Reaction rate |
r=1νd[J]dt |
Extent of reaction |
dnj=νjdξ |
Relating extent of reaction with reaction rate |
r=1Vdξdt=1νj1Vdnjdt |
Rate law (general form) |
r=kr[A]a[B]b
r=krpaApbB
|
Zeroth-order rate law |
[A]−[A]0=−kr∗t
[A]=[A]0−kr∗t |
First-order rate law |
ln[A]−ln[A]0=−kr∗t
[A]=[A]0e−kr∗t
|
Second-order rate law |
1[A]−1[A]0=kr∗t
[A]=[A]01+kr∗t∗[A]0
|
Equilibrium constant |
KorKeq=∏iavii,eq
K=krk′r,cθis used for unit consistency
k′r[product]peq=kr[reactant]req
|
Arrhenius equation |
ln(kr)=ln(A)−EaRT
kr=Ae−EaRT
Linear form:
ln(kr)=−EaR∗1T+ln(A)
Simplification for temperature dependency calculations:
ln(kr2kr1)=EaR(1T1−1T2)
|
Unimolecular rate law |
A→P:−d[A]dt=kr∗[A] |
Biomolecular rate law |
A+B→P:−d[A]dt=kr∗[A]∗[B]
A+A→P:−d[A]dt=kr∗[A]2
|
Kinetic control |
If ke1,ke2<<kr1,kr2:
[P1][P2]=kr1kr2
|
Thermodynamic control |
If ke1,ke2>>kr1,kr2:
[P1][P2]=ke1ke2
|
Feedback/Errata