"

6. Entropy and the Second Law of Thermodynamics

6.12 Key equations

Heat engine

Net work output W˙net, out=Q˙HQ˙L
Thermal efficiency of any heat engine ηth=desired outputrequired input=W˙net, outQ˙H=1Q˙LQ˙H
Thermal efficiency of Carnot heat engine ηth, rev=1TLTH

 

 

Refrigerator and heat pump

Net work input W˙net, in=Q˙HQ˙L
COP of any refrigerator COPR=desired outputrequired input=Q˙LW˙net, in=Q˙LQ˙HQ˙L=1Q˙H/Q˙L1
COP of Carnot refrigerator COPR, rev=TLTHTL=1TH/TL1
COP of any heat pump COPHP=desired outputrequired input=Q˙HW˙net, in=Q˙HQ˙HQ˙L=11Q˙L/Q˙H
COP of Carnot heat pump COPHP, rev=THTHTL=11TL/TH

 

Entropy and entropy generation

The inequality of Clausius δQT0 (=for reversible cycles; <for irreversible cycles)
Definition of entropy Infinitesimal  form: dS=(δQT)revIntegral  form: ΔS=S2S1=12(δQT)rev
Definition of entropy generation Infinitesimal  form: dS=δQT+δSgenwhere δSgen0(=for reversible processes; >for irreversible process)

 

The second law of thermodynamics

For closed systems (control mass) S2S1=12δQT+SgenQkTk+Sgen     (Sgen0)
where Tk is the absolute temperature of the system boundary, in Kelvin.
For steady-state, steady flow in a control volume (open systems) m˙esem˙isi=Q˙c.v.T+S˙gen      (S˙gen0)
For steady and isentropic flow m˙ese=m˙isi
Change of specific entropy between two states of a solid or liquid s2s1=CplnT2T1
Change of specific entropy between two states of an ideal gas Assume constant  Cp and Cv in the temperature range,  s2s1=CplnT2T1RlnP2P1

s2s1=CvlnT2T1+Rlnv2v1

Isentropic relations for ideal gases Pvk=constant

P2P1=(v1v2)k=(T2T1)k/(k1)
where  k=CpCv  and T is in Kelvin

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Introduction to Engineering Thermodynamics Copyright © 2022 by Claire Yu Yan is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book