begin with 1s or 6s and results in 4 rows. Create a histogram using 
the same ranges. Describe the shape of the smoothed distribution 
in terms of both symmetry and peaks. The most appropriate 
description of the distribution shape is ______________. 
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Homework Chapter 2 

Assignment: 
Objective: Apply techniques Find/Calculate Mean, Median, Mode 

1. Find the mean, median and mode of the following data: 3, 8, 4, 10, 
5, 6, 3, 2, 4, 3. The mean is ______________. 

2. Find the mean, median and mode of the following data: 3, 8, 4, 10, 
5, 6, 3, 2, 4, 3. The median is______________. 

3. Find the mean, median and mode of the following data: 3, 8, 4, 10, 
5, 6, 3, 2, 4, 3. The mode is ______________. 

Objective: Apply concepts Compare measures of Central Tendency. 

4. A researcher finds that their data on the number of errors children 
make in a corn maze, for which they have prepared using virtual 
reality headsets before attempting it, include a couple of outliers. 
Two children make a lot of errors, whereas the vast majority of 
children only make a few. The distribution of the data can thus be 
described as unimodal but right-skewed. In this case, what might 
we expect are the relative locations of the mean and the median? 
The mean is ______________ than the median. 

5. A researcher replicates a study on the number of errors children 
make in a corn maze, for which they have prepared using virtual 
reality headsets before attempting it. This time some children 
make very few errors, and a similar number of children make 
many errors. The distribution of the data can thus be described as 
bimodal. The best measure of central tendency is likely to be the 
______________. 

6. A researcher replicates a study on the number of errors children 
make in a corn maze, for which they have prepared using virtual 
reality headsets before attempting it. Most children make a 
moderate amount of errors, but some make very few and some 
make many errors. The distribution of data appears unimodal and 
quite symmetrical. The mean, median and mode for this dataset 
will be ______________. 
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Objective: Apply techniques Find/Calculate Variance, Standard 
Deviation 

7. Calculate the variance and standard deviation of the following 
data: 3, 8, 4, 10, 5, 6, 3, 2, 4, 3. The variance is ______________. 

8. Calculate the variance and standard deviation of the following 
data: 3, 8, 4, 10, 5, 6, 3, 2, 4, 3. The standard deviation is 
______________. 

Objective: Apply concepts Compare measures of Variability. 

9. A journal editor’s instructions to submitting authors includes the 
guidelines that variability should be reported in units of 
measurement that are the same as the data (e.g., if number of 
days is the unit of measurement of the data reported, then the 
variability reported should also be in terms of number of days). The 
best way to report variability would be ______________. 

Objective: Apply concepts Interpret measures of Central Tendency and 
Variability. 

10. A criminologist reports that the number of crimes in downtown 
Vancouver on summer weekends was M=5.9 (SD=2.2). This 
indicates that ______________. 
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Homework Chapter 3 

Assignment: 
Objective: Apply techniques Convert between raw scores and Z-

scores 

1. On the Multidimensional Scale of Perceived Social Support, the 
mean of a university student sample was 5.80, with a standard 
deviation of 0.86. For a student who scored 6.2 on the scale, what 
is the Z-score? The Z-score is ______________. 

2. On the Multidimensional Scale of Perceived Social Support, the 
mean of a university student sample was 5.80, with a standard 
deviation of 0.86. For a student who scored 4.1 on the scale, what 
is the Z-score? The Z-score is ______________. 

3. On the Multidimensional Scale of Perceived Social Support, the 
mean of a university student sample was 5.80, with a standard 
deviation of 0.86. For a student whose Z-score is 0, what is the raw 
score? The raw score is ______________. 

4. On the Multidimensional Scale of Perceived Social Support, the 
mean of a university student sample was 5.80, with a standard 
deviation of 0.86. For a student whose Z-score is -0.80, what is the 
raw score? The raw score is ______________. 

Objective: Apply concepts Compare scores on different scales using 
standard scores. 

5. Two siblings wish to compete for bragging rights on who 
performed best on their standardized test – but one took the LSAT 
for law school and the other took the MCAT for medical school. 
Sarah scored 163 (M=151.88, SD=9.95), but Rachel scored 510 on the 
MCAT (M=500.9, SD=10.6). The sibling who scored highest was 
______________. 

Objective: Apply techniques Working with Areas under the Normal 
Curve 

6. Assuming that scores on a creativity measure are normally 
distributed, with a mean of 90 and a standard deviation of 10, what 
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is the probability of an individual scoring below 60? The 
probability is ______________. 

7. Assuming that scores on a creativity measure are normally 
distributed, with a mean of 90 and a standard deviation of 10, 
between which values do the middle 50% of people score? (Hint: 
the middle 50% would be if you shade outward from the middle of 
the distribution in either direction until 50% of the distribution is 
shaded.) The middle 50% score between ______________. 

8. Assuming that scores on a creativity measure are normally 
distributed, with a mean of 90 and a standard deviation of 10, what 
is the probability of an individual scoring above 72? The probability 
is ______________. 

9. At an art school, a student is expressing a great deal of pride for 
being in the 90th percentile on a creativity measure that is 
normally distributed, with a mean of 90 and a standard deviation 
of 10. What raw score did the student have? The score is 
______________. 

192  |  Homework Chapter 3



Homework Chapter 4 

Objective: Review concepts Steps of Hypothesis Testing Procedure 

1. List and explain the logic of the five hypothesis testing steps. Step 
1 of hypothesis testing is ______________. 

2. List and explain the logic of the five hypothesis testing steps. Step 
3 of hypothesis testing is ______________. 

3. List and explain the logic of the five hypothesis testing steps. Step 
5 of hypothesis testing is ______________. 

Objective: Apply techniques Conducting a hypothesis test 

4. In a study, researchers want to compare task performance of 
participants who see images related to ambiguous partial word 
stimuli presented later, to other participants who see images that 
are unrelated. The number of words completed in the task is 
recorded to see if there is a difference. Data: Normative 
neuropsychological data have established that the mean words 
completed by the population of people who have seen unrelated 
images is 5, with standard deviation 2.4. The individual in this 
study who saw related images completed 9 words. In this 
hypothesis test, the two populations are ______________. 

5. In a study, researchers want to compare task performance of 
participants who see images related to ambiguous partial word 
stimuli presented later, to other participants who see images that 
are unrelated. The number of words completed in the task is 
recorded to see if there is a difference. Data: Normative 
neuropsychological data have established that the mean words 
completed by the population of people who have seen unrelated 
images is 5, with standard deviation 2.4. The individual in this 
study who saw related images completed 9 words. In this 
hypothesis test, the hypotheses are ______________. 

6. In a study, researchers want to compare task performance of 
participants who see images related to ambiguous partial word 
stimuli presented later, to other participants who see images that 
are unrelated. The number of words completed in the task is 
recorded to see if there is a difference. Data: Normative 
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neuropsychological data have established that the mean words 
completed by the population of people who have seen unrelated 
images is 5, with standard deviation 2.4. The individual in this 
study who saw related images completed 9 words. In this 
hypothesis test, Step 2 characteristics of the comparison 
distribution would be ______________. 

7. In a study, researchers want to compare task performance of 
participants who see images related to ambiguous partial word 
stimuli presented later, to other participants who see images that 
are unrelated. The number of words completed in the task is 
recorded to see if there is a difference. Data: Normative 
neuropsychological data have established that the mean words 
completed by the population of people who have seen unrelated 
images is 5, with standard deviation 2.4. The individual in this 
study who saw related images completed 9 words. In this 
hypothesis test, assuming a significance level of .01, the cutoff 
score(s) in Step 3 is/are ______________. 

8. In a study, researchers want to compare task performance of 
participants who see images related to ambiguous partial word 
stimuli presented later, to other participants who see images that 
are unrelated. The number of words completed in the task is 
recorded to see if there is a difference. Data: Normative 
neuropsychological data have established that the mean words 
completed by the population of people who have seen unrelated 
images is 5, with standard deviation 2.4. The individual in this 
study who saw related images completed 9 words. In this 
hypothesis test, Step 4 would give the Z-score result of 
______________. 

9. In a study, researchers want to compare task performance of 
participants who see images related to ambiguous partial word 
stimuli presented later, to other participants who see images that 
are unrelated. The number of words completed in the task is 
recorded to see if there is a difference. Data: Normative 
neuropsychological data have established that the mean words 
completed by the population of people who have seen unrelated 
images is 5, with standard deviation 2.4. The individual in this 
study who saw related images completed 9 words. In this 
hypothesis test, the conclusion in Step 5 should be ______________. 
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Homework Chapter 5 

Assignment: 
Objective: Review concepts Central Limit Theorem 

1. According to the Central Limit Theorem, which conditions must 
be met in order to make the normal curve assumption? The 
conditions are that ______________. 

 
Objective: Apply concepts Distribution of Means 

2. If the sample size is 100, then the distribution of means will have a 
standard deviation that is ______________ the standard deviation of 
the distribution of individuals. 

 
Objective: Apply concepts Decision Matrix and Error Types 

3. A researcher predicts that positive emotions will increase the 
likelihood of forming false memories. In this case, a Type I error 
would be ______________. 

 
Objective: Apply techniques Conducting a Single Sample Z-test 

4. A researcher predicts that positive emotions will increase the 
likelihood of forming false memories. Across metanalysis of many 
studies has revealed that the norm for false memory creation is 
0.72 on the DRM paradigm recognition test, with a standard 
deviation of 0.29. The scores for the research sample who 
experienced the induction of positive emotions before completing 
the DRM recognition test are presented in the table below (N=34). 
Conduct a hypothesis test of the researcher’s prediction with 
significance level .05. The populations should be defined as 
______________. 
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0.93 

0.96 

0.63 

0.92 

0.77 

0.75 

0.72 

0.98 

0.84 

0.52 

0.92 

0.89 

0.92 

0.82 

0.76 

0.87 

0.89 

0.93 

0.54 

0.52 

0.80 

0.91 

0.94 

0.69 

0.97 

0.88 

0.71 

0.99 

0.93 

0.75 

0.77 

0.97 
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0.51 

0.98 

 

5. For the research scenario described in problem 4, the hypotheses 
should be defined as ______________. 

6. For the research scenario described in problem 4, the 
characteristics of the comparison distribution should be defined 
as ______________. 

7. For the research scenario described in problem 4, the cutoff Z 
score should be ______________. 

8. For the research scenario described in problem 4, the calculated 
Z-test result should be ______________. 

9. For the research scenario described in problem 4, the hypothesis 
test decision should be ______________. 

10. For the research scenario described in problem 4, the p-value 
associated with the Z-test result is _____________. 

11. For the research scenario described in problem 4, the conclusion 
as written in a published results section could be ______________. 

 
Objective: Apply techniques Conducting a Single Sample t-test 

12. A researcher predicts that positive emotions will increase the 
likelihood of forming false memories. Across metanalysis of many 
studies has revealed that the norm for false memory creation is 
0.72 on the DRM paradigm recognition test. The population 
standard deviation is unclear. The scores for the research sample 
who experienced the induction of positive emotions before 
completing the DRM recognition test are presented in the table 
below (N=34). Conduct a hypothesis test of the researcher’s 
prediction with significance level .05. For this research scenario, 
the characteristics of the comparison distribution should be 
defined as ______________. 
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0.93 

0.96 

0.63 

0.92 

0.77 

0.75 

0.72 

0.98 

0.84 

0.52 

0.92 

0.89 

0.92 

0.82 

0.76 

0.87 

0.89 

0.93 

0.54 

0.52 

0.80 

0.91 

0.94 

0.69 

0.97 

0.88 

0.71 

0.99 

0.93 

0.75 

0.77 

0.97 
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0.51 

0.98 

13. For the research scenario described in problem 12, the cutoff t 
score should be ______________. 

14. For the research scenario described in problem 12, the calculated 
t-test result should be ______________. 

15. For the research scenario described in problem 12, the hypothesis 
test decision should be ______________. 

16. For the research scenario described in problem 12, the p-value 
associated with the t-test result is ______________. 

17. For the research scenario described in problem 12, the conclusion 
as written in a published results section could be ______________. 

Objective: Apply concepts Decision Tree 

18. The Z-test is appropriate to use when ______________. 
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Homework Chapter 6 

Assignment: 
Objective: Apply concepts Repeated Measures Design 

1. A researcher is contemplating various ways to design their study 
examining the effects of irrigation on crop yield. The first possible 
design would be to take a sample of yields from plots with a 
standard irrigation system and compare them to the known yield 
from plots without irrigation in the same region. Another would 
be to sample irrigated and non-irrigation crop yields from various 
regions and compare them, ensuring the plots are matched on 
the variable of region. A final option would be to sample crop 
yields from the same plots first before and then after installation 
of a standard irrigation system and compare the yields prior to 
irrigation to those following irrigation. The research design that 
would best represent repeated measures design is ______________. 

 
Objective: Apply techniques Conducting a Dependent Means t-test 

2. A researcher predicts crop yields sampled from the same plots 
first before and then after installation of a standard irrigation 
system will differ. The scores for the research samples before and 
after irrigation are presented in the table below, in units (bushels 
per hectare; N=28). Conduct a hypothesis test of the researcher’s 
prediction with significance level .10. The populations should be 
defined as ______________. 
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Plot Before irrigation After irrigation 

1 163 208 

2 131 198 

3 160 208 

4 183 198 

5 168 186 

6 135 177 

7 179 173 

8 143 203 

9 161 203 

10 154 192 

11 162 186 

12 163 185 

13 166 176 

14 181 184 

15 132 199 

16 149 197 

17 169 199 

18 148 202 

19 169 188 

20 158 200 

21 143 201 

22 150 191 

23 178 194 

24 147 185 

25 170 202 

26 171 178 

27 169 212 

28 180 180 

 

3. For the research scenario described in problem 2, the hypotheses 
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should be defined as ______________. 
4. For the research scenario described in problem 2, the 

characteristics of the comparison distribution should be defined 
as ______________. 

5. For the research scenario described in problem 2, the cutoff t 
score should be ______________. 

6. For the research scenario described in problem 2, the calculated t-
test result should be ______________. 

7. For the research scenario described in problem 2, the hypothesis 
test decision should be ______________. 

8. For the research scenario described in problem 2, the p-value 
associated with the t-test result is _____________. 

9. For the research scenario described in problem 2, the conclusion 
as written in a published results section could be ______________. 

 
Objective: Apply concepts Decision Tree 

10. The dependent means t-test is appropriate to use when 
______________. 
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Homework Chapter 7 

Assignment: 
Objective: Apply concepts Independent Means Design 

1. A researcher is contemplating various ways to design their study 
examining the effects of irrigation on crop yield. The first possible 
design would be to take a sample of yields from plots with a 
standard irrigation system and compare them to a sample of 
yields from plots without irrigation in the same region. Another 
would be to sample irrigated and non-irrigation crop yields from 
various regions and compare them, ensuring the plots are 
matched on the variable of region. A final option would be to 
sample crop yields from the same plots first before and then after 
installation of a standard irrigation system and compare the yields 
prior to irrigation to those following irrigation. The research design 
that would require an independent means t-test is ______________. 

 
Objective: Apply techniques Conducting a Dependent Means t-test 

2. A researcher predicts crop yields from plots with a standard 
irrigation system will be greater than yields from plots without 
irrigation in the same region. The scores for the research samples 
are presented in the table below, in units (bushels per hectare). 
Conduct a hypothesis test of the researcher’s prediction with 
significance level .05. The populations should be defined as 
______________. 
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Plot Non-irrigated Plot Irrigated 

1 163 29 208 

2 131 30 198 

3 160 31 208 

4 183 32 198 

5 168 33 186 

6 135 34 177 

7 179 35 173 

8 143 36 203 

9 161 37 203 

10 154 38 192 

11 162 39 186 

12 163 40 185 

13 166 41 176 

14 181 42 184 

15 132 43 199 

16 149 44 197 

17 169 45 199 

18 148 46 202 

19 169 47 188 

20 158 48 200 

21 143 49 201 

22 150 50 191 

23 178 51 194 

24 147 52 185 

25 170 53 202 

26 171 54 178 

27 169 55 212 

28 180 56 180 

 

3. For the research scenario described in problem 2, the hypotheses 
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should be defined as ______________. 
4. For the research scenario described in problem 2, the 

characteristics of the comparison distribution should be defined 
as ______________. 

5. For the research scenario described in problem 2, the cutoff t 
score should be ______________. 

6. For the research scenario described in problem 2, the calculated t-
test result should be ______________. 

7. For the research scenario described in problem 2, the hypothesis 
test decision should be ______________. 

8. For the research scenario described in problem 2, the p-value 
associated with the t-test result is _____________. 

9. For the research scenario described in problem 2, the conclusion 
as written in a published results section could be ______________. 
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Homework Chapter 8 

Assignment: 
Objective: Apply concepts Factors and Levels 

1. A psychology honours students is conducting a study to 
determine whether various categories of social support can 
impact cognitive performance. They measure response times on 
the Stroop task in people who report a low, medium, or high 
degree of social support from friends. In this research design, the 
factor is ______________. 

2. A psychology honours students is conducting a study to 
determine whether various categories of social support can 
impact cognitive performance. They measure response times on 
the Stroop task in people who report a low, medium, or high 
degree of social support from friends. In this research design, the 
levels are ______________. 

 
Objective: Apply techniques Conducting a Dependent Means t-test 

3. A psychology honours students is conducting a study to 
determine whether various categories of social support can 
impact cognitive performance. They measure response times on 
the Stroop task in people who report a low, medium, or high 
degree of social support from friends. The scores for the research 
samples are presented in the table below, in seconds. Conduct a 
hypothesis test of the researcher’s prediction with significance 
level .05. The populations should be defined as ______________. 
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Low Med High 

9.15 6.35 7.30 

9.00 8.00 7.34 

8.56 8.24 9.20 

10.10 6.80 6.55 

9.02 6.39 7.49 

8.18 7.40 7.24 

7.30 7.29 10.66 

7.88 

 

4. For the research scenario described in problem 3, the hypotheses 
should be defined as ______________. 

5. For the research scenario described in problem 3, the 
characteristics of the comparison distribution should be defined 
as ______________. 

6. For the research scenario described in problem 3, the cutoff F 
score should be ______________. 

7. For the research scenario described in problem 3, the calculated F-
test result should be ______________. 

8. For the research scenario described in problem 3, the hypothesis 
test decision should be ______________. 

9. For the research scenario described in problem 3, the p-value 
associated with the F-test result is _____________. 

10. For the research scenario described in problem 3, the conclusion 
as written in a published results section could be ______________. 

 
Objective: Apply concepts Experimentwise alpha level 

11. A psychology honours students is conducting a study to 
determine whether various categories of social support can 
impact cognitive performance. They measure response times on 
the Stroop task in people who report a low, medium, or high 
degree of social support from friends. If t-tests were used to 
conduct tests of statistically significant difference between 
means, at significance level .05, the experimentwise alpha level 
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would effectively become ______________. 

 
Objective: Apply concepts Planned Contrasts and Posthoc tests 

12. Given the results of the one-way ANOVA analysis conducted for 
the research scenario described in problem 3, the researchers 
would conduct the following analyses to explore which groups 
differed significantly from each other: ______________. 

 
Objective: Review techniques Bonferroni and Scheffé Corrections 

13. The Bonferroni correction is typically used for planned contrasts 
and protects against inflation of Type I error risk by ______________. 

14. The Scheffé correction is typically used for post-hoc tests and 
protects against inflation of Type I error risk by ______________. 
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Homework Chapter 9 

Coming soon… 
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Homework Chapter 10 

Assignment: 
Objective: Review concept Correlation and Causation 

1. The two major requirements for causal conclusions from an 
experimental design are ______________. 

Objective: Apply concepts Correlation, Causation 

2. If a strong positive correlation between the viewing of violent films 
and antisocial behaviour were observed, many might assume that 
viewing violent films causes antisocial behaviour. This would be a 
faulty assumption because ______________. 

Objective: Apply technique Correlation 

3. A researcher seeks to replicate a study that found a significant 
positive relationship between women’s symptoms of obsessive-
compulsive disorder and their core beliefs regarding the 
importance of holding unrelenting standards. The data collected 
are shown below. Using a scatter plot, examine the strength and 
direction of the relationship between the two variables. The 
relationship appears to be ______________. 
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Client OCD (X) Beliefs (Y) 

1 4.08 7.20 

2 4.43 3.69 

3 6.56 7.27 

4 1.72 3.62 

5 3.79 2.83 

6 1.51 4.71 

7 4.32 0.64 

8 6.16 7.62 

9 5.65 0.22 

10 2.61 5.08 

11 3.97 0.42 

12 2.79 3.36 

13 1.36 1.61 

14 1.71 3.15 

15 3.10 3.25 

16 3.26 4.45 

17 3.40 4.11 

18 0.81 4.32 

19 1.63 0.20 

20 4.03 1.98 

21 3.24 5.16 

22 2.00 6.67 

23 3.92 0.82 

24 7.03 3.09 

25 0.95 0.52 

26 0.29 3.14 

4. For the research scenario described in problem 3, for a hypothesis 
test on correlation, assume the Populations are defined as follows. 
Population 1: Women like those in this study; Population 2: 
Women for whom there is no (positive) relationship between the 
two variables. The hypotheses should be defined as ______________. 

5. For the research scenario described in problem 3, the 
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characteristics of the comparison distribution should be defined 
as ______________. 

6. For the research scenario described in problem 3, assuming a 
significance level of .01, the cutoff t score should be ______________. 

7. For the research scenario described in problem 3, the calculated t-
test result should be ______________. 

8. For the research scenario described in problem 3, the hypothesis 
test decision should be ______________. 

9. For the research scenario described in problem 3, the p-value 
associated with the t-test result is _____________. 

10. For the research scenario described in problem 3, the conclusion 
as written in a published results section could be ______________. 

Objective: Apply technique Regression 

11. For the research scenario described in problem 3, the slope of the 
best fit regression line would be ______________. 

12. For the research scenario described in problem 3, the intercept of 
the best fit regression line would be ______________. 

Objective: Apply concepts Prediction 

13. For the research scenario described in problem 3, the predicted 
core beliefs score for a woman with the OCD symptom score of 
3.70 would be ______________. 

14. The accuracy of predictions made from the regression model 
from the data in the research scenario described in problem 3 
would be ______________. 
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Homework Chapter 11 

Coming soon… 
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Key Terms List 

Σ 

in summation notation, a symbol that denotes “taking the sum” of 
a series of numbers 

α 

the probability of making a Type I error; used as shorthand for 
significance level 

β 

the probability of making a Type II error; the antithesis of power 

Analysis of Variance 

also called ANOVA, a system of data analysis that is very flexible 
and adaptable to a variety of research designs. It is based on a 
statistical concept called the general linear model and involves the 
technique of partitioning variance. 

bimodal 

a descriptor of a distribution indicating that there are two peaks, or 
two collections of scores 

Bonferroni correction 

adjustment to avoid inflation of experimentwise risk of Type I error, 
by dividing significance level by the number of planned contrasts 
to be conducted 

central limit theorem 

mathematical theorem that proposes the following: as long as we 
take a decent-sized sample, if we took many samples (10,000) of 
large enough size (30+) and took the mean each time, the 
distribution of those means will approach a normal distribution, 
even if the scores from each sample are not normally distributed 
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central tendency 

a statistical measure that defines the centre of a distribution with 
a single score 

Cohen’s d 

a measure of effect size commonly used to quantify the difference 
between two population means; 0.2 is small, 0.5 is medium, and 0.8 
is considered large 

confidence intervals 

an approach to inferential statistics that serves as an alternative 
to hypothesis testing. A statement of where a research population 
mean should lie with a particular probability. 

correlation 

statistical analysis of the direction and strength of the relationships 
between two numerical variables 

covariance 

the variability that two numeric variables have in common 

cutoff sample score 

critical value that serves as a decision criterion in hypothesis testing 

degrees of freedom 

the number of scores in a given calculation that are free to vary. 

dependent means t-test 

a test for statistical significance when comparing mean difference 
scores to zero in repeated measures or matched pairs designs 

dependent variables 

a variable you measure to detect a difference/change as a result of 
the manipulation -- most often it is numeric 
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descriptive 

ways to summarize or organize data from a research study – 
essentially allowing us to describe what the data are 

directional hypothesis 

a research prediction that the research population mean will be 
“greater than” or "less than" the comparison population mean 

distribution of means 

also called a sampling distribution, is the distribution of many 
sample means drawn from the population of individual scores 

do not reject the null hypothesis 

a decision in hypothesis testing that is inconclusive because the 
sample score is less extreme than the cutoff score 

effect size 

a measure of how well a statistical model explains variability, apart 
from statistical significance, e.g. how big a difference between 
means is, or just how much variability a regression model explains 

experimentwise alpha level 

the problem of accumulating risk of Type I error with multiple 
statistical tests on the same data 

factor 

in ANOVA, a grouping variable used to account for variance among 
scores; in an experiment a factor is an independent variable 

frequency tables 

a way to summarize a dataset in table form, to organize the data 
and make it easy to get an overview of the dataset quickly 

general linear model 

an extension of the statistical technique linear regression that is 
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adaptable to various combinations of independent (nominal) and 
dependent (numeric) variables 

grouped frequency table 

a frequency table that defines ranges of values in the first column, 
and reports the frequency of scores that fall within each range 

histogram 

a graph for summarizing numeric data that essentially is a 
frequency table that has been turned on its side, with the added 
benefit of a visual representation of the frequency as the height of 
the bars in the graph, rather than just a number 

homoscedasticity assumption 

independent means t-tests require the assumption that the two 
populations we are comparing have the same variance 

hypothesis testing 

a formal decision making procedure often used in inferential 
statistics 

independent means t-test 

a statistical test used in hypothesis tests comparing the means 
of two independent samples, created by random assignment of 
individuals to experimental and control groups 

independent variables 

a variable you manipulate -- most often it is categorical, or nominal 

inferential 

analytical tools that allow us to draw conclusions based on data 
from a research study -- essentially allowing us to make a 
statement about what the data mean 

interaction 

the degree to which the contribution of one factor to explaining 
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variability in the data depends on the other factor; the synergy 
among factors in explaining variance 

left skewed 

a descriptor of a distribution that indicates asymmetry, specifically 
with a low frequency tail leading off to the left 

levels 

the individual conditions or values that make up a factor, a nominal 
variable that forms the groups in analysis of variance 

levels of statistical significance 

the probability level that we are willing to accept as a risk that the 
score from our research sample might occur by random chance 
within the comparison distribution. By convention, it is set to one 
of three levels: 10%, 5%, or 1%. 

M 

the symbol for the mean (average) of scores in a sample 

main effect 

the degree to which one of the factors explains variability in the 
data when taken on its own, independent of the other factor 

matched pairs 

a research design for which a dependent means t-test may be used 
to test for a hypothesis test; in this design two separate samples 
are used, but each individual in a sample is matched one-to-one 
with an individual in the other sample, most often matching 
participants on a a possible confounding variable as a way to 
control for the effects of that variable 

mean 

the same thing as an average: you add up all the numbers, then 
divide by how many numbers there were. Conceptually we can 
think of the mean as the balancing point for the distribution. 
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median 

the midpoint of the scores after placing them in order. The median 
is a counting-based measure: the point at which half of the scores 
fall above and half of the scores fall below. 

mode 

the score(s) that occur(s) most often in the dataset 

N 

the symbol for the number of scores in a sample 

nominal 

variables that label or categorize something, and any numbers 
used to measure these variables are arbitrary and do not indicate 
quantity or size 

non-directional hypothesis 

a research prediction that the research population mean will be 
“different from" the comparison population mean, but allows for 
the possibility that the research population mean may be either 
greater than or less than the comparison population mean 

normal curve 

a theoretical distribution, sometimes called a Z distribution, has a 
very distinct set of properties that make it a useful model for data 
analysis (e.g. 2-14-34% area rule) 

normal curve assumption 

parametric tests like the t-test and Z-test require the assumption 
that the distribution of means for any given population is normally 
distributed 

null hypothesis 

the prediction that the population from which sample came is not 
different from the comparison population 
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numeric 

variables for which numbers are actually meaningful -- they 
indicate the size or amount of something 

one-tailed test 

a hypothesis test in which there is only one cutoff sample score on 
either the lower or the upper end of the comparison distribution 

p-value 

the probability of the observed sample score or more extreme 
occurring at random under the comparison distribution 

participant variables 

variables used like independent variables in (quasi-)experimental 
research designs, but which cannot be manipulated or assigned 
randomly to participants, and as such must not generate cause-
effect conclusions 

partitioning variance 

the allocation of variability among scores in numeric data into 
different buckets, like treatment effects vs. error, or between-
groups vs. within-groups variance 

percentile 

the score at which a given percentage of scores in the normal 
distribution fall beneath 

planned contrasts 

statistical tests of pairwise comparisons among groups, used to 
follow up on a significant ANOVA result, when researchers know in 
advance which groups they expect to differ 

population 

all possible individuals or scores about which we would ideally 
draw conclusions 
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posthoc tests 

statistical tests of pairwise comparisons among groups, used to 
follow up on a significant ANOVA result, when researchers do not 
know in advance which groups they expect to differ and wish to 
test all possible combinations 

power 

the probability of rejecting the null hypothesis (i.e. finding 
statistical significance) if the research hypothesis is in fact true. 
Depends on effect size and sample size. 

probability 

in a situation where several different outcomes are possible, the 
probability of any specific outcome is a fraction or proportion of all 
possible outcomes 

r 

correlation coefficient that describes the strength and direction of 
the relationship between two numeric variables. Can be between -1 
and 0 and between 0 and +1. 

r squared 

proportion of variability in one variable that can be explained by the 
relationship with the other variable. Can be between 0 and 1. 

regression 

a statistical model that allows for prediction based on a trend line 
that “best fits” the data points that we have collected. 
Mathematically, a regression line is one that minimizes the squared 
deviations (i.e. error) of each point from the line. 

reject the null hypothesis 

a decision in hypothesis testing that concludes statistical 
significance because the sample score is more extreme than the 
cutoff score 
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repeated measures 

also known as within-subjects designs or pre-test post-test design, 
in which the experiment involves obtaining two separate scores for 
each individual in a single sample. The same participants are used 
in all treatment conditions. 

research hypothesis 

prediction that the population from which the research sample 
came is different from the comparison population 

right skewed 

a descriptor of a distribution that indicates asymmetry, specifically 
with a low frequency tail leading off to the right 

sample 

the individuals or scores about which we are actually drawing 
conclusions 

Scheffe’s correction 

in posthoc analyses, an adjustment to correct for inflated 
experimentwise risk of Type I error, by dividing the F value by the 
overall degrees of freedom between from the original overall 
ANOVA analysis 

score 

a particular individual’s value on the variable 

standard deviation 

a common measure of variability in numeric data. The average 
distance of a scores from the mean. 

standard error of the mean 

standard deviation of the distribution of means 

statistically significant 

the conclusion from a hypothesis test that probability of the 

Key Terms List  |  223



observed result occurring randomly within the comparison 
distribution is less than the significance level 

Sum of Squares 

the sum of squared deviations, or differences, between scores and 
the mean in a numeric dataset 

t-distributions 

a series of distributions, based on the normal distribution, that 
adjust their shape according to degrees of freedom (which in turn 
is based on sample size) 

t-test 

statistical test to test the differences between two population 
means. Suitable for single sample design when standard deviation 
is unknown, or in two-sample designs. 

two-tailed test 

a hypothesis test in which there are two cutoff sample scores, one 
on either end of the comparison distribution 

Type I error 

if we made the decision to reject the null hypothesis when it is true 

Type II error 

if we made the decision to not reject the null hypothesis but the 
research hypothesis is true 

μM 

population mean for the distribution of means 

unimodal 

a descriptor of a distribution indicating that there is one peak, or a 
single collection of scores 
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value 

any possible number or category that a variable could take on 

variable 

a quality or a quantity that is different for different individuals 

variance 

a common measure of variability in numeric data. The average 
squared distance of scores from the mean. 

Z-scores 

standard scores that allow us to transform scores in any numeric 
dataset, using any scale, into a standard metric 

Z-test 

statistical hypothesis test suitable for comparing the means of two 
populations, when the comparison population mean and standard 
deviation are known 
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Normal Curve (Z) Area 
Tables 
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Z % mean to Z % in tail 

0.00 0.00% 50.00% 

0.01 0.40% 49.60% 

0.02 0.80% 49.20% 

0.03 1.20% 48.80% 

0.04 1.60% 48.40% 

0.05 1.99% 48.01% 

0.06 2.39% 47.61% 

0.07 2.79% 47.21% 

0.08 3.19% 46.81% 

0.09 3.59% 46.41% 

Z % mean to Z % in tail 

0.10 3.98% 46.02% 

0.11 4.38% 45.62% 

0.12 4.78% 45.22% 

0.13 5.17% 44.83% 

0.14 5.57% 44.43% 

0.15 5.96% 44.04% 

0.16 6.36% 43.64% 

0.17 6.75% 43.25% 

0.18 7.14% 42.86% 

0.19 7.53% 42.47% 

Z % mean to Z % in tail 

0.20 7.93% 42.07% 

0.21 8.32% 41.68% 

0.22 8.71% 41.29% 

0.23 9.10% 40.90% 

0.24 9.48% 40.52% 

0.25 9.87% 40.13% 

0.26 10.26% 39.74% 

0.27 10.64% 39.36% 

0.28 11.03% 38.97% 

0.29 11.41% 38.59% 

Z % mean to Z % in tail 
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0.30 11.79% 38.21% 

0.31 12.17% 37.83% 

0.32 12.55% 37.45% 

0.33 12.93% 37.07% 

0.34 13.31% 36.69% 

0.35 13.68% 36.32% 

0.36 14.06% 35.94% 

0.37 14.43% 35.57% 

0.38 14.80% 35.20% 

0.39 15.17% 34.83% 

Z % mean to Z % in tail 

0.40 15.54% 34.46% 

0.41 15.91% 34.09% 

0.42 16.28% 33.72% 

0.43 16.64% 33.36% 

0.44 17.00% 33.00% 

0.45 17.36% 32.64% 

0.46 17.72% 32.28% 

0.47 18.08% 31.92% 

0.48 18.44% 31.56% 

0.49 18.79% 31.21% 

Z % mean to Z % in tail 

0.50 19.15% 30.85% 

0.51 19.50% 30.50% 

0.52 19.85% 30.15% 

0.53 20.19% 29.81% 

0.54 20.54% 29.46% 

0.55 20.88% 29.12% 

0.56 21.23% 28.77% 

0.57 21.57% 28.43% 

0.58 21.90% 28.10% 

0.59 22.24% 27.76% 

Z % mean to Z % in tail 

0.60 22.57% 27.43% 
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0.61 22.91% 27.09% 

0.62 23.24% 26.76% 

0.63 23.57% 26.43% 

0.64 23.89% 26.11% 

0.65 24.22% 25.78% 

0.66 24.54% 25.46% 

0.67 24.86% 25.14% 

0.68 25.17% 24.83% 

0.69 25.49% 24.51% 

Z % mean to Z % in tail 

0.70 25.80% 24.20% 

0.71 26.11% 23.89% 

0.72 26.42% 23.58% 

0.73 26.73% 23.27% 

0.74 27.04% 22.96% 

0.75 27.34% 22.66% 

0.76 27.64% 22.36% 

0.77 27.94% 22.06% 

0.78 28.23% 21.77% 

0.79 28.52% 21.48% 

Z % mean to Z % in tail 

0.80 28.81% 21.19% 

0.81 29.10% 20.90% 

0.82 29.39% 20.61% 

0.83 29.67% 20.33% 

0.84 29.95% 20.05% 

0.85 30.23% 19.77% 

0.86 30.51% 19.49% 

0.87 30.78% 19.22% 

0.88 31.06% 18.94% 

0.89 31.33% 18.67% 

Z % mean to Z % in tail 

0.90 31.59% 18.41% 

0.91 31.86% 18.14% 
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0.92 32.12% 17.88% 

0.93 32.38% 17.62% 

0.94 32.64% 17.36% 

0.95 32.89% 17.11% 

0.96 33.15% 16.85% 

0.97 33.40% 16.60% 

0.98 33.65% 16.35% 

0.99 33.89% 16.11% 

Z % mean to Z % in tail 

1.00 34.13% 15.87% 

1.01 34.38% 15.62% 

1.02 34.61% 15.39% 

1.03 34.85% 15.15% 

1.04 35.08% 14.92% 

1.05 35.31% 14.69% 

1.06 35.54% 14.46% 

1.07 35.77% 14.23% 

1.08 35.99% 14.01% 

1.09 36.21% 13.79% 

Z % mean to Z % in tail 

1.10 36.43% 13.57% 

1.11 36.65% 13.35% 

1.12 36.86% 13.14% 

1.13 37.08% 12.92% 

1.14 37.29% 12.71% 

1.15 37.49% 12.51% 

1.16 37.70% 12.30% 

1.17 37.90% 12.10% 

1.18 38.10% 11.90% 

1.19 38.30% 11.70% 

Z % mean to Z % in tail 

1.20 38.49% 11.51% 

1.21 38.69% 11.31% 

1.22 38.88% 11.12% 
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1.23 39.07% 10.93% 

1.24 39.25% 10.75% 

1.25 39.44% 10.56% 

1.26 39.62% 10.38% 

1.27 39.80% 10.20% 

1.28 39.97% 10.03% 

1.29 40.15% 9.85% 

Z % mean to Z % in tail 

1.30 40.32% 9.68% 

1.31 40.49% 9.51% 

1.32 40.66% 9.34% 

1.33 40.82% 9.18% 

1.34 40.99% 9.01% 

1.35 41.15% 8.85% 

1.36 41.31% 8.69% 

1.37 41.47% 8.53% 

1.38 41.62% 8.38% 

1.39 41.77% 8.23% 

Z % mean to Z % in tail 

1.40 41.92% 8.08% 

1.41 42.07% 7.93% 

1.42 42.22% 7.78% 

1.43 42.36% 7.64% 

1.44 42.51% 7.49% 

1.45 42.65% 7.35% 

1.46 42.79% 7.21% 

1.47 42.92% 7.08% 

1.48 43.06% 6.94% 

1.49 43.19% 6.81% 

Z % mean to Z % in tail 

1.50 43.32% 6.68% 

1.51 43.45% 6.55% 

1.52 43.57% 6.43% 

1.53 43.70% 6.30% 

Normal Curve (Z) Area Tables  |  231



1.54 43.82% 6.18% 

1.55 43.94% 6.06% 

1.56 44.06% 5.94% 

1.57 44.18% 5.82% 

1.58 44.29% 5.71% 

1.59 44.41% 5.59% 

Z % mean to Z % in tail 

1.60 44.52% 5.48% 

1.61 44.63% 5.37% 

1.62 44.74% 5.26% 

1.63 44.84% 5.16% 

1.64 44.95% 5.05% 

1.65 45.05% 4.95% 

1.66 45.15% 4.85% 

1.67 45.25% 4.75% 

1.68 45.35% 4.65% 

1.69 45.45% 4.55% 

Z % mean to Z % in tail 

1.70 45.54% 4.46% 

1.71 45.64% 4.36% 

1.72 45.73% 4.27% 

1.73 45.82% 4.18% 

1.74 45.91% 4.09% 

1.75 45.99% 4.01% 

1.76 46.08% 3.92% 

1.77 46.16% 3.84% 

1.78 46.25% 3.75% 

1.79 46.33% 3.67% 

Z % mean to Z % in tail 

1.80 46.41% 3.59% 

1.81 46.49% 3.51% 

1.82 46.56% 3.44% 

1.83 46.64% 3.36% 

1.84 46.71% 3.29% 
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1.85 46.78% 3.22% 

1.86 46.86% 3.14% 

1.87 46.93% 3.07% 

1.88 46.99% 3.01% 

1.89 47.06% 2.94% 

Z % mean to Z % in tail 

1.90 47.13% 2.87% 

1.91 47.19% 2.81% 

1.92 47.26% 2.74% 

1.93 47.32% 2.68% 

1.94 47.38% 2.62% 

1.95 47.44% 2.56% 

1.96 47.50% 2.50% 

1.97 47.56% 2.44% 

1.98 47.61% 2.39% 

1.99 47.67% 2.33% 

Z % mean to Z % in tail 

2.00 47.72% 2.28% 

2.01 47.78% 2.22% 

2.02 47.83% 2.17% 

2.03 47.88% 2.12% 

2.04 47.93% 2.07% 

2.05 47.98% 2.02% 

2.06 48.03% 1.97% 

2.07 48.08% 1.92% 

2.08 48.12% 1.88% 

2.09 48.17% 1.83% 

Z % mean to Z % in tail 

2.10 48.21% 1.79% 

2.11 48.26% 1.74% 

2.12 48.30% 1.70% 

2.13 48.34% 1.66% 

2.14 48.38% 1.62% 

2.15 48.42% 1.58% 
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2.16 48.46% 1.54% 

2.17 48.50% 1.50% 

2.18 48.54% 1.46% 

2.19 48.57% 1.43% 

Z % mean to Z % in tail 

2.20 48.61% 1.39% 

2.21 48.64% 1.36% 

2.22 48.68% 1.32% 

2.23 48.71% 1.29% 

2.24 48.75% 1.25% 

2.25 48.78% 1.22% 

2.26 48.81% 1.19% 

2.27 48.84% 1.16% 

2.28 48.87% 1.13% 

2.29 48.90% 1.10% 

Z % mean to Z % in tail 

2.30 48.93% 1.07% 

2.31 48.96% 1.04% 

2.32 48.98% 1.02% 

2.33 49.01% 0.99% 

2.34 49.04% 0.96% 

2.35 49.06% 0.94% 

2.36 49.09% 0.91% 

2.37 49.11% 0.89% 

2.38 49.13% 0.87% 

2.39 49.16% 0.84% 

Z % mean to Z % in tail 

2.40 49.18% 0.82% 

2.41 49.20% 0.80% 

2.42 49.22% 0.78% 

2.43 49.25% 0.75% 

2.44 49.27% 0.73% 

2.45 49.29% 0.71% 

2.46 49.31% 0.69% 
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2.47 49.32% 0.68% 

2.48 49.34% 0.66% 

2.49 49.36% 0.64% 

Z % mean to Z % in tail 

2.50 49.38% 0.62% 

2.51 49.40% 0.60% 

2.52 49.41% 0.59% 

2.53 49.43% 0.57% 

2.54 49.45% 0.55% 

2.55 49.46% 0.54% 

2.56 49.48% 0.52% 

2.57 49.49% 0.51% 

2.58 49.51% 0.49% 

2.59 49.52% 0.48% 

Z % mean to Z % in tail 

2.60 49.53% 0.47% 

2.61 49.55% 0.45% 

2.62 49.56% 0.44% 

2.63 49.57% 0.43% 

2.64 49.59% 0.41% 

2.65 49.60% 0.40% 

2.66 49.61% 0.39% 

2.67 49.62% 0.38% 

2.68 49.63% 0.37% 

2.69 49.64% 0.36% 

Z % mean to Z % in tail 

2.70 49.65% 0.35% 

2.71 49.66% 0.34% 

2.72 49.67% 0.33% 

2.73 49.68% 0.32% 

2.74 49.69% 0.31% 

2.75 49.70% 0.30% 

2.76 49.71% 0.29% 

2.77 49.72% 0.28% 
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2.78 49.73% 0.27% 

2.79 49.74% 0.26% 

Z % mean to Z % in tail 

2.80 49.74% 0.26% 

2.81 49.75% 0.25% 

2.82 49.76% 0.24% 

2.83 49.77% 0.23% 

2.84 49.77% 0.23% 

2.85 49.78% 0.22% 

2.86 49.79% 0.21% 

2.87 49.79% 0.21% 

2.88 49.80% 0.20% 

2.89 49.81% 0.19% 

Z % mean to Z % in tail 

2.90 49.81% 0.19% 

2.91 49.82% 0.18% 

2.92 49.82% 0.18% 

2.93 49.83% 0.17% 

2.94 49.84% 0.16% 

2.95 49.84% 0.16% 

2.96 49.85% 0.15% 

2.97 49.85% 0.15% 

2.98 49.86% 0.14% 

2.99 49.86% 0.14% 

Z % mean to Z % in tail 

3.00 49.87% 0.13% 

3.01 49.87% 0.13% 

3.02 49.87% 0.13% 

3.03 49.88% 0.12% 

3.04 49.88% 0.12% 

3.05 49.89% 0.11% 

3.06 49.89% 0.11% 

3.07 49.89% 0.11% 

3.08 49.90% 0.10% 
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3.09 49.90% 0.10% 

Z % mean to Z % in tail 

3.10 49.90% 0.10% 

3.11 49.91% 0.09% 

3.12 49.91% 0.09% 

3.13 49.91% 0.09% 

3.14 49.92% 0.08% 

3.15 49.92% 0.08% 

3.16 49.92% 0.08% 

3.17 49.92% 0.08% 

3.18 49.93% 0.07% 

3.19 49.93% 0.07% 

Z % mean to Z % in tail 

3.20 49.93% 0.07% 

3.21 49.93% 0.07% 

3.22 49.94% 0.06% 

3.23 49.94% 0.06% 

3.24 49.94% 0.06% 

3.25 49.94% 0.06% 

3.26 49.94% 0.06% 

3.27 49.95% 0.05% 

3.28 49.95% 0.05% 

3.29 49.95% 0.05% 

Z % mean to Z % in tail 

3.30 49.95% 0.05% 

3.31 49.95% 0.05% 

3.32 49.95% 0.05% 

3.33 49.96% 0.04% 

3.34 49.96% 0.04% 

3.35 49.96% 0.04% 

3.36 49.96% 0.04% 

3.37 49.96% 0.04% 

3.38 49.96% 0.04% 

3.39 49.97% 0.03% 
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Z % mean to Z % in tail 

3.40 49.97% 0.03% 

3.41 49.97% 0.03% 

3.42 49.97% 0.03% 

3.43 49.97% 0.03% 

3.44 49.97% 0.03% 

3.45 49.97% 0.03% 

3.46 49.97% 0.03% 

3.47 49.97% 0.03% 

3.48 49.97% 0.03% 

3.49 49.98% 0.02% 

3.50 49.98% 0.02% 
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T distribution tables 

Cutoff Scores for the T-distribution 
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T-Distribution Table (One Tail) 

df .10 .05 .01 

1 3.078 6.314 31.821 

2 1.886 2.920 6.965 

3 1.638 2.353 4.541 

4 1.533 2.132 3.747 

5 1.476 2.015 3.365 

6 1.440 1.943 3.143 

7 1.415 1.895 2.998 

8 1.397 1.860 2.896 

9 1.383 1.833 2.821 

10 1.372 1.812 2.764 

11 1.363 1.796 2.718 

12 1.356 1.782 2.681 

13 1.350 1.771 2.650 

14 1.345 1.761 2.624 

15 1.341 1.753 2.602 

16 1.337 1.746 2.583 

17 1.333 1.740 2.567 

18 1.330 1.734 2.552 

19 1.328 1.729 2.539 

20 1.325 1.725 2.528 

21 1.323 1.721 2.518 

22 1.321 1.717 2.508 

23 1.319 1.714 2.500 

24 1.318 1.711 2.492 

25 1.316 1.708 2.485 

26 1.315 1.706 2.479 

27 1.314 1.703 2.473 

28 1.313 1.701 2.467 

29 1.311 1.699 2.462 

30 1.310 1.697 2.457 

60 1.296 1.671 2.390 

120 1.289 1.658 2.358 

240  |  T distribution tables



1000 1.282 1.646 2.330 

∞ 1.282 1.645 2.326 
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T-Distribution Table (Two Tail) 

df .10 .05 .01 

1 6.314 12.706 63.656 

2 2.920 4.303 9.925 

3 2.353 3.182 5.841 

4 2.132 2.776 4.604 

5 2.015 2.571 4.032 

6 1.943 2.447 3.707 

7 1.895 2.365 3.499 

8 1.860 2.306 3.355 

9 1.833 2.262 3.250 

10 1.812 2.228 3.169 

11 1.796 2.201 3.106 

12 1.782 2.179 3.055 

13 1.771 2.160 3.012 

14 1.761 2.145 2.977 

15 1.753 2.131 2.947 

16 1.746 2.120 2.921 

17 1.740 2.110 2.898 

18 1.734 2.101 2.878 

19 1.729 2.093 2.861 

20 1.725 2.086 2.845 

21 1.721 2.080 2.831 

22 1.717 2.074 2.819 

23 1.714 2.069 2.807 

24 1.711 2.064 2.797 

25 1.708 2.060 2.787 

26 1.706 2.056 2.779 

27 1.703 2.052 2.771 

28 1.701 2.048 2.763 

29 1.699 2.045 2.756 

30 1.697 2.042 2.750 

60 1.671 2.000 2.660 

120 1.658 1.980 2.617 
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1000 1.645 1.960 2.576 

∞ 1.645 1.960 2.576 
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F distribution tables 
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 dfBetween 

0.10 significance level 1 2 3 4 5 6 

dfWithin 1 39.86 49.50 53.59 55.83 57.24 58.2

2 8.53 9.00 9.16 9.24 9.29 9.33 

3 5.54 5.46 5.39 5.34 5.31 5.28 

4 4.54 4.32 4.19 4.11 4.05 4.01 

5 4.06 3.78 3.62 3.52 3.45 3.40 

6 3.78 3.46 3.29 3.18 3.11 3.05 

7 3.59 3.26 3.07 2.96 2.88 2.83 

8 3.46 3.11 2.92 2.81 2.73 2.67 

9 3.36 3.01 2.81 2.69 2.61 2.55 

10 3.29 2.92 2.73 2.61 2.52 2.46 

11 3.23 2.86 2.66 2.54 2.45 2.39 

12 3.18 2.81 2.61 2.48 2.39 2.33 

13 3.14 2.76 2.56 2.43 2.35 2.28 

14 3.10 2.73 2.52 2.39 2.31 2.24 

15 3.07 2.70 2.49 2.36 2.27 2.21 

16 3.05 2.67 2.46 2.33 2.24 2.18 

17 3.03 2.64 2.44 2.31 2.22 2.15 

18 3.01 2.62 2.42 2.29 2.20 2.13 

19 2.99 2.61 2.40 2.27 2.18 2.11 

20 2.97 2.59 2.38 2.25 2.16 2.09 

21 2.96 2.57 2.36 2.23 2.14 2.08 

22 2.95 2.56 2.35 2.22 2.13 2.06 

23 2.94 2.55 2.34 2.21 2.11 2.05 

24 2.93 2.54 2.33 2.19 2.10 2.04 

25 2.92 2.53 2.32 2.18 2.09 2.02 

26 2.91 2.52 2.31 2.17 2.08 2.01 

27 2.90 2.51 2.30 2.17 2.07 2.00 

28 2.89 2.50 2.29 2.16 2.06 2.00 

29 2.89 2.50 2.28 2.15 2.06 1.99 

30 2.88 2.49 2.28 2.14 2.05 1.98 

40 2.84 2.44 2.23 2.09 2.00 1.93 

60 2.79 2.39 2.18 2.04 1.95 1.87 
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120 2.75 2.35 2.13 1.99 1.90 1.82 

infinity 2.71 2.30 2.08 1.94 1.85 1.77 
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dfBetween 

0.05 significance 
level 1 2 3 4 5 6 7 8 

dfWithin 1 161.4 199.5 215.7 224.6 230.2 234 236.8 238.9 

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 

6 6.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 
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120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 

infinity 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 
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dfBetween 

0.01 significance 
level 1 2 3 4 5 6 7 8 

dfWithin 1 4052 5000 5403 5625 5764 5859 5928 5982 

2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 

3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 

4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 

6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 

7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 

8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 

9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 

12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 

13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 

14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 
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16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 

17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 

18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 

19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 

22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 

23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 

24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 

27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 

28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 

29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 
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60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 

infinity 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 
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