Midterm 1: Version C Answer Key

  1. \begin{array}{l} \\ \\ \\ \\ -(4)-\sqrt{4^2-4(4)1} \\ \\ -4-\sqrt{16-16} \\ \\ -4 \end{array}
  2. \begin{array}{rrrrrrrcrrrr} \\ \\ \\ \\ \\ &2x&-&8&+&8&=&3&-&7x&-&21 \\ +&7x&&&&&&&+&7x&& \\ \midrule &&&&&\dfrac{9x}{9}&=&\dfrac{-18}{9}&&&& \\ \\ &&&&&x&=&-2&&&& \end{array}
  3. \phantom{1}
    \left(A=\dfrac{h}{B+b}\right)(B+b) \\
    \begin{array}{rrrrrrr} \\ \\ \\ \\ \\ \dfrac{A}{A}(B&+&b)&=&\dfrac{h}{A}&& \\ \\ B&+&b&=&\dfrac{h}{A}&& \\ &-&b&&&-&b \\ \midrule &&B&=&\dfrac{h}{A}&-&b \end{array}
  4. \phantom{1}
    \left(\dfrac{x}{15}-\dfrac{x-3}{3}=\dfrac{1}{5}\right)(15) \\
    \begin{array}{rrcrrrl} x&-&5(x&-&3)&=&3(1) \\ x&-&5x&+&15&=&\phantom{-1}3 \\ &&&-&15&&-15 \\ \midrule &&&&\dfrac{-4x}{-4}&=&\dfrac{-12}{-4} \\ \\ &&&&x&=&3 \end{array}
  5. x=-2
    Coordinates are (-2.-2) x =-2
  6. \begin{array}{rrl} \\ \\ \\ \\ y&=&mx+6 \\ \therefore y&=&\dfrac{2}{3}x-3 \\ \\ \text{or } 3y&=&2x-9 \\ 0&=&2x-3y-9 \\ \end{array}
  7. \begin{array}{ll} \begin{array}{rrl} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ &&\textbf{1st slope} \\ m&=&\dfrac{\Delta y}{\Delta x} \\ \\ m&=&\dfrac{4--6}{-1-14} \\ \\ m&=&\dfrac{10}{-15} \\ \\ m&=&-\dfrac{2}{3} \\ \\ &&\textbf{Now:} \\ m&=&\dfrac{\Delta y}{\Delta x} \\ \\ -\dfrac{2}{3}&=&\dfrac{y-4}{x--1} \end{array} & \hspace{0.25in} \begin{array}{rrrrrrrlrr} \\ \\ \\ \\ \\ &&&-2(x&+&1)&=&\phantom{-}3(y&-&4) \\ &&&-2x&-&2&=&\phantom{-}3y&-&12 \\ +&&&-3y&+&12&&-3y&+&12 \\ \midrule &-2x&-&3y&+&10&=&0&& \\ \text{or}&2x&+&3y&-&10&=&0&& \\ \\ &&&&&y&=&-\dfrac{2}{3}x&+&\dfrac{10}{3} \end{array} \end{array}
  8. 2x-y=-2
    x y
    0 2
    −1 0
    −2 −2

    Line passes through (-2,2), (-1,0), (0,2)

  9. \begin{array}{rrrrrrr} \\ \\ \\ \\ \\ 0&\le &2x&+&4&<&8 \\ -4&&&-4&&&-4 \\ \midrule \dfrac{-4}{2}&\le &&\dfrac{2x}{2}&&<&\dfrac{4}{2} \\ \\ -2&\le &&x&&<&2 \end{array}
    -2 is less than or equal to x which is less than 2
  10. \begin{array}{rrrrrrrrrrr} \\ \\ y&-&1&>&3&\hspace{0.25in} \text{or}\hspace{0.25in}&y&-&1&<&-3 \\ &+&1&&+1&&&+&1&&+1 \\ \midrule &&y&>&4&\hspace{0.25in} \text{or}\hspace{0.25in}&&&y&<&-2 \end{array}
    y <4 or y >2
  11. \begin{array}{rrrrrrrrrrr} \\ \\ \\ 2x&-&3&<&-5&\hspace{0.5in}&2x&-&3&>&5 \\ &+&3&&+3&\hspace{0.5in}&&+&3&&+3 \\ \midrule &&2x&<&-2&\hspace{0.5in}&&&2x&>&8 \\ &&x&<&-1&\hspace{0.5in}&&&x&>&4 \end{array}
    x > -1, x < 4
  12. y=|x|-3
    x y
    3 0
    2 −1
    1 −2
    0 −3
    −1 −2
    −2 −1
    −3 0

    Graph with line intersecting at (-3,0), (-2,-1), (-1,-2), (0,-3) (1,-2), (2,-1), (3,0)

  13. \begin{array}{ll} \\ \\ \\ \\ \\ \\ \\ \begin{array}{rrrrl} 5L&+&3S&=&49 \\ 4L&-&2S&=&26 \\ \\ \dfrac{4L}{2}&-&\dfrac{2S}{2}&=&\dfrac{26}{2} \\ \\ 2L&-&S&=&13 \\ \\ &\text{or}&S&=&2L-13 \end{array} & \hspace{0.25in} \begin{array}{rrcrrrl} \\ \\ \\ 5L&+&3(2L&-&13)&=&49 \\ 5L&+&6L&-&39&=&49 \\ &&&+&39&&+39 \\ \midrule &&&&\dfrac{11L}{11}&=&\dfrac{88}{11} \\ \\ &&&&L&=&8 \\ \\ &&&&\therefore S&=&2L-13 \\ &&&&S&=&2(8)-13 \\ &&&&S&=&16-13 \\ &&&&S&=&3 \end{array} \end{array}
  14. \begin{array}{rrl} \\ \\ \\ \\ \\ 5x+x&=&42 \\ 6x&=&42 \\ x&=&\dfrac{42}{6}\text{ or }7 \\ \\ \therefore 5x&=&5(7)\text{ or }35 \end{array}
  15. \begin{array}{ll} \\ \\ \\ \\ \\ \\ \\ \\ \\ \begin{array}{rrl} \\ \\ \\ \\ \\ \\ \\ y&=&\dfrac{km}{d^2} \\ \\ &&\textbf{1st} \\ y&=&3 \\ k&=&\text{find 1st} \\ m&=&2 \\ d&=&4 \\ \\ y&=&\dfrac{km}{d^2} \\ \\ 3&=&\dfrac{k(2)}{(4)^2} \\ \\ 3&=&\dfrac{3(4)^2}{2} \\ \\ k&=&24 \end{array} & \hspace{0.25in} \begin{array}{rrl} \\ \\ \\ \\ \\ \\ \\ &&\textbf{2nd} \\ y&=&\text{find} \\ k&=&24 \\ m&=&25 \\ d&=&5 \\ \\ y&=&\dfrac{km}{d^2} \\ \\ y&=&\dfrac{(24)(25)}{(5)^2} \\ \\ y&=&24 \end{array} \end{array}

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book