Midterm 2: Version A Answer Key

  1. x+2y=-5
    x y
    0 -\dfrac{5}{2}
    −5 0
    x-y=-2
    x y
    0 2
    −2 0

    Bar graph with lines intersecting at (-3,-1)

  2. \begin{array}{ll} \\ \\ \\ \\ \\ \\ \\ \\ \begin{array}{rrrrrl} &(4x&-&3y&=&13)(2) \\ &(5x&-&2y&=&\phantom{1}4)(-3) \\ \\ &8x&-&6y&=&\phantom{-}26 \\ +&-15x&+&6y&=&-12 \\ \midrule &&&-7x&=&\phantom{-}14 \\ \\ &&&x&=&\dfrac{14}{-7}\text{ or }-2 \end{array} & \hspace{0.25in} \begin{array}{rrcrl} \\ 5x&-&2y&=&\phantom{+1}4 \\ 5(-2)&-&2y&=&\phantom{+1}4 \\ -10&-&2y&=&\phantom{+1}4 \\ +10&&&&+10 \\ \midrule &&-2y&=&\phantom{+}14 \\ \\ &&y&=&\dfrac{14}{-2}\text{ or }-7 \end{array} \end{array}
    (-2,-7)
  3. \begin{array}{rrrrrl} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ &x&-&2y&=&-5 \\ &(2x&+&y&=&\phantom{-}5)(2) \\ \\ &x&-&2y&=&-5 \\ +&4x&+&2y&=&10 \\ \midrule &&&5x&=&5 \\ &&&x&=&1 \\ \\ \therefore &2(1)&+&y&=&\phantom{-}5 \\ &-2&&&&-2 \\ \midrule &&&y&=&\phantom{-}3 \end{array}
  4. \begin{array}{ll} \\ \\ \\ \\ \\ \\ \\ \begin{array}{rrrrrrrl} \\ \\ \\ \\ \\ \\ &(x&+&y&+&2z&=&0)(-2) \\ \\ &-2x&-&2y&-&4z&=&0 \\ +&2x&&&+&z&=&1 \\ \midrule &&&-2y&-&3z&=&1 \\ \\ &&&(-2y&-&3z&=&1)(3) \\ &&&(3y&+&4z&=&0)(2) \\ \\ &&&-6y&-&9z&=&3 \\ &&+&6y&+&8z&=&0 \\ \midrule &&&&&-z&=&3 \\ &&&&&z&=&-3 \\ \end{array} & \hspace{0.25in} \begin{array}{rrcrl} \\ \\ 3y&+&4z&=&0 \\ 3y&+&4(-3)&=&0 \\ 3y&-&12&=&0 \\ &&3y&=&12 \\ &&y&=&4 \\ \\ 2x&+&z&=&1 \\ 2x&+&(-3)&=&1 \\ &&2x&=&4 \\ &&x&=&2 \\ \end{array} \end{array}
    (2,4,-3)
  5. 28-\{5x-\cancel{\left[6x-3(5-2x)\right]^0}1\}+5x^2
    28-\{5x-1\}+5x^2
    28-5x+1+5x^2
    5x^2-5x+29
  6. \begin{array}{rrrcrl} \\ \\ \\ \\ \\ \\ \\ \\ \\ &a&-&3&& \\ \times &a&-&3&& \\ \midrule &a^2&-&3a&& \\ +&&-&3a&+&9 \\ \midrule &a^2&-&6a&+&9 \\ \\ &a^2&-&6a&+&9 \\ \times&&&&&4a^2 \\ \midrule &4a^4&-&24a^3&+&36a^2 \\ \end{array}
  7. \begin{array}{rrrrrlrrrr} \\ \\ \\ \\ \\ \\ &x^2&+&2x&+&3&&&& \\ \times&x^2&+&2x&+&3&&&& \\ \midrule &x^4&+&2x^3&+&3x^2&&&& \\ &&&2x^3&+&4x^2&+&6x&& \\ +&&&&&3x^2&+&6x&+&9 \\ \midrule &x^4&+&4x^3&+&10x^2&+&12x&+&9 \end{array}
  8. \polylongdiv{2x^3-7x^2+15}{x-2}
  9. a(2b+3c)-2(2b+3c)
    (2b+3c)(a-2)
  10. a^2-5ab+3ab-15b^2
    a(a-5b)+3b(a-5b)
    (a-5b)(a+3b)
  11. x^2(x+1)-9(x+1)
    (x^2-9)(x+1)
    (x+3)(x-3)(x+1)
  12. (x)^3-(4y)^3
    (x-4y)(x^2+4xy+16y^2)
  13. \phantom{1}
    B+S=35\Rightarrow B=35-S \\
    \begin{array}{ll} \begin{array}{rrrrrrrr} &B&-&10&=&2(S&-&10) \\ &35-S&-&10&=&2S&-&20 \\ &25&-&S&=&2S&-&20 \\ +&20&+&S&&S&+&20 \\ \midrule &&&45&=&3S&& \end{array} & \hspace{0.25in} \begin{array}{rrl} S&=&\dfrac{45}{3}\text{ or }15 \\ \\ \therefore B&=&35-S \\ B&=&35-15 \\ B&=&20 \\ \end{array} \end{array}
  14. \phantom{1}
    D+Q=20\Rightarrow Q=20-D \\
    \begin{array}{ll} \begin{array}{rrlrr} 10D&+&25Q&=&275 \\ 10D&+&25(20-D)&=&275 \\ 10D&+&500-25D&=&275 \\ &-&500&&-500 \\ \midrule &&\phantom{500}-15D&=&-225 \end{array} & \hspace{0.25in} \begin{array}{rrl} D&=&\dfrac{-225}{-15}\text{ or }15 \\ \\ \therefore Q&=&20-D \\ Q&=&20-15 \\ Q&=&5 \\ \end{array} \end{array}
  15. \phantom{1}
    A+B=50\Rightarrow A=50-B \\
    \begin{array}{rrrrrrl} (3.95A&+&3.70(50&-&A)&=&191.25)(100) \\ \\ 395A&+&370(50&-&A)&=&19125 \\ 395A&+&18500&-&370A&=&19125 \\ &-&18500&&&&-18500 \\ \midrule &&&&25A&=&625 \\ \\ &&&&A&=&\dfrac{625}{25}\text{ or 25 kg} \\ \\ &&&&B&=&50-25 \\ &&&&B&=&25 \text{ kg} \\ \end{array}

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book