Class Exercises for 2.b. Variability

1. Data collected from hospital records reveal that the age of first hospitalization for psychosis for a sample of patients are:

18, 20, 21, 22, 23, 23, 24, 28, 28, 29, 32, 37, 39

- a. Calculate the variance for this dataset using the formula below.
 - 1. Take the distance ("deviation") of each score from the mean

2. Square each distance to get rid of the sign (because some deviations will be negative)

SD^2	=	$\sum (X - M)^2$
		\overline{N}

3. Add up all the resulting "squared deviations" to get Sum of Squares (SS)

4. Divide by the number of scores

M =		
Scores:	Score - Mean: X-M	(Score-Mean) ² : (X-M) ²
	Sum: Σ(X-M) ² =	

$SD^2 =$	$\sum (X-M)^2$
SD -	N

c	$\overline{}$	2_	

b. Calculate the standard deviation for this dataset using the formula below.

$$SD = \sqrt{SD^2}$$

SD=

c. Explain what the standard deviation means in words for this dataset.

d. If the standard deviation were twice as large, what would this mean for the shape of the distribution?

- **2.** The number of years of education for <u>most</u> members of the sample in the study of psychosis onset were: 6, 7, 9, 10, 11, 12, 12, 13, 13, 15, 16
 - a. Calculate the variance for this dataset using the formula below.

$$SD^2 = \frac{\sum (X - M)^2}{N}$$

$$SD^2 = \frac{\sum (X - M)^2}{N}$$

 $SD^2 =$

b. Calculate the standard deviation for this dataset using the formula below.

$$SD = \sqrt{SD^2}$$

SD=

- c. If the shape of this distribution were more symmetrical, would the standard deviation be smaller or larger?
- d. We are often interested in summarizing the central tendency of a dataset with one summary statistic: for example, the mean. For which dataset would you feel more comfortable making statements regarding central tendency: one with a small standard deviation or one with a large standard deviation?