20 Reaction Chemistry Chapter Review
Important Equations
Reaction rate | r=1νd[J]dtr=1νd[J]dt |
Extent of reaction | dnj=νjdξdnj=νjdξ |
Relating extent of reaction with reaction rate | r=1Vdξdt=1νj1Vdnjdtr=1Vdξdt=1νj1Vdnjdt |
Rate law (general form) |
r=kr[A]a[B]br=kr[A]a[B]b r=krpaApbBr=krpaApbB |
Zeroth-order rate law | [A]−[A]0=−kr∗t[A]−[A]0=−kr∗t
[A]=[A]0−kr∗t[A]=[A]0−kr∗t |
First-order rate law |
ln[A]−ln[A]0=−kr∗tln[A]−ln[A]0=−kr∗t [A]=[A]0e−kr∗t[A]=[A]0e−kr∗t |
Second-order rate law |
1[A]−1[A]0=kr∗t1[A]−1[A]0=kr∗t [A]=[A]01+kr∗t∗[A]0[A]=[A]01+kr∗t∗[A]0 |
Equilibrium constant |
KorKeq=∏iavii,eqKorKeq=∏iavii,eq K=krk′r,cθis used for unit consistencyK=krk′r,cθis used for unit consistency k′r[product]peq=kr[reactant]reqk′r[product]peq=kr[reactant]req |
Arrhenius equation |
ln(kr)=ln(A)−EaRTln(kr)=ln(A)−EaRT kr=Ae−EaRTkr=Ae−EaRT Linear form: ln(kr)=−EaR∗1T+ln(A)ln(kr)=−EaR∗1T+ln(A) Simplification for temperature dependency calculations: ln(kr2kr1)=EaR(1T1−1T2)ln(kr2kr1)=EaR(1T1−1T2) |
Unimolecular rate law | A→P:−d[A]dt=kr∗[A]A→P:−d[A]dt=kr∗[A] |
Biomolecular rate law |
A+B→P:−d[A]dt=kr∗[A]∗[B]A+B→P:−d[A]dt=kr∗[A]∗[B] A+A→P:−d[A]dt=kr∗[A]2A+A→P:−d[A]dt=kr∗[A]2 |
Kinetic control | If ke1,ke2<<kr1,kr2ke1,ke2<<kr1,kr2:
[P1][P2]=kr1kr2[P1][P2]=kr1kr2 |
Thermodynamic control | If ke1,ke2>>kr1,kr2ke1,ke2>>kr1,kr2:
[P1][P2]=ke1ke2[P1][P2]=ke1ke2 |
Feedback/Errata