Roots and Radicals

# Simplify Expressions with Roots

### Learning Objectives

By the end of this section, you will be able to:

- Simplify expressions with roots
- Estimate and approximate roots
- Simplify variable expressions with roots

Before you get started, take this readiness quiz.

### Simplify Expressions with Roots

In Foundations, we briefly looked at square roots. Remember that when a real number *n* is multiplied by itself, we write and read it ‘*n* squared’. This number is called the square of *n*, and *n* is called the square root. For example,

**Square**

**Square Root**

Notice (−13)^{2} = 169 also, so −13 is also a square root of 169. Therefore, both 13 and −13 are square roots of 169.

So, every positive number has two square roots—one positive and one negative. What if we only wanted the positive square root of a positive number? We use a *radical sign*, and write, which denotes the positive square root of *m*. The positive square root is also called the principal square root.

We also use the radical sign for the square root of zero. Because Notice that zero has only one square root.

We know that every positive number has two square roots and the radical sign indicates the positive one. We write If we want to find the negative square root of a number, we place a negative in front of the radical sign. For example,

Simplify: ⓐ ⓑ

ⓐ

ⓑ

Simplify: ⓐ ⓑ

ⓐⓑ 15

Simplify: ⓐ ⓑ

ⓐ 10 ⓑ

Can we simplify Is there a number whose square is

Any positive number squared is positive. Any negative number squared is positive. There is no real number equal to The square root of a negative number is not a real number.

Simplify: ⓐ ⓑ

ⓐ

ⓑ

Simplify: ⓐ ⓑ

ⓐ not a real number ⓑ

Simplify: ⓐ ⓑ

ⓐⓑ not a real number

So far we have only talked about squares and square roots. Let’s now extend our work to include higher powers and higher roots.

Let’s review some vocabulary first.

The terms ‘squared’ and ‘cubed’ come from the formulas for area of a square and volume of a cube.

It will be helpful to have a table of the powers of the integers from −5 to 5. See (Figure).

Notice the signs in the table. All powers of positive numbers are positive, of course. But when we have a negative number, the *even* powers are positive and the *odd* powers are negative. We’ll copy the row with the powers of −2 to help you see this.

We will now extend the square root definition to higher roots.

*n*

^{th}Root of a Number

Just like we use the word ‘cubed’ for *b*^{3}, we use the term ‘cube root’ for

We can refer to (Figure) to help find higher roots.

Could we have an even root of a negative number? We know that the square root of a negative number is not a real number. The same is true for any even root. *Even* roots of negative numbers are not real numbers. *Odd* roots of negative numbers are real numbers.

When *n* is an even number and

- then is a real number.
- then is not a real number.

When *n* is an odd number, is a real number for all values of *a*.

We will apply these properties in the next two examples.

Simplify: ⓐ ⓑ ⓒ

ⓐ

ⓑ

ⓒ

Simplify: ⓐ ⓑ ⓒ

ⓐ 3 ⓑ 4 ⓒ 3

Simplify: ⓐ ⓑ ⓒ

ⓐ 10 ⓑ 2 ⓒ 3

In this example be alert for the negative signs as well as even and odd powers.

Simplify: ⓐ ⓑ ⓒ

ⓐ

ⓑ

ⓒ

Simplify: ⓐ ⓑ ⓒ

ⓐⓑ not real ⓒ

Simplify: ⓐ ⓑ ⓒ

ⓐⓑ not real ⓒ

### Estimate and Approximate Roots

When we see a number with a radical sign, we often don’t think about its numerical value. While we probably know that the what is the value of or In some situations a quick estimate is meaningful and in others it is convenient to have a decimal approximation.

To get a numerical estimate of a square root, we look for perfect square numbers closest to the radicand. To find an estimate of we see 11 is between perfect square numbers 9 and 16, *closer* to 9. Its square root then will be between 3 and 4, but closer to 3.

Similarly, to estimate we see 91 is between perfect cube numbers 64 and 125. The cube root then will be between 4 and 5.

Estimate each root between two consecutive whole numbers: ⓐ ⓑ

ⓐ Think of the perfect square numbers closest to 105. Make a small table of these perfect squares and their squares roots.

Locate 105 between two consecutive perfect squares. | |

is between their square roots. |

ⓑ Similarly we locate 43 between two perfect cube numbers.

Locate 43 between two consecutive perfect cubes. | |

is between their cube roots. |

Estimate each root between two consecutive whole numbers:

ⓐⓑ

ⓐ

ⓑ

Estimate each root between two consecutive whole numbers:

ⓐⓑ

ⓐ

ⓑ

There are mathematical methods to approximate square roots, but nowadays most people use a calculator to find square roots. To find a square root you will use the key on your calculator. To find a cube root, or any root with higher index, you will use the key.

When you use these keys, you get an approximate value. It is an approximation, accurate to the number of digits shown on your calculator’s display. The symbol for an approximation is and it is read ‘approximately’.

Suppose your calculator has a 10 digit display. You would see that

How do we know these values are approximations and not the exact values? Look at what happens when we square them:

Their squares are close to 5, but are not exactly equal to 5. The fourth powers are close to 93, but not equal to 93.

Round to two decimal places: ⓐ ⓑ ⓒ

ⓐ

ⓑ

ⓒ

Round to two decimal places:

ⓐⓑⓒ

ⓐⓑ

ⓒ

Round to two decimal places:

ⓐⓑⓒ

ⓐⓑ

ⓒ

### Simplify Variable Expressions with Roots

The odd root of a number can be either positive or negative. For example,

But what about an even root? We want the principal root, so

But notice,

How can we make sure the fourth root of −5 raised to the fourth power is 5? We can use the absolute value. So we say that when *n* is even This guarantees the principal root is positive.

For any integer

We must use the absolute value signs when we take an even root of an expression with a variable in the radical.

Simplify: ⓐ ⓑ ⓒ ⓓ

ⓐ We use the absolute value to be sure to get the positive root.

ⓑ This is an odd indexed root so there is no need for an absolute value sign.

ⓒ

ⓓ

Simplify: ⓐ ⓑ ⓒ ⓓ

ⓐⓑ*w*ⓒⓓ*q*

Simplify: ⓐ ⓑ ⓒ ⓓ

ⓐⓑ*p*ⓒⓓ*q*

What about square roots of higher powers of variables? The Power Property of Exponents says So if we square *a ^{m}*, the exponent will become 2

*m*.

Looking now at the square root,

We apply this concept in the next example.

Simplify: ⓐ ⓑ

ⓐ

ⓑ

Simplify: ⓐ ⓑ

ⓐⓑ

Simplify: ⓐ ⓑ

ⓐⓑ

The next example uses the same idea for highter roots.

Simplify: ⓐ ⓑ

ⓐ

ⓑ

Simplify: ⓐ ⓑ

ⓐⓑ

Simplify: ⓐ ⓑ

ⓐⓑ

In the next example, we now have a coefficient in front of the variable. The concept works in much the same way.

But notice and no absolute value sign is needed as *u*^{4} is always positive.

Simplify: ⓐ ⓑ

ⓐ

ⓑ

Simplify: ⓐ ⓑ

ⓐⓑ

Simplify: ⓐ ⓑ

ⓐⓑ

This example just takes the idea farther as it has roots of higher index.

Simplify: ⓐ ⓑ

ⓐ

ⓑ

Simplify: ⓐ ⓑ

ⓐⓑ

Simplify: ⓐ ⓑ

ⓐⓑ

The next examples have two variables.

Simplify: ⓐ ⓑ ⓒ

ⓐ

ⓑ

ⓒ

Simplify: ⓐ ⓑ ⓒ

ⓐⓑ

ⓒ

Simplify: ⓐ ⓑ ⓒ

ⓐⓑ

ⓒ

Access this online resource for additional instruction and practice with simplifying expressions with roots.

### Key Concepts

**Square Root Notation**- is read ‘the square root of
*m*’ - If
*n*^{2}=*m*, then for - The square root of
*m*, is a positive number whose square is*m*.

- is read ‘the square root of
*n*^{th}Root of a Number- If then
*b*is an*n*root of^{th}*a*. - The principal
*n*root of^{th}*a*is written *n*is called the*index*of the radical.

- If then
**Properties of**- When
*n*is an even number and- then is a real number
- then is not a real number

- When
*n*is an odd number, is a real number for all values of*a*.

- When
**Simplifying Odd and Even Roots**- For any integer
- when
*n*is odd - when
*n*is even

- when
- We must use the absolute value signs when we take an even root of an expression with a variable in the radical.

- For any integer

#### Practice Makes Perfect

**Simplify Expressions with Roots**

In the following exercises, simplify.

ⓐⓑ

ⓐ 8 ⓑ

ⓐⓑ

ⓐⓑ

ⓐ 14 ⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐ not real number ⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ not real number

ⓐⓑ

ⓐⓑ

ⓐ 6 ⓑ 4

ⓐⓑⓒ

ⓐⓑⓒ

ⓐ 8 ⓑ 3 ⓒ 1

ⓐⓑⓒ

ⓐⓑⓒ

ⓐⓑⓒ

ⓐ

ⓑ

ⓒ

ⓐ

ⓑ

ⓒ

ⓐⓑⓒ

ⓐ

ⓑ

ⓒ

**Estimate and Approximate Roots**

In the following exercises, estimate each root between two consecutive whole numbers.

ⓐⓑ

ⓐ

ⓑ

ⓐⓑ

ⓐⓑ

ⓐ

ⓑ

ⓐⓑ

In the following exercises, approximate each root and round to two decimal places.

ⓐⓑⓒ

ⓐⓑ

ⓒ

ⓐⓑⓒ

ⓐⓑⓒ

ⓐⓑ

ⓒ

ⓐⓑⓒ

**Simplify Variable Expressions with Roots**

In the following exercises, simplify using absolute values as necessary.

ⓐⓑ

ⓐ*u*ⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐⓑ

ⓐ

ⓑ

ⓐ

ⓑ

ⓐⓑ

ⓐ

ⓑ

ⓐ

ⓑ

ⓐⓑ

ⓐ

ⓑ

ⓐ

ⓑ

ⓒ

ⓐⓑ

ⓒ

ⓐ

ⓑ

ⓒ

ⓐ

ⓑ

ⓒ

ⓐⓑ

ⓒ

ⓐ

ⓑ

ⓒ

#### Writing Exercises

Why is there no real number equal to

Answers will vary.

What is the difference between and

Explain what is meant by the *n ^{th}* root of a number.

Answers will vary.

Explain the difference of finding the *n ^{th}* root of a number when the index is even compared to when the index is odd.

#### Self Check

ⓐ After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

ⓑ If most of your checks were:

**…confidently.** Congratulations! You have achieved the objectives in this section. Reflect on the study skills you used so that you can continue to use them. What did you do to become confident of your ability to do these things? Be specific.

**…with some help.** This must be addressed quickly because topics you do not master become potholes in your road to success. In math every topic builds upon previous work. It is important to make sure you have a strong foundation before you move on. Who can you ask for help? Your fellow classmates and instructor are good resources. Is there a place on campus where math tutors are available? Can your study skills be improved?

**…no – I don’t get it!** This is a warning sign and you must not ignore it. You should get help right away or you will quickly be overwhelmed. See your instructor as soon as you can to discuss your situation. Together you can come up with a plan to get you the help you need.

### Glossary

- square of a number
- If
*n*^{2}=*m*, then*m*is the square of*n*.

- square root of a number
- If
*n*^{2}=*m,*then*n*is a square root of*m*.