Chapter 12. Trace Minerals


Fluoride’s Functional Role

Fluoride is known mostly as the mineral that combats tooth decay. It assists in tooth and bone development and maintenance. Fluoride combats tooth decay via three mechanisms:

  1. Blocking acid formation by bacteria
  2. Preventing demineralization of teeth
  3. Enhancing remineralization of destroyed enamel

Fluoride is added to drinking water in 45% of communities in Canada. In British Columbia, only 3.7% of the population has access to fluoridated water. Fluoridation of water prevents, on average, 27 percent of cavities in children and between 20 and 40 percent of cavities in adults but it can be expensive.

The optimal fluoride concentration in water to prevent tooth decay ranges between 0.7–1.2 milligrams per liter. Exposure to fluoride at three to five times this concentration before the growth of permanent teeth can cause fluorosis, which is the mottling and discoloring of the teeth.

Figure 12.7 A Severe Case of Fluorosis

Teeth with discoloration due to Bellingham fluorosis
Bellingham fluorosis by Editmore / Public Domain

Fluoride’s benefits to mineralized tissues of the teeth are well substantiated, but the effects of fluoride on bone are not as well known. Fluoride is currently being researched as a potential treatment for osteoporosis. The data are inconsistent on whether consuming fluoridated water reduces the incidence of osteoporosis and fracture risk. Fluoride does stimulate osteoblast bone building activity, and fluoride therapy in patients with osteoporosis has been shown to increase BMD. In general, it appears that at low doses, fluoride treatment increases BMD in people with osteoporosis and is more effective in increasing bone quality when the intakes of calcium and vitamin D are adequate.

Dietary Reference Intake

The Adequate Intakes (AI) for fluoride, but has not yet developed RDAs. The AIs are based on the doses of fluoride shown to reduce the incidence of cavities, but not cause dental fluorosis. From infancy to adolescence, the AIs for fluoride increase from 0.01 milligrams per day for ages less than six months to 2 milligrams per day for those between the ages of fourteen and eighteen. In adulthood, the AI for males is 4 milligrams per day and for females is 3 milligrams per day. The UL for young children is set at 1.3 and 2.2 milligrams per day for girls and boys, respectively. For adults, the UL is set at 10 milligrams per day.

Table 12.10 Dietary Reference Intakes for Fluoride

Age Group AI (mg/day) UL (mg/day)
Infants (0–6 months) 0.01 0.7
Infants (6–12 months) 0.50 0.9
Children (1–3 years) 0.70 1.3
Children (4–8 years) 1.00 2.2
Children (9–13 years) 2.00 10.0
Adolescents (14–18 years) 3.00 10.0
Adult Males (> 19 years) 4.00 10.0
Adult Females (> 19 years) 3.00 10.0

Source: Institute of Medicine. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. January 1, 1997.

Dietary Sources of Fluoride

Greater than 70 percent of a person’s fluoride comes from drinking fluoridated water when they live in a community that fluoridates the drinking water. Other beverages with a high amount of fluoride include teas and grape juice. Solid foods do not contain a large amount of fluoride. Fluoride content in foods depends on whether it was grown in soils and water that contained fluoride or cooked with fluoridated water. Canned meats and fish that contain bones do contain some fluoride.

Table 12.11 Fluoride Content of Various Foods

Food Serving Fluoride (mg) Percent Daily Value*
Fruit Juice 3.5 fl oz. 0.02-2.1 0.7-70
Crab, canned 3.5 oz. 0.21 7
Rice, cooked 3.5 oz. 0.04 1.3
Fish, cooked 3.5 oz. 0.02 0.7
Chicken 3.5 oz. 0.015 0.5
* Current AI used to determine Percent Daily Value

Micronutrient Information Center: Fluoride. Oregon State University, Linus Pauling Institute. . Updated in April 29, 2015. Accessed October 22, 2017.


Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Fluoride Copyright © 2020 by Karine Hamm is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book