37 Energy Balances Review

Important Equations

Kinetic Energy

[latex]E_{k} = \frac{1}{2} mu^{2}[/latex]

[latex]\dot{E}_{k} = \frac{1}{2} \dot{m} u^{2}[/latex]

Potential Energy

[latex]E_{p} = m g z[/latex]

[latex]\dot{E}_{p} = \dot{m} g z[/latex]

[latex]\Delta E_{p} = E_{p2} - E_{p1} = m g (z_{2} - z_{1})[/latex]

First Law of Thermodynamics[latex][/latex] [latex]\Delta U + \Delta E_{k} + \Delta E_{p} = Q + W[/latex]
Flow Work [latex]\dot{W}_{fl} = \dot{W}_{fl-in} - \dot{W}_{fl-out} = P_{in}\dot{V}_{in} - P_{out}\dot{V}_{out}[/latex]
Steady-state Open System Energy Balance

[latex]\dot{Q} + \dot{W} = \Sigma_{out} \dot{E}_{j} - \Sigma_{in} \dot{E}_{j}[/latex]

[latex]\dot{Q} + \dot{W}_{s} = \Delta\dot{H} + \Delta\dot{E}_{k} + \Delta\dot{E}_{p}[/latex]

Enthalpy

[latex]\hat{H} = \hat{U} + P\hat{V}[/latex]

[latex]\Delta\hat{H} = \Sigma_{i}\Delta\hat{H}_{i}[/latex]

Heat Capacity (closed system) [latex]C_{V}(T) = \bigg(\frac{\delta\hat{U}}{\delta T}\bigg)_{V}[/latex]
Internal Energy (closed system) [latex]d\hat{U} = C_{V}(T)dT[/latex]

[latex]\Delta\hat{U} = \int^{T_{2}}_{T_{1}}C_{V}dT[/latex]

Heat Capacity (open system) [latex]C_{P}(T) = \bigg(\frac{\delta\hat{H}}{\delta T}\bigg)_{P}[/latex]
Enthalpy (open system) [latex]\Delta\hat{H} = \int^{T_{2}}_{T_{1}}C_{P}dT[/latex]
Heat of Reaction Method [latex]\Delta\dot{H} = \xi\Delta\dot{H}_{r} + \Sigma\dot{n}_{out}*\int^{T_{out}}_{T_{ref}}C_{P}dT - \Sigma\dot{n}_{in}*\int^{T_{in}}_{T_{ref}}C_{P}dT[/latex]
Heat of Formation Method [latex]\xi\Delta\dot{H}^{\circ}_{r} = \Sigma\dot{n}_{out}*\hat{H}^{\circ}_{f,i} - \Sigma\dot{n}_{in}*\hat{H}^{\circ}_{f,i}[/latex]

Terms to Know

 

License

Icon for the Creative Commons Attribution-ShareAlike 4.0 International License

Foundations of Chemical and Biological Engineering I Copyright © 2020 by Jonathan Verrett is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book

Feedback/Errata

Comments are closed.