6. Entropy and the Second Law of Thermodynamics
6.12 Key equations
Heat engine
Net work output | ˙Wnet, out=˙QH−˙QL˙Wnet, out=˙QH−˙QL |
Thermal efficiency of any heat engine | ηth=desired outputrequired input=˙Wnet, out˙QH=1−˙QL˙QHηth=desired outputrequired input=˙Wnet, out˙QH=1−˙QL˙QH |
Thermal efficiency of Carnot heat engine | ηth, rev=1−TLTHηth, rev=1−TLTH
|
Refrigerator and heat pump
Net work input | ˙Wnet, in=˙QH−˙QL˙Wnet, in=˙QH−˙QL |
COP of any refrigerator | COPR=desired outputrequired input=˙QL˙Wnet, in=˙QL˙QH−˙QL=1˙QH/˙QL−1COPR=desired outputrequired input=˙QL˙Wnet, in=˙QL˙QH−˙QL=1˙QH/˙QL−1 |
COP of Carnot refrigerator | COPR, rev=TLTH−TL=1TH/TL−1COPR, rev=TLTH−TL=1TH/TL−1 |
COP of any heat pump | COPHP=desired outputrequired input=˙QH˙Wnet, in=˙QH˙QH−˙QL=11−˙QL/˙QHCOPHP=desired outputrequired input=˙QH˙Wnet, in=˙QH˙QH−˙QL=11−˙QL/˙QH |
COP of Carnot heat pump | COPHP, rev=THTH−TL=11−TL/THCOPHP, rev=THTH−TL=11−TL/TH |
Entropy and entropy generation
The inequality of Clausius | ∮δQT≤0 (=for reversible cycles; <for irreversible cycles)∮δQT≤0 (=for reversible cycles; <for irreversible cycles) |
Definition of entropy | Infinitesimal form: dS=(δQT)revIntegral form: ΔS=S2−S1=∫21(δQT)revInfinitesimal form: dS=(δQT)revIntegral form: ΔS=S2−S1=∫21(δQT)rev |
Definition of entropy generation | Infinitesimal form: dS=δQT+δSgenwhere δSgen≥0(=for reversible processes; >for irreversible process) |
The second law of thermodynamics
For closed systems (control mass) | S2−S1=∫21δQT+Sgen≅∑QkTk+Sgen (Sgen≥0) where Tk is the absolute temperature of the system boundary, in Kelvin. |
For steady-state, steady flow in a control volume (open systems) | ∑˙mese−∑˙misi=∑˙Qc.v.T+˙Sgen (˙Sgen≥0) |
For steady and isentropic flow | ∑˙mese=∑˙misi |
Change of specific entropy between two states of a solid or liquid | s2−s1=CplnT2T1 |
Change of specific entropy between two states of an ideal gas | Assume constant Cp and Cv in the temperature range, s2−s1=CplnT2T1−RlnP2P1
s2−s1=CvlnT2T1+Rlnv2v1 |
Isentropic relations for ideal gases | Pvk=constant
P2P1=(v1v2)k=(T2T1)k/(k−1) |