Renal Module

Introduction

This photo shows a water treatment plant.
Figure 1. Sewage Treatment Plant. (credit: “eutrophication&hypoxia”/flickr.com)

Chapter Objectives

After studying this chapter, you will be able to:

  • Outline how blood is filtered in the kidney nephron
  • List some of the solutes filtered, secreted, and reabsorbed in different parts of the nephron
  • Explain how urine osmolarity is hormonally regulated
  • Summarize the five key role of the kidneys

The urinary system has roles you may be well aware of: cleansing the blood and ridding the body of wastes probably come to mind. However, there are additional, equally important functions played by the system. Take for example, regulation of pH, a function shared with the lungs and the buffers in the blood. Additionally, the regulation of blood pressure is a role shared with the heart and blood vessels. What about regulating the concentration of solutes in the blood? Did you know that the kidney is important in determining the concentration of red blood cells? Eighty-five percent of the erythropoietin (EPO) produced to stimulate red blood cell production is produced in the kidneys. The kidneys also perform the final synthesis step of vitamin D production, converting calcidiol to calcitriol, the active form of vitamin D.

If the kidneys fail, these functions are compromised or lost altogether, with devastating effects on homeostasis. The affected individual might experience weakness, lethargy, shortness of breath, anemia, widespread edema (swelling), metabolic acidosis, rising potassium levels, heart arrhythmias, and more. Each of these functions is vital to your well-being and survival.

License

Icon for the Creative Commons Attribution 4.0 International License

Path 300 - Clinical Chemistry Copyright © by Deb Chen is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book