Factoring

Factor Special Products

Learning Objectives

By the end of this section, you will be able to:

  • Factor perfect square trinomials
  • Factor differences of squares
  • Factor sums and differences of cubes

Before you get started, take this readiness quiz.

  1. Simplify: {\left(3{x}^{2}\right)}^{3}.

    If you missed this problem, review (Figure).

  2. Multiply: {\left(m+4\right)}^{2}.

    If you missed this problem, review (Figure).

  3. Multiply: \left(x-3\right)\left(x+3\right).

    If you missed this problem, review (Figure).

We have seen that some binomials and trinomials result from special products—squaring binomials and multiplying conjugates. If you learn to recognize these kinds of polynomials, you can use the special products patterns to factor them much more quickly.

Factor Perfect Square Trinomials

Some trinomials are perfect squares. They result from multiplying a binomial times itself. We squared a binomial using the Binomial Squares pattern in a previous chapter.

In open parentheses 3x plus 4 close parentheses squared, 3x is a and 4 is b. Writing it as a squared plus 2ab plus b squared, we get open parentheses 3x close parentheses squared plus 2 times 3x times 4 plus 4 squared. This is equal to 9 x squared plus 24x plus 16.

The trinomial 9{x}^{2}+24x+16 is called a perfect square trinomial. It is the square of the binomial 3x+4.

In this chapter, you will start with a perfect square trinomial and factor it into its prime factors.

You could factor this trinomial using the methods described in the last section, since it is of the form a{x}^{2}+bx+c. But if you recognize that the first and last terms are squares and the trinomial fits the perfect square trinomials pattern, you will save yourself a lot of work.

Here is the pattern—the reverse of the binomial squares pattern.

Perfect Square Trinomials Pattern

If a and b are real numbers

\begin{array}{c}\hfill {a}^{2}+2ab+{b}^{2}={\left(a+b\right)}^{2}\hfill \\ \hfill {a}^{2}-2ab+{b}^{2}={\left(a-b\right)}^{2}\hfill \end{array}

To make use of this pattern, you have to recognize that a given trinomial fits it. Check first to see if the leading coefficient is a perfect square, {a}^{2}. Next check that the last term is a perfect square, {b}^{2}. Then check the middle term—is it the product, 2ab? If everything checks, you can easily write the factors.

How to Factor Perfect Square Trinomials

Factor: 9{x}^{2}+12x+4.

Step 1 is to check if the trinomial fits the perfect square trinomials pattern, a squared plus 2ab plus b squared. For this we check if the first term is a perfect square. 9 x squared is the square of 3x. Next we check if the last term is a perfect square. 4 is the square of 2. Next we check if the middle term is 2ab. 12 x is twice 3x times 2. Hence we have a perfect square trinomial.Step 2 is to write this as the square of a binomial. We write it as open parentheses 3x plus 2 close parentheses squared.Step 3 is to check by multiplying.

Factor: 4{x}^{2}+12x+9.

{\left(2x+3\right)}^{2}

Factor: 9{y}^{2}+24y+16.

{\left(3y+4\right)}^{2}

The sign of the middle term determines which pattern we will use. When the middle term is negative, we use the pattern {a}^{2}-2ab+{b}^{2}, which factors to {\left(a-b\right)}^{2}.

The steps are summarized here.

Factor perfect square trinomials.

\begin{array}{cccccccc}\mathbf{\text{Step 1.}}\hfill & \text{Does the trinomial fit the pattern?}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{a}^{2}+2ab+{b}^{2}\hfill & & & \hfill {a}^{2}-2ab+{b}^{2}\hfill \\ & \text{Is the first term a perfect square?}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left(a\right)}^{2}\hfill & & & \hfill {\left(a\right)}^{2}\hfill \\ & \text{Write it as a square.}\hfill & & & & & & \\ & \text{Is the last term a perfect square?}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left(a\right)}^{2}\phantom{\rule{4.5em}{0ex}}{\left(b\right)}^{2}\hfill & & & \hfill {\left(a\right)}^{2}\phantom{\rule{4.5em}{0ex}}{\left(b\right)}^{2}\hfill \\ & \text{Write it as a square.}\hfill & & & & & & \\ & \text{Check the middle term. Is it}\phantom{\rule{0.2em}{0ex}}2ab?\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left(a\right)}^{2}{}_{\text{↘}}\underset{2·a·b}{}{}_{\text{↙}}{\left(b\right)}^{2}\hfill & & & \hfill {\left(a\right)}^{2}{}_{\text{↘}}\underset{2·a·b}{}{}_{\text{↙}}{\left(b\right)}^{2}\hfill \\ \mathbf{\text{Step 2.}}\hfill & \text{Write the square of the binomial.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left(a+b\right)}^{2}\hfill & & & \hfill {\left(a-b\right)}^{2}\hfill \\ \mathbf{\text{Step 3.}}\hfill & \text{Check by multiplying.}\hfill & & & & & & \end{array}

We’ll work one now where the middle term is negative.

Factor: 81{y}^{2}-72y+16.

The first and last terms are squares. See if the middle term fits the pattern of a perfect square trinomial. The middle term is negative, so the binomial square would be {\left(a-b\right)}^{2}.

.
Are the first and last terms perfect squares?     .
Check the middle term. .
Does it match {\left(a-b\right)}^{2}? Yes. .
Write as the square of a binomial. .
Check by multiplying:

\phantom{\rule{4em}{0ex}}\begin{array}{c}\hfill {\left(9y-4\right)}^{2}\hfill \\ \hfill {\left(9y\right)}^{2}-2·9y·4+{4}^{2}\hfill \\ \hfill 81{y}^{2}-72y+16✓\hfill \end{array}

Factor: 64{y}^{2}-80y+25.

{\left(8y-5\right)}^{2}

Factor: 16{z}^{2}-72z+81.

{\left(4z-9\right)}^{2}

The next example will be a perfect square trinomial with two variables.

Factor: 36{x}^{2}+84xy+49{y}^{2}.

.
Test each term to verify the pattern.    .
Factor. .
Check by multiplying.

\phantom{\rule{4em}{0ex}}\begin{array}{c}\hfill {\left(6x+7y\right)}^{2}\hfill \\ \hfill {\left(6x\right)}^{2}+2·6x·7y+{\left(7y\right)}^{2}\hfill \\ \hfill 36{x}^{2}+84xy+49{y}^{2}✓\hfill \end{array}

Factor: 49{x}^{2}+84xy+36{y}^{2}.

{\left(7x+6y\right)}^{2}

Factor: 64{m}^{2}+112mn+49{n}^{2}.

{\left(8m+7n\right)}^{2}

Remember the first step in factoring is to look for a greatest common factor. Perfect square trinomials may have a GCF in all three terms and it should be factored out first. And, sometimes, once the GCF has been factored, you will recognize a perfect square trinomial.

Factor: 100{x}^{2}y-80xy+16y.

.
Is there a GCF? Yes, 4y, so factor it out.     .
Is this a perfect square trinomial?
Verify the pattern. .
Factor. .

Remember: Keep the factor 4y in the final product.

Check:

\phantom{\rule{4em}{0ex}}\begin{array}{c}\hfill 4y{\left(5x-2\right)}^{2}\hfill \\ \hfill 4y\left[{\left(5x\right)}^{2}-2·5x·2+{2}^{2}\right]\hfill \\ \hfill 4y\left(25{x}^{2}-20x+4\right)\hfill \\ \hfill 100{x}^{2}y-80xy+16y✓\hfill \end{array}

Factor: 8{x}^{2}y-24xy+18y.

2y{\left(2x-3\right)}^{2}

Factor: 27{p}^{2}q+90pq+75q.

3q{\left(3p+5\right)}^{2}

Factor Differences of Squares

The other special product you saw in the previous chapter was the Product of Conjugates pattern. You used this to multiply two binomials that were conjugates. Here’s an example:

We have open parentheses 3x minus 4 close parentheses open parentheses 3x plus 4. This is of the form a minus b, a plus b. We rewrite as open parentheses 3x close parentheses squared minus 4 squared. Here, 3x is a and 4 is b. This is equal to 9 x squared minus 16.

A difference of squares factors to a product of conjugates.

Difference of Squares Pattern

If a and b are real numbers,

a squared minus b squared equals a minus b, a plus b. Here, a squared minus b squared is difference of squares and a minus b, a plus b are conjugates.

Remember, “difference” refers to subtraction. So, to use this pattern you must make sure you have a binomial in which two squares are being subtracted.

How to Factor a Trinomial Using the Difference of Squares

Factor: 64{y}^{2}-1.

Step 1 is to check if the binomial 64 y squared minus 1 fits the pattern. For that we check the following: Is this a difference? Yes. Are the first and last terms perfect squares? Yes.Step 2 is to write both terms as squares, So, we have open parentheses 8y close parentheses squared minus 1 squared.Step 3 is to write the product of conjugates 8y minus 1, 8y plus 1.Step 4 is to check. We multiply to get the original binomial

Factor: 121{m}^{2}-1.

\left(11m-1\right)\left(11m+1\right)

Factor: 81{y}^{2}-1.

\left(9y-1\right)\left(9y+1\right)

Factor differences of squares.

*** QuickLaTeX cannot compile formula:
\begin{array}{ccccc}\mathbf{\text{Step 1.}}\hfill & \text{Does the binomial fit the pattern?}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{a}^{2}-{b}^{2}\hfill \\ & \text{Is this a difference?}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}\text{____}-\text{____}\hfill \\ & \text{Are the first and last terms perfect squares?}\hfill & & & \\ \mathbf{\text{Step 2.}}\hfill & \text{Write them as squares.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left(a\right)}^{2}-{\left(b\right)}^{2}\hfill \\ \mathbf{\text{Step 3.}}\hfill & \text{Write the product of conjugates.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}\left(a-b\right)\left(a+b\right)\hfill \\ \mathbf{\text{Step 4.}}\hfill & \text{Check by multiplying.}\hfill & & & \end{array}

*** Error message:
Missing $ inserted.
leading text: ...\hfill \phantom{\rule{4em}{0ex}}\text{____}
Missing { inserted.
leading text: ...\hfill \phantom{\rule{4em}{0ex}}\text{____}
Missing { inserted.
leading text: ...\hfill \phantom{\rule{4em}{0ex}}\text{____}
Missing { inserted.
leading text: ...\hfill \phantom{\rule{4em}{0ex}}\text{____}
Missing { inserted.
leading text: ...\hfill \phantom{\rule{4em}{0ex}}\text{____}
Missing $ inserted.
leading text: ...\hfill \phantom{\rule{4em}{0ex}}\text{____}
Missing { inserted.
leading text: ...\hfill \phantom{\rule{4em}{0ex}}\text{____}
Missing { inserted.
leading text: ...\hfill \phantom{\rule{4em}{0ex}}\text{____}
Missing { inserted.
leading text: ...\hfill \phantom{\rule{4em}{0ex}}\text{____}
Missing { inserted.
leading text: ...\hfill \phantom{\rule{4em}{0ex}}\text{____}

It is important to remember that sums of squares do not factor into a product of binomials. There are no binomial factors that multiply together to get a sum of squares. After removing any GCF, the expression {a}^{2}+{b}^{2} is prime!

The next example shows variables in both terms.

Factor: 144{x}^{2}-49{y}^{2}.

\begin{array}{cccc}& & & \phantom{\rule{4em}{0ex}}144{x}^{2}-49{y}^{2}\hfill \\ \text{Is this a difference of squares? Yes.}\hfill & & & \phantom{\rule{4em}{0ex}}{\left(12x\right)}^{2}-{\left(7y\right)}^{2}\hfill \\ \text{Factor as the product of conjugates.}\hfill & & & \phantom{\rule{4em}{0ex}}\left(12x-7y\right)\left(12x+7y\right)\hfill \\ \text{Check by multiplying.}\hfill & & & \\ \\ \\ \hfill \phantom{\rule{4em}{0ex}}\left(12x-7y\right)\left(12x+7y\right)\hfill & & & \\ \hfill \phantom{\rule{4em}{0ex}}144{x}^{2}-49{y}^{2}✓\hfill & & & \end{array}

Factor: 196{m}^{2}-25{n}^{2}.

\left(16m-5n\right)\left(16m+5n\right)

Factor: 121{p}^{2}-9{q}^{2}.

\left(11p-3q\right)\left(11p+3q\right)

As always, you should look for a common factor first whenever you have an expression to factor. Sometimes a common factor may “disguise” the difference of squares and you won’t recognize the perfect squares until you factor the GCF.

Also, to completely factor the binomial in the next example, we’ll factor a difference of squares twice!

Factor: 48{x}^{4}{y}^{2}-243{y}^{2}.

\begin{array}{cccccc}& & & & & \hfill 48{x}^{4}{y}^{2}-243{y}^{2}\hfill \\ \text{Is there a GCF? Yes,}\phantom{\rule{0.2em}{0ex}}3{y}^{2}\text{—factor it out!}\hfill & & & & & \hfill 3{y}^{2}\left(16{x}^{4}-81\right)\hfill \\ \text{Is the binomial a difference of squares? Yes.}\hfill & & & & & \hfill 3{y}^{2}\left({\left(4{x}^{2}\right)}^{2}-{\left(9\right)}^{2}\right)\hfill \\ \text{Factor as a product of conjugates.}\hfill & & & & & \hfill 3{y}^{2}\left(4{x}^{2}-9\right)\left(4{x}^{2}+9\right)\hfill \\ \text{Notice the first binomial is also a difference of squares!}\hfill & & & & & \hfill 3{y}^{2}\left({\left(2x\right)}^{2}-{\left(3\right)}^{2}\right)\left(4{x}^{2}+9\right)\hfill \\ \text{Factor it as the product of conjugates.}\hfill & & & & & \hfill 3{y}^{2}\left(2x-3\right)\left(2x+3\right)\left(4{x}^{2}+9\right)\hfill \end{array}

The last factor, the sum of squares, cannot be factored.

\begin{array}{c}\text{Check by multiplying:}\hfill \\ \\ \\ \hfill \phantom{\rule{4em}{0ex}}3{y}^{2}\left(2x-3\right)\left(2x+3\right)\left(4{x}^{2}+9\right)\hfill \\ \hfill \phantom{\rule{4em}{0ex}}3{y}^{2}\left(4{x}^{2}-9\right)\left(4{x}^{2}+9\right)\hfill \\ \hfill \phantom{\rule{4em}{0ex}}3{y}^{2}\left(16{x}^{4}-81\right)\hfill \\ \hfill \phantom{\rule{4em}{0ex}}48{x}^{4}{y}^{2}-243{y}^{2}✓\hfill \end{array}

Factor: 2{x}^{4}{y}^{2}-32{y}^{2}.

2{y}^{2}\left(x-2\right)\left(x+2\right)\left({x}^{2}+4\right)

Factor: 7{a}^{4}{c}^{2}-7{b}^{4}{c}^{2}.

7{c}^{2}\left(a-b\right)\left(a+b\right)\left({a}^{2}+{b}^{2}\right)

The next example has a polynomial with 4 terms. So far, when this occurred we grouped the terms in twos and factored from there. Here we will notice that the first three terms form a perfect square trinomial.

Factor: {x}^{2}-6x+9-{y}^{2}.

Notice that the first three terms form a perfect square trinomial.

.
Factor by grouping the first three terms. .
Use the perfect square trinomial pattern.      .
Is this a difference of squares? Yes.
Yes—write them as squares. .
Factor as the product of conjugates. .
.

You may want to rewrite the solution as \left(x-y-3\right)\left(x+y-3\right).

Factor: {x}^{2}-10x+25-{y}^{2}.

\left(x-5-y\right)\left(x-5+y\right)

Factor: {x}^{2}+6x+9-4{y}^{2}.

\left(x+3-2y\right)\left(x+3+2y\right)

Factor Sums and Differences of Cubes

There is another special pattern for factoring, one that we did not use when we multiplied polynomials. This is the pattern for the sum and difference of cubes. We will write these formulas first and then check them by multiplication.

\begin{array}{c}\hfill {a}^{3}+{b}^{3}=\left(a+b\right)\left({a}^{2}-ab+{b}^{2}\right)\hfill \\ \hfill {a}^{3}-{b}^{3}=\left(a-b\right)\left({a}^{2}+ab+{b}^{2}\right)\hfill \end{array}

We’ll check the first pattern and leave the second to you.

.
Distribute. .
Multiply. .
Combine like terms. .
Sum and Difference of Cubes Pattern
\begin{array}{c}\hfill {a}^{3}+{b}^{3}=\left(a+b\right)\left({a}^{2}-ab+{b}^{2}\right)\hfill \\ \hfill {a}^{3}-{b}^{3}=\left(a-b\right)\left({a}^{2}+ab+{b}^{2}\right)\hfill \end{array}

The two patterns look very similar, don’t they? But notice the signs in the factors. The sign of the binomial factor matches the sign in the original binomial. And the sign of the middle term of the trinomial factor is the opposite of the sign in the original binomial. If you recognize the pattern of the signs, it may help you memorize the patterns.

a cubed plus b cubed is open parentheses a plus b close parentheses open parentheses a squared minus ab plus b squared close parentheses. a cubed minus b cubed is open parentheses a minus close parentheses open parentheses a squared plus ab plus b squared close parentheses. In both cases, the sign of the first term on the right side of the equation is the same as the sign on the left side of the equation and the sign of the second term is the opposite of the sign on the left side.

The trinomial factor in the sum and difference of cubes pattern cannot be factored.

It be very helpful if you learn to recognize the cubes of the integers from 1 to 10, just like you have learned to recognize squares. We have listed the cubes of the integers from 1 to 10 in (Figure).

n 1 2 3 4 5 6 7 8 9 10
{n}^{3} 1 8 27 64 125 216 343 512 729 1000
How to Factor the Sum or Difference of Cubes

Factor: {x}^{3}+64.

Step 1 is to check if the binomial fits the sum or difference of cubes pattern. For this, we check whether it is a sum or difference. x cubed plus 64 is a sum. Next we check if the first and last terms are perfect cubes. They areStep 2 is to rewrite as cubes. So we rewrite as x cubed plus 4 cubed.Step 3 is to use either the sum or difference of cubes pattern. Since this is a sum of cubes, we get open parentheses x plus 4 close parentheses open parentheses x squared minus 4x plus 4 squared.Step 4 is to simplify inside the parentheses. It is already simplifiedStep 5 is to check by multiplying the factors.

Factor: {x}^{3}+27.

\left(x+3\right)\left({x}^{2}-3x+9\right)

Factor: {y}^{3}+8.

\left(y+2\right)\left({y}^{2}-2y+4\right)

Factor the sum or difference of cubes.
  1. Does the binomial fit the sum or difference of cubes pattern?

    Is it a sum or difference?

    Are the first and last terms perfect cubes?

  2. Write them as cubes.
  3. Use either the sum or difference of cubes pattern.
  4. Simplify inside the parentheses.
  5. Check by multiplying the factors.

Factor: 27{u}^{3}-125{v}^{3}.

.
This binomial is a difference. The first and last

terms are perfect cubes.

Write the terms as cubes. .
Use the difference of cubes pattern. .
Simplify. .
Check by multiplying. We’ll leave the check to you.

Factor: 8{x}^{3}-27{y}^{3}.

\left(2x-3y\right)\left(4{x}^{2}-6xy+9{y}^{2}\right)

Factor: 1000{m}^{3}-125{n}^{3}.

\left(10m-5n\right)\left(100{m}^{2}-50mn+25{n}^{2}\right)

In the next example, we first factor out the GCF. Then we can recognize the sum of cubes.

Factor: 6{x}^{3}y+48{y}^{4}.

.
Factor the common factor. .
This binomial is a sum The first and last

terms are perfect cubes.

Write the terms as cubes. .
Use the sum of cubes pattern. .
Simplify. .

Check:

To check, you may find it easier to multiply the sum of cubes factors first, then multiply that product by 6y. We’ll leave the multiplication for you.

Factor: 500{p}^{3}+4{q}^{3}.

4\left(5p+q\right)\left(25{p}^{2}-5pq+{q}^{2}\right)

Factor: 432{c}^{3}+686{d}^{3}.

2\left(6c+7d\right)\left(36{c}^{2}-42cd+49{d}^{2}\right)

The first term in the next example is a binomial cubed.

Factor: {\left(x+5\right)}^{3}-64{x}^{3}.

.
This binomial is a difference. The first and

last terms are perfect cubes.

Write the terms as cubes. .
Use the difference of cubes pattern. .
Simplify. .
.
Check by multiplying. We’ll leave the check to you.

Factor: {\left(y+1\right)}^{3}-27{y}^{3}.

\left(-2y+1\right)\left(13{y}^{2}+5y+1\right)

Factor: {\left(n+3\right)}^{3}-125{n}^{3}.

\left(-4n+3\right)\left(31{n}^{2}+21n+9\right)

Access this online resource for additional instruction and practice with factoring special products.

Key Concepts

  • Perfect Square Trinomials Pattern: If a and b are real numbers,
    \begin{array}{c}\hfill {a}^{2}+2ab+{b}^{2}={\left(a+b\right)}^{2}\hfill \\ \hfill {a}^{2}-2ab+{b}^{2}={\left(a-b\right)}^{2}\hfill \end{array}
  • How to factor perfect square trinomials.

    \begin{array}{cccccccc}\text{Step 1.}\hfill & \text{Does the trinomial fit the pattern?}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{a}^{2}+2ab+{b}^{2}\hfill & & & \hfill {a}^{2}-2ab+{b}^{2}\hfill \\ & \text{Is the first term a perfect square?}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left(a\right)}^{2}\hfill & & & \hfill {\left(a\right)}^{2}\hfill \\ & \text{Write it as a square.}\hfill & & & & & & \\ & \text{Is the last term a perfect square?}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left(a\right)}^{2}\phantom{\rule{4.5em}{0ex}}{\left(b\right)}^{2}\hfill & & & \hfill {\left(a\right)}^{2}\phantom{\rule{4.5em}{0ex}}{\left(b\right)}^{2}\hfill \\ & \text{Write it as a square.}\hfill & & & & & & \\ & \text{Check the middle term. Is it}\phantom{\rule{0.2em}{0ex}}2ab?\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left(a\right)}^{2}{}_{\text{↘}}\underset{2·a·b}{}{}_{\text{↙}}{\left(b\right)}^{2}\hfill & & & \hfill {\left(a\right)}^{2}{}_{\text{↘}}\underset{2·a·b}{}{}_{\text{↙}}{\left(b\right)}^{2}\hfill \\ \text{Step 2.}\hfill & \text{Write the square of the binomial.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left(a+b\right)}^{2}\hfill & & & \hfill {\left(a-b\right)}^{2}\hfill \\ \text{Step 3.}\hfill & \text{Check by multiplying.}\hfill & & & & & & \end{array}

  • Difference of Squares Pattern: If a,b are real numbers,

    a squared minus b squared is a minus b, a plus b. Here, a squared minus b squared is the difference of squares and a minus b, a plus b are conjugates.

  • How to factor differences of squares.
    *** QuickLaTeX cannot compile formula:
    \begin{array}{ccccc}\text{Step 1.}\hfill & \text{Does the binomial fit the pattern?}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{a}^{2}-{b}^{2}\hfill \\ & \text{Is this a difference?}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}\text{____}-\text{____}\hfill \\ & \text{Are the first and last terms perfect squares?}\hfill & & & \\ \text{Step 2.}\hfill & \text{Write them as squares.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}{\left(a\right)}^{2}-{\left(b\right)}^{2}\hfill \\ \text{Step 3.}\hfill & \text{Write the product of conjugates.}\hfill & & & \hfill \phantom{\rule{4em}{0ex}}\left(a-b\right)\left(a+b\right)\hfill \\ \text{Step 4.}\hfill & \text{Check by multiplying.}\hfill & & & \end{array}
    
    *** Error message:
    Missing $ inserted.
    leading text: ...\hfill \phantom{\rule{4em}{0ex}}\text{____}
    Missing { inserted.
    leading text: ...\hfill \phantom{\rule{4em}{0ex}}\text{____}
    Missing { inserted.
    leading text: ...\hfill \phantom{\rule{4em}{0ex}}\text{____}
    Missing { inserted.
    leading text: ...\hfill \phantom{\rule{4em}{0ex}}\text{____}
    Missing { inserted.
    leading text: ...\hfill \phantom{\rule{4em}{0ex}}\text{____}
    Missing $ inserted.
    leading text: ...\hfill \phantom{\rule{4em}{0ex}}\text{____}
    Missing { inserted.
    leading text: ...\hfill \phantom{\rule{4em}{0ex}}\text{____}
    Missing { inserted.
    leading text: ...\hfill \phantom{\rule{4em}{0ex}}\text{____}
    Missing { inserted.
    leading text: ...\hfill \phantom{\rule{4em}{0ex}}\text{____}
    Missing { inserted.
    leading text: ...\hfill \phantom{\rule{4em}{0ex}}\text{____}
    
    
  • Sum and Difference of Cubes Pattern

    \begin{array}{c}\hfill {a}^{3}+{b}^{3}=\left(a+b\right)\left({a}^{2}-ab+{b}^{2}\right)\hfill \\ \hfill {a}^{3}-{b}^{3}=\left(a-b\right)\left({a}^{2}+ab+{b}^{2}\right)\hfill \end{array}

  • How to factor the sum or difference of cubes.
    1. Does the binomial fit the sum or difference of cubes pattern?

      Is it a sum or difference?

      Are the first and last terms perfect cubes?

    2. Write them as cubes.
    3. Use either the sum or difference of cubes pattern.
    4. Simplify inside the parentheses
    5. Check by multiplying the factors.

Practice Makes Perfect

Factor Perfect Square Trinomials

In the following exercises, factor completely using the perfect square trinomials pattern.

16{y}^{2}+24y+9

{\left(4y+3\right)}^{2}

25{v}^{2}+20v+4

36{s}^{2}+84s+49

{\left(6s+7\right)}^{2}

49{s}^{2}+154s+121

100{x}^{2}-20x+1

{\left(10x-1\right)}^{2}

64{z}^{2}-16z+1

25{n}^{2}-120n+144

{\left(5n-12\right)}^{2}

4{p}^{2}-52p+169

49{x}^{2}+28xy+4{y}^{2}

{\left(7x+2y\right)}^{2}

25{r}^{2}+60rs+36{s}^{2}

100{y}^{2}-52y+1

\left(50y-1\right)\left(2y-1\right)

64{m}^{2}-34m+1

10j{k}^{2}+80jk+160j

10j{\left(k+4\right)}^{2}

64{x}^{2}y-96xy+36y

75{u}^{4}-30{u}^{3}v+3{u}^{2}{v}^{2}

3{u}^{2}{\left(5u-v\right)}^{2}

90{p}^{4}+300{p}^{4}q+250{p}^{2}{q}^{2}

Factor Differences of Squares

In the following exercises, factor completely using the difference of squares pattern, if possible.

25{v}^{2}-1

\left(5v-1\right)\left(5v+1\right)

169{q}^{2}-1

4-49{x}^{2}

\left(7x-2\right)\left(7x+2\right)

121-25{s}^{2}

6{p}^{2}{q}^{2}-54{p}^{2}

6{p}^{2}\left(q-3\right)\left(q+3\right)

98{r}^{3}-72r

24{p}^{2}+54

6\left(4{p}^{2}+9\right)

20{b}^{2}+140

121{x}^{2}-144{y}^{2}

\left(11x-12y\right)\left(11x+12y\right)

49{x}^{2}-81{y}^{2}

169{c}^{2}-36{d}^{2}

\left(13c-6d\right)\left(13c+6d\right)

36{p}^{2}-49{q}^{2}

16{z}^{4}-1

\left(2z-1\right)\left(2z+1\right)\left(4{z}^{2}+1\right)

{m}^{4}-{n}^{4}

162{a}^{4}{b}^{2}-32{b}^{2}

2{b}^{2}\left(3a-2\right)\left(3a+2\right)\left(9{a}^{2}+4\right)

48{m}^{4}{n}^{2}-243{n}^{2}

{x}^{2}-16x+64-{y}^{2}

\left(x-8-y\right)\left(x-8+y\right)

{p}^{2}+14p+49-{q}^{2}

{a}^{2}+6a+9-9{b}^{2}

\left(a+3-3b\right)\left(a+3+3b\right)

{m}^{2}-6m+9-16{n}^{2}

Factor Sums and Differences of Cubes

In the following exercises, factor completely using the sums and differences of cubes pattern, if possible.

{x}^{3}+125

\left(x+5\right)\left({x}^{2}-5x+25\right)

{n}^{6}+512

{z}^{6}-27

\left({z}^{2}-3\right)\left({z}^{4}+3{z}^{2}+9\right)

{v}^{3}-216

8-343{t}^{3}

\left(2-7t\right)\left(4+14t+49{t}^{2}\right)

125-27{w}^{3}

8{y}^{3}-125{z}^{3}

\left(2y-5z\right)\left(4{y}^{2}+10yz+25{z}^{2}\right)

27{x}^{3}-64{y}^{3}

216{a}^{3}+125{b}^{3}

\left(6a+5b\right)\left(36{a}^{2}-30ab+25{b}^{2}\right)

27{y}^{3}+8{z}^{3}

7{k}^{3}+56

7\left(k+2\right)\left({k}^{2}-2k+4\right)

6{x}^{3}-48{y}^{3}

2{x}^{2}-16{x}^{2}{y}^{3}

2{x}^{2}\left(1-2y\right)\left(1+2y+4{y}^{2}\right)

-2{x}^{3}{y}^{2}-16{y}^{5}

{\left(x+3\right)}^{3}+8{x}^{3}

9\left(x+1\right)\left({x}^{2}+3\right)

{\left(x+4\right)}^{3}-27{x}^{3}

{\left(y-5\right)}^{3}-64{y}^{3}

\text{−}\left(3y+5\right)\left(21{y}^{2}-30y+25\right)

{\left(y-5\right)}^{3}+125{y}^{3}

Mixed Practice

In the following exercises, factor completely.

64{a}^{2}-25

\left(8a-5\right)\left(8a+5\right)

121{x}^{2}-144

27{q}^{2}-3

3\left(3q-1\right)\left(3q+1\right)

4{p}^{2}-100

16{x}^{2}-72x+81

{\left(4x-9\right)}^{2}

36{y}^{2}+12y+1

8{p}^{2}+2

2\left(4{p}^{2}+1\right)

81{x}^{2}+169

125-8{y}^{3}

\left(5-2y\right)\left(25+10y+4{y}^{2}\right)

27{u}^{3}+1000

45{n}^{2}+60n+20

5{\left(3n+2\right)}^{2}

48{q}^{3}-24{q}^{2}+3q

{x}^{2}-10x+25-{y}^{2}

\left(x+y-5\right)\left(x-y-5\right)

{x}^{2}+12x+36-{y}^{2}

{\left(x+1\right)}^{3}+8{x}^{3}

\left(3x+1\right)\left(3{x}^{2}+1\right)

{\left(y-3\right)}^{3}-64{y}^{3}

Writing Exercises

Why was it important to practice using the binomial squares pattern in the chapter on multiplying polynomials?

Answers will vary.

How do you recognize the binomial squares pattern?

Explain why {n}^{2}+25\ne {\left(n+5\right)}^{2}. Use algebra, words, or pictures.

Answers will vary.

Maribel factored {y}^{2}-30y+81 as {\left(y-9\right)}^{2}. Was she right or wrong? How do you know?

Self Check

After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

This table has 4 columns 3 rows and a header row. The header row labels each column I can, confidently, with some help and no, I don’t get it. The first column has the following statements: factor perfect square trinomials, factor differences of squares, factor sums and differences of cubes. The remaining columns are blank.

What does this checklist tell you about your mastery of this section? What steps will you take to improve?

License

Icon for the Creative Commons Attribution 4.0 International License

Intermediate Algebra Copyright © 2017 by OSCRiceUniversity is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book