4. The First Law of Thermodynamics for Closed Systems
4.6 Key equations
Constant-volume specific heat | Cv=(∂u∂T)vCv=(∂u∂T)v |
Change in specific internal energy for all fluids | Δu=u2−u1Δu=u2−u1 |
Change in specific internal energy for ideal gases | Δu=Cv(T2−T1)Δu=Cv(T2−T1) |
Specific heat transfer | q=Qmq=Qm |
Boundary work | 1W2=∫21PdV |
Specific boundary work | 1w2=∫21Pdv |
Spring force | F=Kx |
Spring work | Wspring=∫21Fdx=12K(x22−x21) |
The first law of thermodynamics for closed systems |
ΔU=U2−U1=1Q2−1W2, assuming ΔKE=ΔPE=0 |
Equations for polytropic Processes
Process function | Pvn=constant |
Boundary work for real gases | If n≠1,
1W2=P2V2−P1V11−n If n=1, 1W2=P1V1lnV2V1=P2V2lnV2V1 1W2=P1V1lnP1P2=P2V2lnP1P2 |
Specific boundary work for real gases | If n≠1
1w2=P2v2−P1v11−n If n=1, 1w2=P1v1lnv2v1=P2v2lnv2v1 1w2=P1v1lnP1P2=P2v2lnP1P2 |
Boundary work for ideal gases | If n≠1
1W2=P2V2−P1V11−n If n=1, 1W2=P1V1lnV2V1=P2V2lnV2V1 1W2=P1V1lnP1P2=P2V2lnP1P2 1W2=mRTlnV2V1=mRTlnP1P2 (T in Kelvin) |
Specific boundary work for ideal gases |
If n≠1
1w2=P2v2−P1v11−n If n=1, 1w2=P1v1lnv2v1=P2v2lnv2v1 1w2=P1v1lnP1P2=P2v2lnP1P2 1w2=RTlnv2v1=RTlnP1P2 (T in Kelvin) |