"

CHAPTER 7 Powers, Roots, and Scientific Notation

7.5 Simplify Square Roots

Learning Objectives

By the end of this section, you will be able to:

  • Use the Product Property to simplify square roots
  • Use the Quotient Property to simplify square roots

In the last section, we estimated the square root of a number between two consecutive whole numbers. We can say that \sqrt{50} is between 7 and 8. This is fairly easy to do when the numbers are small enough that we can use in (Simplify and Use Square Roots).

But what if we want to estimate \sqrt{500}? If we simplify the square root first, we’ll be able to estimate it easily. There are other reasons, too, to simplify square roots as you’ll see later in this chapter.

A square root is considered simplified if its radicand contains no perfect square factors.

Simplified Square Root

\sqrt{a} is considered simplified if a has no perfect square factors.

So \sqrt{31} is simplified. But \sqrt{32} is not simplified, because 16 is a perfect square factor of 32

License

Icon for the Creative Commons Attribution 4.0 International License

Introductory Algebra Copyright © 2021 by Izabela Mazur is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book